MicroMVG OPERATORS MANUAL

Flow Computer
Gas Version5

12603 Southwest Freeway, Suite 320
Stafford, Texas 77477 USA
(281) 565-1118
Fax (281) 565-1119

WARRANTY

Dynamic Flow Computers warrants to the owner of the Smart Flow Computer that the product delivered will be free from defects in material and workmanship for one (1) year following the date of purchase.

This warranty does not cover the product if it is damaged in the process of being installed or damaged by abuse, accident, misuse, neglect, alteration, repair, disaster, or improper testing.

If the product is found otherwise defective, Dynamic Flow Computers will replace or repair the product at no charge, provided that you deliver the product along with a return material authorization (RMA) number from Dynamic Flow Computers.

Dynamic Flow Computers will not assume any shipping charge or be responsible for product damage due to improper shipping.

THE ABOVE WARRANTY IS IN LIEU OF ANY OTHER WARRANTY EXPRESS IMPLIED OR STATUTORY. BUT NOT LIMITED TO ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE, OR ANY WARRANTY ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE. LIMITATION OF LIABILITY:

DYNAMIC FLOW COMPUTERS SHALL HAVE NO LIABILITY FOR ANY INDIRECT OR SPECULATIVE DAMAGES (INCLUDING, WITHOUT LIMITING THE FOREGOING, CONSEQUENTIAL, INCIDENTAL AND SPECIAL DAMAGES) ARISING FROM THE USE OF, OR INABILITY TO USE THIS PRODUCT. WHETHER ARISING OUT OF CONTRACT, OR UNDER ANY WARRANTY, IRRESPECTIVE OF WHETHER DFM HAS ADVANCED NOTICE OF THE POSSIBILITY OF ANY SUCH DAMAGE INCLUDING, BUT NOT LIMITED TO LOSS OF USE, BUSINESS INTERRUPTION, AND LOSS OF PROFITS. NOTWITHSTANDING THE FOREGOING, DFM'S TOTAL LIABILITY FOR ALL CLAIMS UNDER THIS AGREEMENT SHALL NOT EXCEED THE PRICE PAID FOR THE PRODUCT. THESE LIMITATIONS ON POTENTIAL LIABILITY WERE AN ESSENTIAL ELEMENT IN SETTING THE PRODUCT PRICE. DFM NEITHER ASSUMES NOR AUTHORIZES ANYONE TO ASSUME FOR IT ANY OTHER LIABILITIES

CHAPTER 1: QUICK START	1-1
Introduction:	1-1
Quick Start Up	1-2
Technical Data	1-4
Parts List	1-5
System Minimum Requirements	1-7
What is a configuration file?	1-8
Downloading a configuration file to the flow computer	
What is an Image File?	1-9
How to download an Image File	
How to force a board into download mode	1-10
Website - DFM Configuration Software	1-11
Website – Image File (Firmware)	
Getting acquainted with the flow computer wiring:	
Back terminal wiring:	
Back Panel Jumper	
INPUT/OUTPUT: Assigning and Ranging Inputs	1-15
Input/Output Assignment	
How to assign a transmitter to an I/O point through window program:	
How to assign a transmitter to an I/O point through DOS program:	
Ranging the Transmitter Inputs:	
WIRING:	
Wiring the analog inputs:	
RTD	
Wiring analog output:	
Turbine input wiring	
Turbine input wiring – Using Daniel 1817 Preamp	
Turbine input wiring – Using Daniel 1818 Preamp	
RS-232 connection:	
Printer Connection:	
RS-485:	
Wiring of status inputs:	
Wiring of switch/pulse outputs:	
Switch Output to Relay Wiring Diagram	
Density input wiring:	
CALIBRATION Through DOS Program	
Analog Input 4-20mA or 1-5 volt signal	
RTD calibration:	
Calibration of analog output:	
Multi-Variable Transmitters (Model 205) – DP and Pressure	
Multi-Variable Transmitters (Model 205)- RTD.	
Verifying digital inputs and outputs	
CHAPTER 2: Data Entry	
Introduction to the MicroMVG Software	
Configuration File through DOS Program	
About	
File	
Open a File	
Open a New File	
Delete a File	
Load File	
View File	
Save As	
Save	
Save and Exit	

Exit	
PORT	
PC Communication Set Up	
Flow Computer Communication Set Up	2-5
Dial	
Phone Book	
Phone Book Edit	
Modem Setup	
Hang-up Phone	
DIAG	
Read Single Flow Computer Communication Setup	
Diagnostic Data	
Micro MV Gas Flow Computer Configuration Diagram	
METER	
Set Up	
Meter Data	
Linear Factor	
Other Parameters	
Date and Time	
Parameter Overrides	
Security Code	
INPUT/OUTPUT	2-21
Transducer Input Assignment	
Transducer Tag ID	2-22
Calibration Mode	2-23
Calibration	
Status Input /Switch Output Assignment	2-24
Switch Output Assignment	2-24
Analog Output Assignment	
Remote Control Analog Output Setpoint	
Micro MV Gas Flow Computer Display Assignment	
Modbus Shift	
Modbus Shift – Floating Point	
REPORTS	
Current Data - Snapshot Totalizer Updates	
Previous Hourly Data	
Previous Daily Data	2-32
Previous Month Data	
Previous Alarm Data	2-32
Audit Trail Report	2-33
Build User Report	2-34
View User Report	2-34
Formatted Ticket Report	2-34
Ticket Report	2-34
Auto Data Retrieval	2-34
PRINT	2-35
Print "Help" File	2-35
Print Modbus Registers	2-35
Print Calibration Data	2-35
Print Files	2-35
CHAPTER 3: Data Entry	3-1
MAIN MENU	
Security Code	
Calibrate /1=M.Var	
Enable Calibrate Mode	
Calibrate Analog Input, RTD	

Calibrate Analog Output	3-4
Calibrate Multivariable	
Override Meter No.	3-7
Date/Time	3-7
Configuration	
Configue Meter	
Flow Equation Type (0-3)	
AGA3/New AGA3/Venturi	
AGA7	
Configure I/O	
Analog Output	
Meter I/O	
Status Input /Switch Output Assignment	
Switch Output Assignment	
Assignments - Pulse Outputs	
Flow Computer Display Assignment	
Pulse Output	
Others	
CHAPTER 4: FLOW EQUATIONS	
Common Terms	
AGA3	
API 14.3	
AGA 7	
Venturi	
DENSITY EQUATIONS	
Sarasota Density GM/CC	
UGC Density GM/CC	
Solartron Density GM/CC	
AGA8 Gross Method 1	
AGA8 Gross Method 2	
AGA8 Detail Method	
CHAPTER 5: MODBUS DATA	
MODBUS PROTOCOL	
TRANSMISSION MODE	
ASCII FRAMING	5-1
RTU FRAMING	5-1
FUNCTION CODE	5-2
ERROR CHECK	5-2
EXCEPTION RESPONSE	5-2
BROADCAST COMMAND	5-2
MODBUS EXAMPLES	
FUNCTION CODE 03 (Read Single or Multiple Register Points)	
ASCII MODE - Read Address 3076	
MODBUS ADDRESS TABLE – 16 BITS	
Scaled Data Area	
Modbus 16-bit Address Table Ends	
Last Daily or Monthly Data Area	
NX19 Method	
AGA 8 GROSS METHOD 1	
AGA 8 GROSS METHOD 1	
AGA 8 Detail Method	
Last Hourly Data Area	
FLOATING POINT - CURRENT DATA AREA – METER #1	
FLOATING POINT - CURRENT DATA AREA	
FLOATING POINT- CURRENT DATA AREA – METER #2	
FLOATING POINT- CURRENT DATA AREA – METER #2	5-28

FLOATING POINT – Previous Daily Data Area – Meter #1	5-29
FLOATING POINT – Previous Hourly Data Area – Meter #1	5-30
FLOATING POINT – Previous Daily Data Area – Prog. Var	5-30
FLOATING POINT – Previous Daily Data Area – Meter #2	5-31
FLOATING POINT – Previous Hourly Data Area _Meter #2	5-32
FLOATING POINT – (701) Previous Daily Data Area – Meter #1	5-33
FLOATING POINT – (702) Previous Daily Data Area – Meter #2	5-33
FLOATING POINT – (703) Previous Daily Data Area – Meter #1	5-34
FLOATING POINT – (704) Previous Hourly Data Area – Meter #1	5-34
FLOATING POINT – (705) Previous Daily Data Area – Meter #2	5-35
FLOATING POINT – (706) Previous Hourly Data Area – Meter #2	5-35
Programmable Floating Point Variable	5-36
CHAPTER 6: Installation Drawings	
Explosion-Proof Installation Drawings	
Manifold Installation Drawings	

CHAPTER 1: QUICK START

Introduction:

The micro MV Gas Flow Computer was designed after careful listening to our customers in all sectors of the oil and gas industry. It was built to address the different needs for refineries, chemical plants, gas processing plants, offshore platforms, pipeline and transmission, remote gas wells, and storage caverns. The focus has been to bring the different needs and requirements of these specialized industries into one hardware platform and therefore reducing the spare parts requirements, the training process, calibration, and overall cost of ownership. We believe the Micro MV Gas Flow Computer has delivered and met the design intentions.

The Micro MV Gas Flow Computer combines the following features:

- ♦ User Friendly
- ♦ Flexible
- ♦ Easy to understand and configure
- ♦ Rugged
- ♦ Economical to install and maintain
- ♦ Accurate

We hope that your experience with the Micro MV Gas Flow Computer will be a simple pleasant experience, not intimidating in any way.

The Micro MV Flow computer handles up to two-meter runs with bi-directional capabilities. It includes the following mass flow equations: New API14.3, venturi,, turbine (AGA7), Ultrasonic meter.

Additionally, it can perform density calculations per these standard procedures: AGA8, NX19 for gas,, and other tables are added constantly, call our main office for current equations

One Rosemount multi-variable digital transducers can be connected to each Micro MV flow computer for temperature, pressure (up to 3626 PSIG), and DP (up to 830 inches $\rm H_2O$). Other Rosemount multi variable

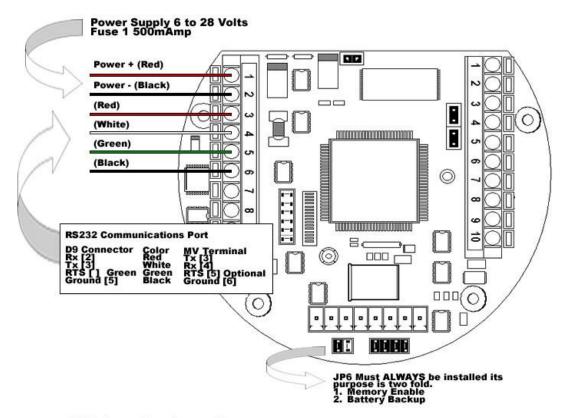
transmitters can be connected to the Micro MV Gas Flow Computer via RS485 serial interface. Up to four meter runs can be stored and calculated in a single Micro MV Gas flow computer. The 2nd RS485 is used as a slave or a master modbus port for data acquisition and other serial functions.

The Micro MV Gas flow Computer has a host of inputs and outputs beyond the built in rosemount Multi Variable transmitter.

Three turbine inputs (Sine or Square wave), 70 mV peak to peak or sine wave 6 volts, or lighter on square wave

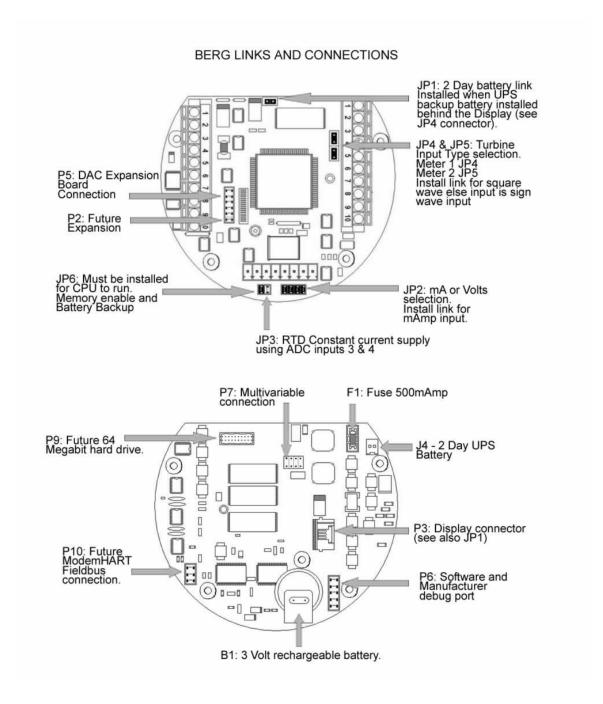
Four additional analog inputs, or two analog inputs and one three wire RTD inputs

One analog output expandable to four One RS-232 and two RS-485 with Modbus protocol, one serial printer output


4 status inputs or digital outputs (user configurable).

A 11'' and 1 M' and MY Con Electronic description of 22

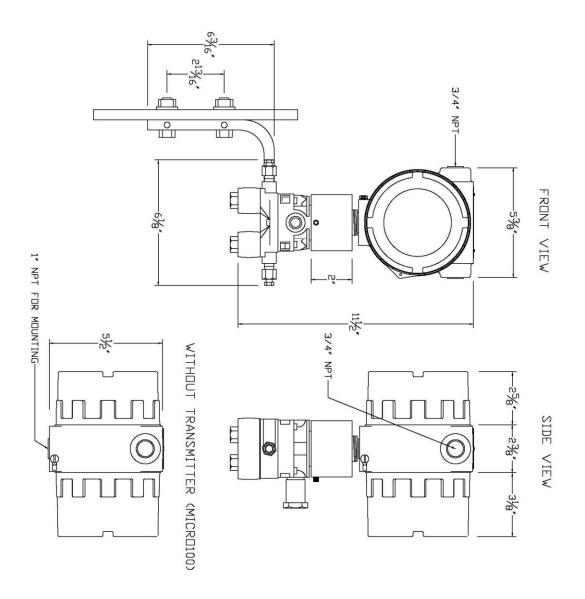
Additionally, each Micro MV Gas Flow Computer can store up to 32 days of hourly and daily data. Optional expandable memory (Virtual Hard Drive) up to 132 Megs; combined with our customized data storage allows almost any type data logging task to become possible.


Quick Start Up

MicroMV Quick Start

MV Step by Step Startup

- Connect Power Supply cables
 Connect RS232 Communications
 Ensure Jumper JP6 Installed
 Energize Voltage [24 Volts Recommended]
 Verify the display is ON
 Run DynacomTM Software
 Configure the Micro MV unit
 Consult the Faultfinding if a problem is incurred


Technical Data

OWER	
OLTAGE RANGE	7-28 VDC
OWER CONSUMPTION	0.5 WATT
PERATING CONDITIONS	
MPERATURE	- 40 TO 185 °F
UMIDITY	100%
OUSING	NEMA 4X CLASS 1 DIV. 1
EATURES	
ISPLAY	PLASMA 4 LINES 20 CHARACTERS BACKLIT DISPLAY
	WITH 4 INFRARED REFLECTIVE SENSORS
ROCESSOR	32-BIT MOTOROLA 68332 @ 16.7 MHZ
ASH ROM	4 MBITS @ 70 NANO SECONDS
4M	2 MBITS
REQUENCY INPUT	3 CHANNELS
	CHANNELS 1 & 2 ARE SINE/SQUARE WAVE CAPABLE
	CHANNEL 3 IS SQUARE WAVE ONLY
	SQUARE WAVE RANGE 0 - 6000 HZ
	SINE WAVE RANGE 0 – 1200 HZ
	SIGNAL > 40 mV FOR SINE WAVE
	SIGNAL > 3 VOLTS FOR SQUARE WAVE
NALOG INPUT	4 INPUTS STANDARD EXPANDABLE UP TO 9 ANALOG
	INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD.
ULTIVARIABLE	BUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER
	WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM
	UPDATE SPEED ONCE EVERY 109 MILLISECONDS.
NALOG OUTPUT	ONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE
	TO FÒUR (4)
IGITAL I/O	4 DIGITAL INPUTS OR OUTPUTS.
	DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.
ERIAL	2 RS485 @ 19200 BAUDS VARIABLE
	1 RS232 @ 9600 BAUDS VARIABLE
	1 PRINTER OUTPUT
OMMUNICATION PROTOCOL	MODBUS

Parts List

Spare Parts - Micro MV			
Part #	Description		
MVC	Micro MV CPU Main Board Only		
MVM	Micro MV CPU Mempry Board Only		
MVD	Micro MV Display Board		
MVI	Micro MV Analog In Board		
MVO	Micro MV Analog Out Board		
MVP	Micro MV Prover Board		
MVR	Micro MV Rosemount Board		
S6920	Explosion Proof Housing Unit for Micro MV Flow Computer		
Adapter A	Adapter for 0205 Rosemount Transmitter (Accommodates Micro MV Flow Computer)		
Bracket-MVD	Bracket for Micro MV Display		
Bracket-MVC A	Bracket for Micro MV CPU (Without Analog)		
Bracket-MVC B	Bracket for Micro MV CPU (With Analog)		
MVD Cable	Micro MV Display Ribbon Cable		
O-Ring A	O-Ring Gasket for Micro MV Housing		
Fuse A	250 mA Fuse		
Fuse B	500 mA Fuse		
Fuse C	2 Amp Fuse		
Battery A	Replacement Battery for Micro MV Flow Computer (Board Mounted)		

Micro MV Flow Computer: Dimensions

Window Software Minimum Requirements:

Please make sure your computer has the minimum requirements to install Dynamic's Dynacom software.

System Minimum Requirements

In order to install this software product the following requirements must be met:

- Windows Operating System (Win95, Win98, Win98SE, win2000, WinNT, WinXP, Vista)
- For a Windows NT machine: Service Pack 3 or later. (Service Pack 5 Update is Included in the Installation Disk)
- Internet Explorer 5 or later. (Internet Update is Included in the Installation Disk)
- For Windows NT, 2000, XP or Vista: Administrator level access to create an ODBC system DNS.
- Minimum disk space available: 16 MB.
- 1 Serial Communication Port

If your computer meets these requirements, you can run the setup file downloaded from our website

What is a configuration file?

The configuration file is an archive that contains the data used by the flow computer to determine calculation settings (Pipe ID, Flow Equation, Meter ID, etc.) and input/output assignments.

Downloading a configuration file to the flow computer.

- Open the configuration file using the **Configuration File | Open...** option on the main menu or pressing the open button in the toolbar. Once the file is open the file name will appear on the upper left corner of the window, so you can verify that the desired file was open.
- Connect to the Flow Computer either by using the Tools | Connect to Device option on
 - the main menu, the loopevice button on the vertical toolbar, or by pressing the [F5] key on the keyboard. Once you are connected the application it will show an ONLINE status on the upper right corner of the main window. Failure to communicate can occur because of a communication wiring problem, wrong PC port selection, communication parameter mismatch between PC and MicroMV (Modbus type, parity, baud rate, etc.) or lack of power to the MicroMV Flow Computer. To use "Tools | Com Settings | Auto Detect Settings" option, the user must insure that only one MicroMV computer is connected to the PC. More than one MicroMV Flow Computer in the loop will cause data collisions and unintelligible responses.
- Go to the configure device option either by using the **Tools | Meter Configuration**Configure
 - option, the Device button on the vertical toolbar, or by pressing the **[F10]** key on the keyboard.
- Because you are connected to a device, a window will appear asking you if you want to read the configuration from the connected meter, Press NO since what we want is to write the PC file to the flow computer.
- A configuration window will now appear showing you the information in the configuration
 file, you can check these values to make sure this is the file you want to send to the flow
 computer. Once you have checked that the configuration is correct, press the
 [Download] button. A blue bar indicating the progress of the download will appear at the
 bottom of the application window, after that the information in the configuration file will be
 in the flow computer.

Note: In case the flow computer is a liquid application, remember to End Batch after the configuration in downloaded for the changes to take effect.

What is an Image File?

An image file is an EPROM code for a certain purpose (liquid, gas, prover, etc.) **The image file is only done when an application upgrade is needed**.

When an image file is downloaded to the flow computer, all the information in the computer is lost (configuration and historical data), so make sure to retrieve all the important information before changing the image file.

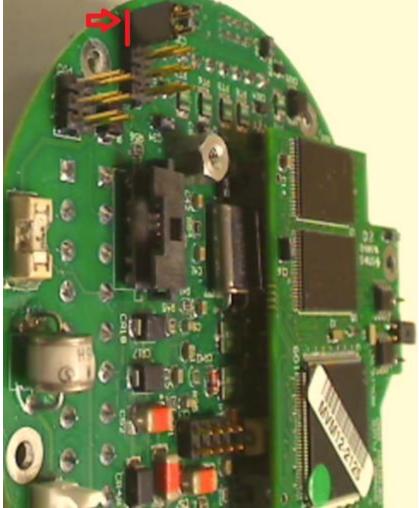
How to download an Image File

- Download an image file through RS232 port only.
- To Download an Image File to the Flow Computer select the **Tools | Download Program** option form the main menu or press the button in the toolbar.
- A small dialog will appear asking for the file name of the image file (Image file have the extension .img). Type it in or use the **Browse** button to locate it.
- Once the file name is in place press Download.
- If a retry message of small dialog appears, try to use "Tools | Com Settings | Auto Detect Settings" option, the user must insure that only one MicroMV computer is connected to the PC. More than one MicroMV Flow Computer in the loop will cause data collisions and unintelligible responses. Failure to communicate can occur because of a communication wiring problem, wrong PC port selection, communication parameter mismatch between PC and MicroMV (Modbus type, parity, baud rate, etc.) or lack of power to the MicroMV Flow Computer. After the device is detected, then you can follow steps described above.

Warning messages will remind you that this action will erase **ALL** the information in the flow computer.

The download task will take about 7 minutes to be completed. Once the image file is in place, the flow computer is ready to be configured (enter calculation parameters and I/O assignments).

How to force a board into download mode

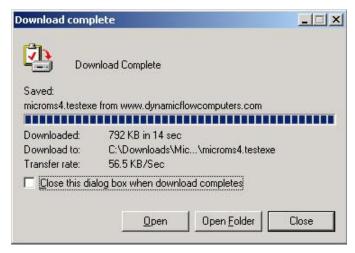

First try to recycle the power and reload the image if the error message is displayed while downloading a new image file. Download an image file only through **RS-232 port**. Contact technical support for old boards loaded with downloader v1.

Forcing download mode could be required if a wrong type of application image was loaded or other issues. Call our main office for more information

Steps to force the board into download mode.

- (1) Remove Power
- (2) Put a jumper on P6 as shown below.

- (3) Power up the board
- (4) Board is in download mode
- (5) Download image
- (6) Remove power and jumper on P6 after a new image is loaded
- (7) Board is ready


Website - DFM Configuration Software

- **Step 1.** Go to our website <u>WWW.DYNAMICFLOWCOMPUTERS.COM</u>
- **Step 2.** Click on the **Software** link located on the left hand side of the web page. You will be presented with two options: **Windows®** software and **DOS** software.

First look for your application under Windows, if you don't see your application listed here it means it only has DOS software.

- **Step 3.** Select either Windows® or DOS software based on Step 2.
- **Step 4**. On the new screen presented to you click on the application that you are trying to download. Once you hit the link it will ask you if you want to run or save the file in you computer. Select **SAVE.** (See illustration 1)

- **Step 5.** The file will start to transfer to your computer. The download time depends on your Internet connection speed and the type of application that being downloaded.
- **Step 6.** When the download if finish. Press the **OPEN** button to start the setup process. (See Illustration)
- **Step 7.** Follow the steps in the application setup.

Website - Image File (Firmware)

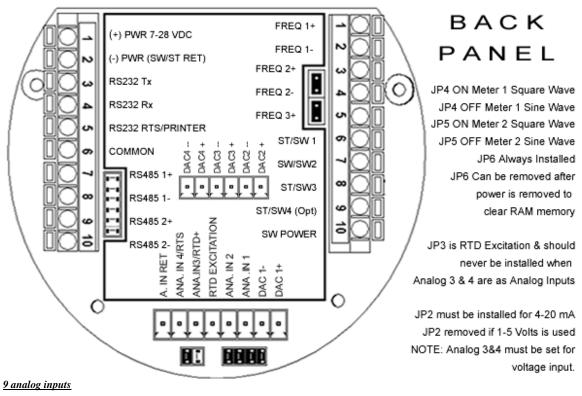
Check the version number of image file. The image file is only done when an application upgrade is needed.

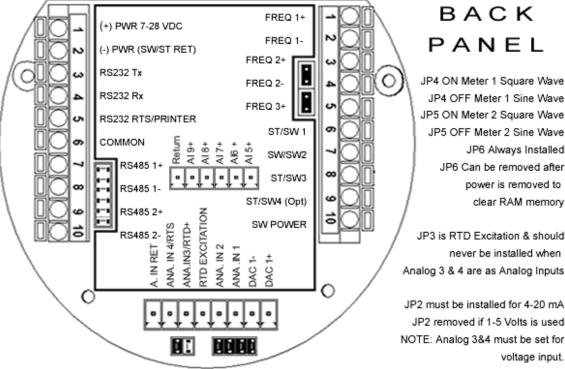
- **Step 1.** Go to our website <u>WWW.DYNAMICFLOWCOMPUTERS.COM</u>
- **Step 2.** Click on the **Software** link located on the left hand side of the web page, then you select **Firmware** option. All our image files are available for download. Only EEPROM based models like the SFC will need actual EEPROMS to be shipped out to you.
- **Step 3**. On the new screen presented to you click on the application that you are trying to download. Once you hit the link it will ask you the location and file name to be saved.
- **Step 4.** The file will start to transfer to your computer. The download time depends on your Internet connection speed and the type of application that being downloaded.
- **Step 5.** After the download is finished, follow the steps in the image downloading setup.

Getting acquainted with the flow computer wiring:

Back terminal wiring:

The back terminal wiring indicates the overall positions of the terminal plugs and their functions. Though the back panel's jumpers are also shown, refer to the next drawing, "Back Panel Jumpers", for information on their settings and functions.


The MicroMV receives its power via the .top two pins on Terminal P1, on the left of the board. Also on Terminal P1 from top to bottom are inputs to the four serial connections


To the right (P4), from top to bottom, are two turbine inputs, density frequency input, and switch/status inputs and output.

Terminal P3, at the lower bottom, handles analog inputs and outputs. These are, in order from right to left, analog output one, analog input 1 & 2, RTD excitation, analog 3 & 4 or RTD, analog input return. Analog 3&4 can be used as RTD input 1,but the jumper for the RTD excitation has to be installed, and the flow computer has to be configured for RTD input.

Back Panel Jumper

In this illustration, a jumper is "ON" when the jumper block is used to connect the jumper's to prongs. "OFF" means the jumper block is completely removed or attached to only one of the two prongs. 4 analog outputs

INPUT/OUTPUT: Assigning and Ranging Inputs

Input/Output Assignment

We will now configure your Micro MV Gas Flow Computer's inputs and outputs. The flow computer allows the user to configure the inputs and outputs. The flow computer will not use the unassigned inputs.

How to assign a transmitter to an I/O point through window program:

- 1 Click "Configure Device", configuration menu is prompted
- 2 On configuration menu, click "Input Assignment"
- 3 Enter assignments for DP, temperature, pressure, density and spare inputs.
- 4 Assignment (1-n). Assignments 1-4 are analog inputs attached to terminal of the back panel. These inputs accept 4-20mA or 1-5 volts input and are suitable for temperature, pressure, density, or spare inputs. An assignment 5 is strictly RTD (temperature) input only for the meter, densitometer or spare. Assignment 7 indicates a density frequency input; it is assigned automatically once you choose live density frequency input in the setup menu at density type Assignment 10 (module 1) is for Rosemount multi-variable module only. DP, pressure, and temperature for the meter can be assigned. When a frequency type primary element is hooked to the flow computer, the Multi Variable pressure and temperature can be used and the DP becomes a spare input that could be assigned for strainer differential.

How to assign a transmitter to an I/O point through DOS program:

Before beginning the procedure of assigning inputs and outputs, it is advisable to set up the meter (Meter | Set Up). This is because certain parameters on the Transducer Input Assignment page change (or may not appear, etc.) based on Meter | Set Up.

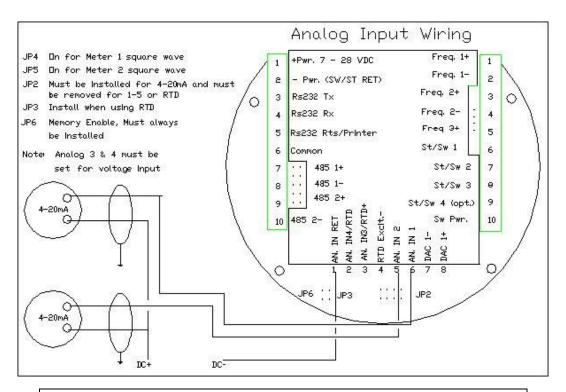
(Note: This menu scrolls further down the screen for entering 4-20 ma)

- 1 Use your arrow keys to scroll to menu item I/O (between Meter and Report). Its first entry is Transducer Input Assignment. Press ENTER.
- 2. Use the down/up arrow keys to scroll through this menu. The first four parameters are not used. Spare inputs are inputs that the flow computer will read and display in the diagnostic data but are not used in the calculations. Spare inputs high and low limit alarms are documented in the historical alarm report.
- 3. **Assignment** (1-n). Assignments 1-4 are analog inputs attached to terminal of the back panel. These inputs accept 4-20mA or 1-5 volts input and are suitable for temperature, pressure, density, or spare inputs. Assignment 5 is strictly RTD (temperature) input only for the meter, densitometer or spare. Assignment 7 indicates a density frequency input; it is assigned automatically once you choose live density frequency input in the setup menu at density type selection (and it can *only* be assigned via **Meter | Set Up | Density #**n, where n = 1 to 5). Assignment 10 (module 1) is for Rosemount multi-variable module only. DP, pressure, and temperature for the meter can be assigned. When a frequency type primary element is hooked to the flow computer, the Multi Variable pressure and temperature can be used and the DP becomes a spare input that could be assigned for strainer differential.

Ranging the Transmitter Inputs:

- 1. Enter the range values: after assigning the inputs scroll down the transducer inputs assignment menu to scale the 4-20mA. Enter the value at @4mA and @20mA. Enter both values similar to the way the transmitter is ranged. 1-5 volt is equivalent to 4-20mA. Enter the 1 volt value at the 4mA, and 5 volt value at 20mA. When the Multi Variable is used the 4-20 ma scale has no effect on anything and does not need to be configured for that input. The reason is simply that the flow computer gets the data via digital communication from the transmitter in engineering units, and therefore a scale is not needed. Normal pressure range is 0-3626, temperature -40 to 1200, DP -250 to 250, or -830 to 830 inches of water.
- 2. Enter the high and low limits: high limits and low limits are simply the alarm points in which you would like the flow computer to flag as an alarm condition. Enter these values with respect to the upper and lower range conditions. Try to avoid creating alarm log when conditions are normal. For example: If the line condition for the pressure is between 0 to 500 PSIG. Then you should program less than zero for low pressure alarm, and 500 or more for high pressure alarm. High limits are also used in the SCALE for the Modbus variables. The high limit is equal to 32767 or 4095. The low limit is not used for calculating the scale. The scale starts at zero to wherever the high limit value.
- 3. Set up the fail code: Maintenance and Failure Code values tell the flow computer to use a default value in the event the transmitter fails. The default value is stored in Maintenance. There are three outcomes: the transmitter value is always used, no matter what (Failure Code = 0); the Maintenance value is always used, no matter what (Failure Code = 1); and the Maintenance value is used only when the transmitter's value indicates that the transmitter has temporarily failed (Failure Code = 2).

RTD inputs will skip 4-20 mA assignment because RTD is a raw signal of 50Ω (ohms) to 156Ω . Readings beyond that range require a 4-20 mA signal to the flow computer or using the built in Rosemount Multi Variable transmitter. The Rosemount Multivariable has a range of -40-1200 degrees Fahrenheit. Density coefficients for raw frequency inputs are programmed in this menu. The menu will only show parameters relevant to the live density selected (i.e., Solartron or UGC, etc.).

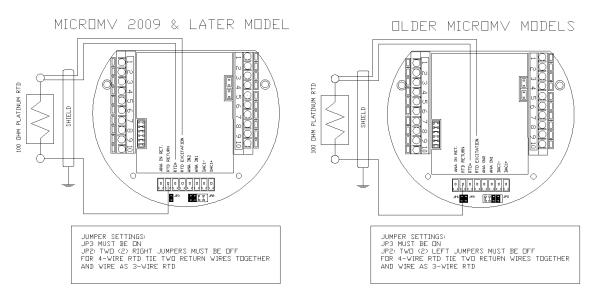

WIRING:

Wiring to the flow computer is very straightforward and simple. But still it is very important to get familiar with the wiring diagram.

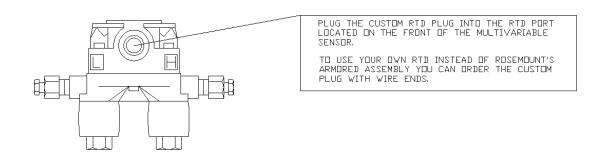
Wiring the analog inputs:

Typical wiring for analog inputs 1 and 2 are shown in the drawing. Analog inputs 3 and 4 are to the left of analog 1 and 2 separated by the RTD excitation. Note that the analog input has only one common return that is the -Ve signal of power supply powering the transmitters.

When wiring 1-5 volts, make sure to calibrate the flow computer for the 1-5 volt signal because the flow computer calibration defaults for the 4-20 ma, which is different from the 1-5 volts. JP2 must be removed for 1-5 volt inputs. The jumpers for analog 1-4 are in order from right to left. It is possible to remove the first two jumpers for analog 1 & 2 in for 1-5 volts signal and have analog in 3 & 4 as 4-20 mA signal. Signal line impedance provided by our flow computer is 250Ω .

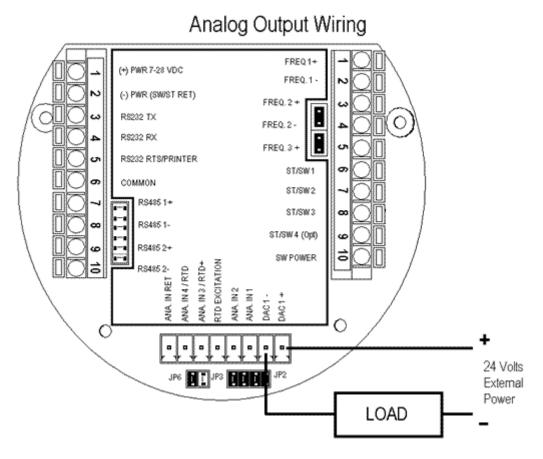


NOTE: The 4-20mA or 1-5 volt DOES NOT source power to the transmitters. You can use the DC power feeding the flow computer to power the 4-20mA loops IF that power supply is FILTERED.


RTD

 100Ω platinum **must** be used; a temperature range of -43°F to +300°F can be measured. RTD is to the left of analog in 1&2. The RTD excitation jumper has to be installed for the RTD to function. In the figure below, notice that the RTD requires three wire connections. Internal excitation current source generated is in the micro AMP range.

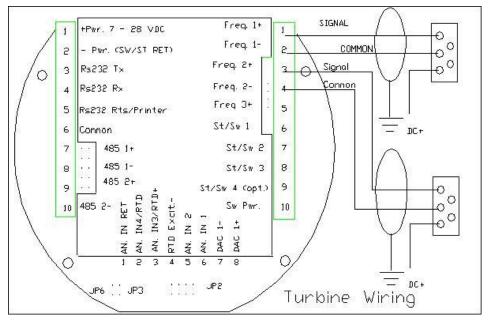
WIRING RTD DIRECTLY INTO CPU BOARD



WIRING RTD INTO ROSEMOUNT MULTIVARIABLE

Wiring analog output:

Wiring diagram shows typical Analog output wiring. Notice that analog outputs will regulate 4-20 mA current loops but DOES NOT source the power for it. External power is required.

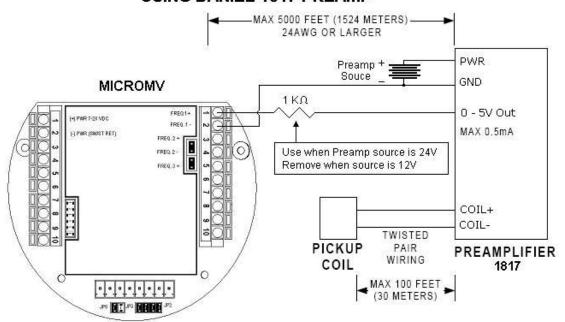


ASSIGNING/RANGING THE 4-20MA ANALOG OUTPUTS:

Go to the **I/O** assignment main menu and click **Analog Output Assignment**. A selection menu is prompted. Select the analog output number, and then enter what the 4 mA output will indicate and the 20 mA. Make sure that the 20 mA assignment value exceeds the upper range limit of what you assigned the Analog output for, otherwise the analog output will not update beyond 20 mA.

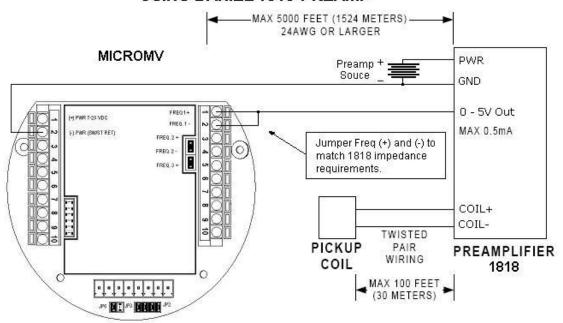
Turbine input wiring

Go to view main menu, click turbine under **Wiring Drawings**. Two drawings above each other will show typical wiring for turbine meter 1 and turbine meter 2. When dual pick ups from the same turbine are connected, use the inputs for turbine 1 for pickup 1 and turbine 2 for the second pickup coil. When connecting sine wave directly from the pickup coil make sure the distance from the pickup coil to the flow computer is very short—less than 50 feet with shielded cable. In the event there is presence of noise, the distance must be shortened. When connecting sine wave signal, the JP4 jumper for meter 1 must not be installed and JP5 jumper for meter 2 must not be installed. (*JP4 and JP5 must be off when using sine wave*). On the other hand, when using square wave, the square wave signal can be sinusoidal but has to be above 5 volts peak to peak with less than 0.4 volts offset in order for the flow computer to read it. The JP4 jumper for meter 1 must be installed and JP5 jumper for meter 2 must be installed.

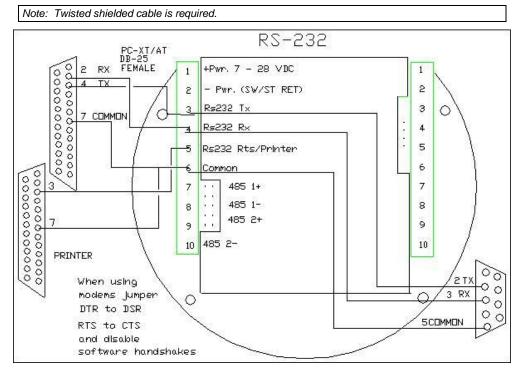


Note: When connecting square wave input, the JP4 and JP5 connect the turbine return to the flow computer power return. Therefore, signal polarity is very important. Reverse polarity could result in some damage or power loss. When sine wave is used the signal polarity is usually of no significance.

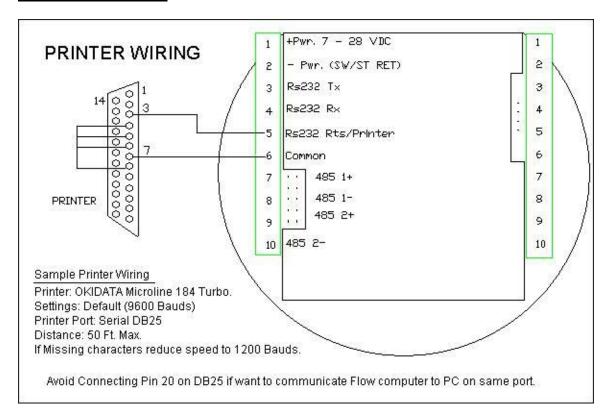
The turbine input is on the top of terminal P3 The third pin down from the top is Turbine/PD input 2 plus and below it is Turbine 2 minus. The third frequency input (fifth pin down) has the positive input and the negative is the power input ground. If a different power supply is used to power the densitometer then the power return for that input needs to be connected to the Micro MV power ground.


Turbine input wiring - Using Daniel 1817 Preamp

USING DANIEL 1817 PREAMP

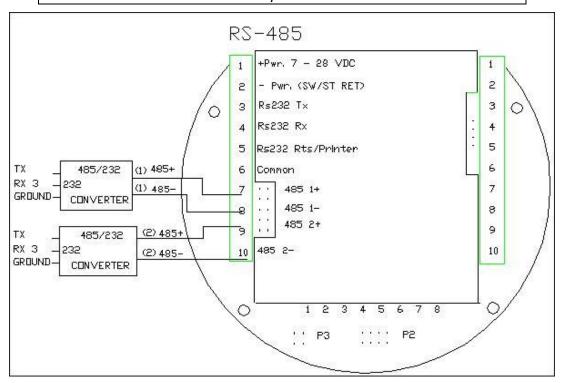

Turbine input wiring - Using Daniel 1818 Preamp

USING DANIEL 1818 PREAMP


RS-232 connection:

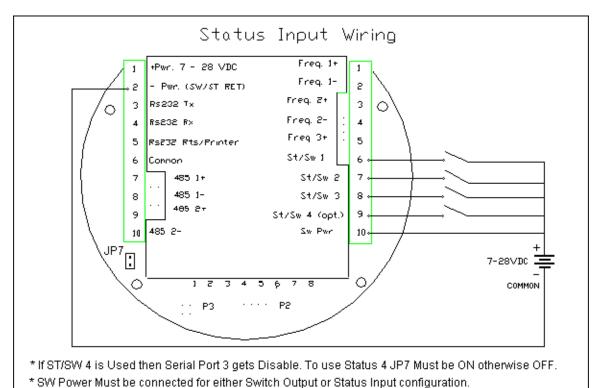
The RS-232 is located on the left terminal block. The third, fourth, fifth, and sixth pins of the RS232 below the power input. The RS-232 RTS pin can be used for printing reports or shares common pin with the regular RS232 port.

WARNING: When the RS-232 terminal is used with a modem, external protection on the phone line is required. Jumper DTR to DSR, RTS to CTS, and disable software handshake on the modem RS232 connection


Printer Connection:

RS-485:

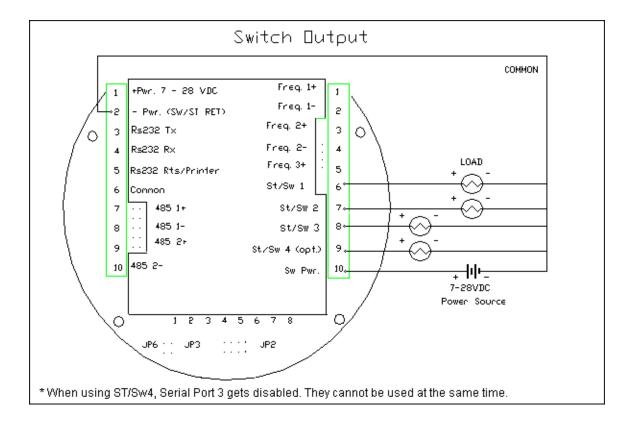
RS-485 wiring is shown in the wiring diagram under **RS-485**. Two Rs485 channels are available for Modbus communication or as a master to other slave devices. i.e. gas G.C., external Modbus slave devices and token passing ring. The maximum distance when 18-gauge wire is used is 4000 feet.


Note: Twisted shielded cable is required.

WARNING: When the RS-485 terminal is used, external transient protection and optical isolation is required, especially for long distance wiring.

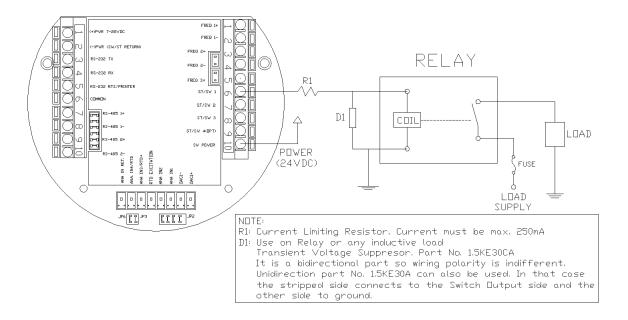
Wiring of status inputs:

There are 4 digital inputs or outputs that are user configurable. The configuration software will configure the input to be a status input or a switch output. The fourth digital I/O is optional and can only be used if the 2^{nd} RS485 is not used. The standard status input has 4 volts of noise hysteresis, with on trigger point of 5 volts and an off point of 1 Volt.

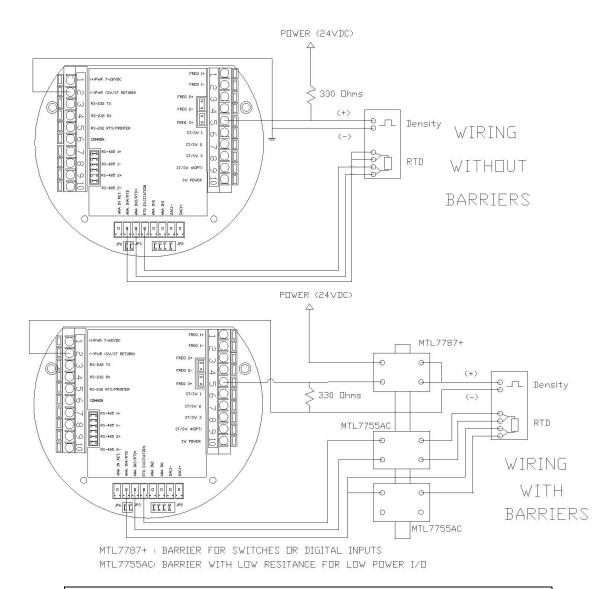


Wiring of switch/pulse outputs:

Switch one and two can be on /off or pulse type output up to 125 pulse per second. Notice that the switch outputs are transistor type outputs (open collector type with maximum DC rating of 350 mA continuous at 24 VDC) connections


1	Status Input /switch output 1
2	Status Input/switch output 2
3	Status Input /switch output 3
4	Status Input /switch output 4

Switch - Maximum rating: 350mA @24 volts Switch Output Range: 5-28 VDC Status Input Rating: 6-28 VDC


Switch Output to Relay Wiring Diagram

When wiring the Switch Outputs to an inductive load such as a relay, it is better to add transient protection to the flow computer's electronics due to the surge in voltage that inductive loads may create. This protection can be added as shown in the drawing below.

Density input wiring:

When using a live densitometer input with frequency signal, the signal can be brought into the MicroMV in its raw form. The MicroMV accepts a sine wave or square with or without DC offset.

Note: When wiring the density input polarity is of significance and reverse polarity could result in some damage or power loss. When Density input is 4-20mA it should be connected as a regular 4-20mA signal to the analog input and not the density frequency input.

CALIBRATION Through DOS Program

Analog Input 4-20mA or 1-5 volt signal

Calibrations are performed under I/O | Calibration. Use the arrow keys to scroll to Calibration and press <ENTER>. After you press <ENTER> the screen should show COMMUNICATION STATUS: OK.

OFFSET CALIBRATION:

For simple offset type calibration simply induce the signal into the analog input and make sure the MicroMV is reading it. After you verify that the MicroMV recognized the analog input press <F8>. The screen will freeze. Scroll down to the analog input you are calibrating and enter the correct mA reading. Then press <ENTER> followed by <F3> to download. To read the current live readings press <F2> and then the flow computer will display the readings. The offset type calibration is mainly used when a small offset adjustment needs to be changed in the full-scale reading. The offset will apply to the zero and span. Offset is the recommended method for calibrating the temperature input.

FULL CALIBRATION METHOD:

To perform full calibration be prepared to induce zero and span type signal.

- 1. Induce the low end signal i.e. 4mA in the analog input.
- 2. Press <F8> and scroll down to the reading then press <ALT><R> (alternate key and the letter R simultaneously). Then enter the analog input value i.e. 4mA. Follow that by <ENTER> and the download <F3> button.
- 3. Now be ready to enter the full-scale value. Simply induce the analog signal and then enter the value i.e. 20mA, and then download by pressing <ENTER>, then <F3> key.
- 4. Induce live values to verify the calibration.

While calibrating it is advisable to read the live data by pressing F2 while in the calibration screen and in calbration mode which will give single update.

When doing full calibration, you should not escape this menu without performing both calibration points.

Note: To go back to the default calibration simply press <F8> and scroll to the analog input or multi-variable input, and press <ALT><R> followed by<F3> Key.

RTD calibration:

RTD Calibration is a 2-step process. The first step is a one time procedure to verify transducer linearity and is done at the time the meter is being setup. The second step is the routine calibration sequence.

Step 1 - Linearity Verification

- 1. Use a Decade box with 0-150 °F settings.
- 2. Connect RTD cable to this resistive element for verification of linearity. Verify low and high points. It must be within ½ degree.
- 3. Connect the actual RTD element and compare with a certified thermometer.
- 4. If not within ½ degree do a Full Calibration (See Full Calibration below). If problem persists verify other elements such as RTD Probe, connections, shield, conductivity of connectors, etc.

The purpose of the above procedure is to verify zero and span and make sure that the two points fall within the expected tolerance.

Step 2 - Routine Calibration

Once Linearity has been verified through Step 1, the routine calibration procedure is reduced to simply connecting the actual RTD and doing an offset point calibration (see offset calibration below).

Calibration after that will be simple verification for the stability of the transmitter. If it drifts abnormally then you need to verify the other parts involved.

RESET TO DEFAULT CALIBRATION

To go back to the default calibration simply press <F8> and scroll to the RTD input, and press <ALT> <R> key followed by <F3> function key.

OFFSET CALIBRATION:

For offset calibration simply go to **I/O** | **Calibration** and press < ENTER>. Once the flow computer shows communication status OK press <F8> function key and scroll to **RTD.** Induce a live value and wait for 10 seconds for the reading to stabilize. Then enter the live value followed by <F3> function key to download the direct reading. The value entered must be in ohms only.

FULL SCALE CALIBRATION:

- 1. Prepare low range resistive input (i.e., 80Ω) and High range resistive input (i.e., 120Ω). Go to the calibration menu and press <F8> function key. Scroll to the RTD input you are calibrating and press <ALT> <R> (key <ALT> and the letter R at the same time). Induce the low end (80Ω) resistive signal and then wait 10 seconds and enter 80 followed by pressing the <F3> function key.
- 2. Induce Higher range signal (120Ω) and wait 10 seconds, then enter the number 120 ohm and press the <F3> key.
- 3. Now verify the live reading against the flow computer reading.

Calibration of analog output:

To calibrate the analog output against the end device follow the following steps:

- 1. Go to the calibration menu and press <F8>. Scroll down to analog output and press <ENTER>, and then <ALT><R>. This will cause the flow computer to output the minimum possible signal 4 mA. Enter the live output value reading in the end device i.e. 4 mA and press <F3>. Now the flow computer will output full scale 20 mA. Enter the live output i.e. 20 then press the <F3> key.
- 2. Now verify the output against the calibration device.

Multi-Variable Transmitters (Model 205) - DP and Pressure

Calibrations are performed under I/O | Calibration. Use the arrow keys to scroll to Calibration-Multi-Variable and press < ENTER>. After you press < ENTER> the screen should show COMMUNICATION STATUS: OK.

OFFSET CALIBRATION

- 1. Induce live value for pressure or DP.
- 2. Go to Calibration Multi-Variable menu.
- 3. Press <F8>, point to the value being calibrated, enter the correct value followed by <ENTER>, then press <F3> key to download data.
- 4. Now read induce live values to verify the calibration.

FULL SCALE CALIBRATION

- 1. Press <F8>. Scroll to the parameter to be calibrated, then press <ALT><R>.
- 2. Induce the low range signal, then press < ENTER> followed by <F3>.
- 3. Induce the high range signal, then press < ENTER> followed by <F3>.
- 4. Now verify the live reading against the flow computer reading.

While doing calibration before downloading any of the calibrated values, it is a good practice to verify that the Micro MV close reading to the induced value by pressing F2 to get a single update as many times as needed. Do not use the escape key when performing full calibration until calibration is completed. The DP reading must be re-calibrated for the zero offset after applying line pressure.

Multi-Variable Transmitters (Model 205)- RTD

Calibrations are performed under I/O | Calibration. Use the arrow keys to scroll to Calibration-Multi-Variable and press < ENTER>. After you press < ENTER> the screen should show COMMUNICATION STATUS: OK.

RTD Calibration is a 2-step process. The first step is a one time procedure to verify transducer linearity and is done at the time the meter is being setup. The second step is the routine calibration sequence.

Step 1 - Linearity Verification

- 1. Use a Decade box with 0-150 °F settings.
- 2. Connect RTD cable to this resistive element for verification of linearity. Verify low and high points. It must be within ½ degree.
- 3. Connect the actual RTD element and compare with a certified thermometer.
- 4. If not within ½ degree do a Full Calibration (See Full Calibration below). If problem persists verify other elements such as RTD Probe, connections, shield, conductivity of connectors, etc.

The purpose of the above procedure is to verify zero and span and make sure that the two points fall within the expected tolerance.

Step 2 - Routine Calibration

Once Linearity has been verified through Step 1, the routine calibration procedure is reduced to simply connecting the actual RTD and doing an offset point calibration (see offset calibration below).

Calibration after that will be simple verification for the stability of the transmitter. If it drifts abnormally then you need to verify the other parts involved.

RESET TO DEFAULT CALIBRATION

To go back to the default calibration simply press <F8> and scroll to the RTD input, and press <ALT> <R> key followed by <F3> function key.

OFFSET CALIBRATION:

For offset calibration simply go to **I/O | Calibration** and press < ENTER>. Once the flow computer shows communication status OK press <F8> function key and scroll to **RTD.** Induce a live value and wait for 10 seconds for the reading to stabilize. Then enter the live value followed by <F3> function key to download the direct reading. The value entered must be in degrees only.

FULL SCALE CALIBRATION:

- 1. Prepare low range resistive input (i.e., 80Ω) and High range resistive input (i.e., 120Ω). Go to the calibration menu and press <F8> function key. Scroll to the RTD input you are calibrating and press <ALT> <R> (key <ALT> and the letter R at the same time). Induce the low end (80Ω) resistive signal and then wait 10 seconds and enter the equivalent temperature in degrees followed by pressing the <F3> function key.
- 2. Induce Higher range signal (120Ω) and wait 10 seconds, then enter the temperature degrees equivalent to 120 followed by pressing the <F3> function key.
- 3. Now verify the live reading against the flow computer reading.

Verifying digital inputs and outputs

Use the diagnostic menu. Scroll down by using the arrow keys to <code>Diag | Diagnostic Data</code> and press <ENTER>. A live input and output is displayed. On the top of the screen pulse inputs and density frequency input are shown. Compare the live value against the displayed value on the screen. Failure to read turbine input could be a result of a bad preamplifier or the jumper selection for sine and square wave input are not in the correct position. Refer to wiring diagram <code>Wiring | Turbine</code> for proper turbine input wiring. Density input can be sine or square wave with or without DC offset. Minimum accepted signal has to be greater than 1.2 volt peak to peak. Status input is shown below the frequency input to the left of the screen. When the status input is on, the live diagnostic data will show <code>ON</code>. Minimum voltage to activate the status is 6 volts with negative threshold of 2 volts. To activate the switch outputs to the on and off position press <F8> in the diagnostic menu. After the screen freeze the cursor will point to switch output one. Use the space bar to toggle the switch on/off and the <ENTER> key to advance to the next switch. To exit press <ESC>. The switch outputs are open collector and require external voltage.

CHAPTER 2: Data Entry

and Configuration Menus

Introduction to the MicroMVG Software

The Micro MV Gas software is constructed around a menu-driven organization

Configuration File through DOS Program

The Micro MV Gas software is constructed around a menu-driven organization. Begin your Micro MV Gas software and, across the top of your screen, you see a bar like this:

File Port Diag Meter I/O Report Wiring Print TEST This is called the *menu bar*. It consists primarily of series of topics—Port, Diag, and so forth. When you move the cursor to a topic you will see a list—we will call it a *menu list*— of topics related to the main topic on the menu bar.

At the bottom of the screen is the *prompt bar*. It informs you of appropriate actions that you can perform while your cursor is at its present location. In this example:

↑ ! + + to Choose Enter to Select F1=Help

you are informed that your valid choices are the four arrow keys, the ENTER> key, and the F1> key. Another important area of the screen is the *filename area*. This is the rightmost section of the menu bar; it informs you what configuration file you are presently viewing and editing. In the example above, you are editing the file TEST. When you first begin the SFC sotware, however, it will display P??????? because no file has yet been chosen. Until you choose a file to edit or view, by opening either an existing file or a new one, you will not be able to move from the **File** menu item.

The center portion of the screen is simply called the *viewing area*. Here you view either various menu lists or the *prompt window* associated with an item in a menu list after it is selected (that is, after you press <ENTER>). When you are in a prompt window the message PROMPT appears in the filename area. Under certain conditions you will have a screen where the viewing area takes up the whole screen and the menu and/or prompt bars disappear. Examples of these are: the wiring diagrams, the calibration windows, and the **Diag** windows.

About

Displays the version number of EPROM and PC configuration menu. Press <Esc> to Exit.

File

Open a File

Use this function to open an existing configuration file. After a file is opened it becomes the currently active file; its contents can be viewed and its parameters can be edited.

When this function is chosen a list of existing configuration files is displayed. Use the cursor arrow keys to move the cursor to your selection, then press the <ENTER> key.

Open a New File

Create a new file to store all the programmed information for one Micro MV Gas Flow Computer. You are prompted for the new file's name of eight characters or less. If you enter the name of a pre-existing file, the software informs you of this and prompts you for your file's name again. After a file is opened it becomes the currently active file; its contents can be viewed and its parameters can be edited.

Delete a File

Delete a file when that file is no longer needed.

When this function is chosen a list of existing configuration files is displayed. Use the arrow keys to move the cursor to your selection, then press <ALT><D> to delete the file.

Load File

Use this function to exchange parameter values between the PC and the Micro MV Gas Flow Computer. After this action is performed all parameter values in the Micro MV Gas Flow Computer and the currently active file in the PC are identical.

To read all current parameters from the Micro MV Gas Flow Computer to the currently active file in the PC, press the <F2> function key; this is called "uploading".

To write all current parameters from the currently active file in the PC to the Micro MV Gas Flow Computer, press the <F3> function key; this is called "downloading".

View File

Unlike every other file function, View File does not act upon configuration files. Instead, View File allows the user to view files that were previously captured in a report. For capturing data in a report, look for these items under the **Report** menu header:

Prev. Hourly Data Prev. Daily Data Prev. Month Data

Alarm Data

Audit Trail Report Auto Data Retrieval

Current Data

When viewing a file use PageUp and PageDown to browse through it.

Save As

Use Save As to save the parameters in the currently active file (that is, the parameter values currently being edited) to a new file. You are prompted for the new file's name of eight characters or less. If you enter the name of a pre-existing file, the software informs you of this and prompts you for your file's name again. The original file will remain in memory.

<u>Save</u>

When permanent modifications are performed on a file, user must save the new changes before exiting the program, or proceeding to open a different file.

Save and Exit

Exit the program and save the parameters that were changed.

Exit

Exit without saving new modified parameters.

PORT

PC Communication Set Up

COMMUNICATION PORT NUMBER (1.2.3.4)

Enter the PC port used to communicate with the Micro MV Gas Flow Computer.

FLOW COMPUTER PORT NUMBER

There are three available ports in the Flow Computer. Port 1 is the RS-485 port that can only be a Modbus port. Port 2 is the RS-232 port that can be user configurable as printer/Modbus. Port 3 is the RS-485 port that can only be a Modbus port The PC set up must match the Micro MV Gas Flow Computer port set up.

UNIT ID NUMBER

The Unit ID Number is used strictly for communication purposes; it can take any value from 1 to 247. Only one master can exist in each loop.

Note: Do not duplicate the Unit ID number in a single communication loop! This situation will lead to response collisions and inhibit communications to units with duplicate ID numbers.

MODBUS TYPE

Note: this parameter must be set the same for both the PC and the Micro MV Gas Flow Computer for communication to occur.

The Modbus Communication Specification is either Binary RTU or ASCII.

PARITY

Note: this parameter must be set the same for both the PC and the Micro MV Gas Flow Computer for communication to occur.

RTU - NONE

ASCII - EVEN or ODD

Set the parity to match the **Modbus Type**.

BAUD RATE

Note: this parameter must be set the same for both the PC and the Micro MV Gas Flow Computer for communication to occur.

Baud rate is defined as number of bits per second. The available selections are 1200, 2400, 4800, or 9600.

TRANSMIT DELAY

This Delay in milliseconds is used to allow handshaking between the PC and the Micro MV Gas Flow Computer. The PC will hold the RTS line high for the specified Transmit Delay time. After that time expires the data stream will begin transmitting. Transmit Delay is applicable regardless of the type of communication with the Micro MV Gas Flow Computer (RS-232 or RS-485).

This function can be very useful, especially when using a half-duplex RS-485 port; otherwise the RS-485 port will never turn off. A delay of 50 milliseconds is normally sufficient.

Flow Computer Communication Set Up

UNIT ID NUMBER

The Unit ID Number is used strictly for communication purposes; it can take any value from 1 to 247.

Note: Do not duplicate the Unit ID number in a single communication loop!
This situation will lead to response collisions and inhibit communications to units with duplicate ID numbers.

Only one master can exist in each loop.

PORT #1/#3 MODBUS TYPE

Note: this parameter must be set the same for both the PC and the Micro MV Gas Flow Computer for communication to occur.

The Modbus Communication Specification is either Binary RTU or ASCII.

PORT #1/#3 PARITY

Note: this parameter must be set the same for both the PC and the Micro MV Gas Flow Computer for communication to occur.

RTU - NONE

ASCII - EVEN or ODD

Set the parity to match the Modbus Type.

PORT #1/#3 BAUD RATE

Note: this parameter must be set the same for both the PC and the Micro MV Gas Flow Computer for communication to occur.

Baud rate is defined as number of bits per second. The available selections are 1200, 2400, 4800, or 9600.

PORT #1/#3 RTS DELAY

This function allows modem delay time before transmission. The Micro MV Gas Flow Computer will turn the RTS line high before transmission for the entered time delay period.

PORT #2 BAUD RATE

Baud rate is defined as number of bits per second. The available selections are 1200, 2400, 4800, or 9600.

PORT #2 MODBUS TYPE

Note: this parameter must be set the same for both the PC and the Micro MV Gas Flow Computer for communication to occur.

The Modbus Communication Specification is either Binary RTU or ASCII.

PORT #2 PARITY

RTU - NONE

ASCII - EVEN or ODD

Set the parity to match the **Modbus Type**.

SELECT 0=RTS,1=PRINTER

RTS line has dual function selection: either RTS for driving request to send or transmit to serial printer. To use serial printer interface for printing reports, ie. batch, daily, and interval Connect the serial printer to RTS and common return, and select 1 for printer.

PORT 2 RTS DELAY

This function allows modem delay time before transmission. The Micro MV Gas Flow Computer will turn the RTS line high before transmission for the entered time delay period.

PRINTER BAUD RATE

Baud rate is defined as number of bits per second. The available selections are 1200, 2400, 4800, or 9600.

PRINTER NUMBER OF NULLS

This function is used because no hand shaking with the printer is available and data can become garbled as the printer's buffer is filled. The Micro MV Gas Flow Computer will send nulls at the end of each line to allow time for the carriage to return. Printers with large buffers do not require additional nulls. If data is still being garbled, try reducing the baud rate to 1200.

Dial

Use the cursor arrow keys to move the cursor to the desired phone number and press ←ENTER. Dial's display indicates the owner of each phone number according to the Phone Book.

Dial cannot add new phone numbers; it can only dial numbers that have previously been entered in the Phone Book.

Example: T,9,1800-530-5539 instructs the dialer to use tone dialing, pause, dial 9 for an outside line, pause, then dial the number. See Phone Book for more information.

Phone Book

Phone Book lists all the phone numbers with the phone's owner New numbers can be added to the list.

<a>Arrow Keys> Select Number to Modify or Delete.

<A> Add new entry to phonebook.

<ALT> + <D> Delete selected entry. <M> or <ENTER> Modify selected entry.

<Esc> Exit and save changes.

Phone Book Edit

Type name, press <TAB>, and type phone number. Press <ENTER> to save, <Esc> to leave entry unchanged.

In the phone number the following codes may be used:

<0-9> Dial digit

<P> Change to pulse dialing

<T> Change to tone dialing

<Comma> Pause

Example: T,9,1800-530-5539 instructs the dialer to use tone dialing, pause, dial 9 for an outside line, pause, then dial the number.

Modem Setup

<Modem Dial Prefix> Enter the string sent to the modem before the phone number.

Normally either "ATDT" (dial tone) or "ATDP" (dial pulse)

<Modem Dial Suffix> Enter the string sent to the modem after the phone number.

Normally just "^M" (CR)

<Modem Hangup String> Enter the string sent to the modem to hang-up the phone.

See your modem manual for other characters.

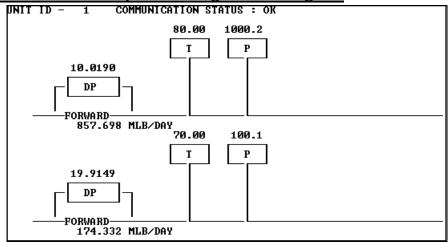
Hang-up Phone

Press ←ENTER to send the Modem Hang-up string (Defined in Modem Setup) to the modem.

Note: Hand shake and error checking should be turned off. Commands to turn off the hand shake vary between modems. Check your modem manual. Typical command - AT&KO, AT&YO.

DIAG

Read Single Flow Computer Communication Setup


Press <F2> and the configuration program will attempt to communicate with a single Micro MV Gas Flow Computer at different baud rates and formats.

Failure to communicate can occur because of a communication wiring problem, wrong PC port selection, communication parameter mismatch between PC and Micro MV Gas Flow Computer (Modbus type, parity, baud rate, etc.) or lack of power to the Micro MV Gas Flow Computer. To use this feature, the user must insure that only one Micro MV Gas Flow Computer is connected to the PC. More than one Micro MV Gas Flow Computer in the loop will cause data collisions and unintelligible responses.

Diagnostic Data

Diagnostic Data shows real-time, live data. Use it to monitor switch outputs, status inputs, analog inputs and outputs, analog frequency, failure codes and so forth. To control the switch outputs manually use the <F8> function key, press the SPACE BAR to change activity, and use <ENTER> key to move to next switch.

Micro MV Gas Flow Computer Configuration Diagram

Meter Run configuration for the current configuration file. Live data are displayed above the transmitters' icons. Response of the various metering devices is indicated in either standard US or metric units, per the chart below.

	1. Standard US Units	
Flow Rate (Mass)	MLb	
DP	Inches H ₂ O column	
Pressure	PSIG	
Temperature	°F	

METER

Set Up

All items in this section are listed in the submenu **Meter** | **Set Up** |

METER BANK

Configure for single or dual meters per individual Micro MV Gas Flow Computer. Enter "1" if two meters will be connected to the flow computer.

SINGLE OR DUAL STREAMS

Single stream can be single meter or bank of two meters. Dual streams allow the user to monitor independent products on separate streams simultaneously.

STATION TOTAL

Station total can add meter one and two, subtract meter one from meter two, or just ignore this feature by selecting none. Station Total does not affect, destroy or otherwise alter the data from either meter. When Station Total is other than none, an additional data parameter, Station Total, is generated by the Micro MV Gas Flow Computer and appears in reports and on the live display monitor.

Station total is not accessible when **Meter Bank** = 0.

COMMON PARAMETERS

Meter | Set Up | Common [Temperature/Pressure/Density]

This feature allows the Micro MV Gas Flow Computer to use the transmitters on meter one to substitute and compensate for meter two.

USE STACK DP

The Micro MV Gas Flow Computer allows the user to select dual DP transmitters on each meter for better accuracy and a higher range flow. Use in conjunction with the DP Switch High % parameter setting.

DP SWITCH HIGH %

The Micro MV Gas Flow Computer will begin using the high DP when the low DP reaches the percent limit assigned in this entry. Example: DP low was ranged from 0-25 inches and switch % was set at 95%. When low DP reaches 23.75 in (= 0.95 * 25) the Micro MV Gas Flow Computer will begin using the high DP provided the high DP did not fail. When the high DP cell drops below 23.75, the Flow Computer will start using the Low DP for measurement.

DENSITY TYPE

If live density is connected to the flow computer, user must enter the density type. Raw density frequency or a 4-20mA input can be selected. This density will be used to calculate mass flow and net flow.

Density Type	Densitometer		
Type 0	None		
		Density 4–20 mA Type*	
Type 1	4–20 mA	Type 0	Density Signal 4-20mA in LB/FT3
		Type 1	SG Signal 4-20mA
Type 2	UGC		
Type 3	Sarasota		
Type 4	Solartron		

DENSITY 4-20MA TYPE*

Note that this type of input requires the user to choose a subtype, as indicated in the table above.

*Note: Only Type 1 calculation (Density in LB/FT3) is appropriate for gas measurements; therefore the software chooses that option for you automatically. Density is calculated in LB/FT3.

USE METER TEMPERATURE AS DENSITY TEMPERATURE

Meter|Set Up|Use Meter Temp as Dens.Temp#1

Meter|Set Up|Use Meter#2 Temp as Dens.Temp#2

To allow the meter temperature to calculate the effect of temperature on the densitometer. Make sure the meter and density temperature are similar to avoid measurement errors.

Meter Data

All items in this section are listed in the submenu **Meter** | **Meter** Data |

METER LOCATION

Up to 20 characters. This entry appears only in the report and serves no other function.

METER ID

Up to 8 characters. This function will serve as Meter Tag.

FLOW EQUATION TYPE (0-3)

- 0 = AGA3 (OLD AGA3, 1985 Orifice Equations)
- 1 = API 14.3 (NEW AGA3, 1992 Orifice Equations)
- 2 = AGA7 (Frequency Type Input)
- 3 = Venturi

Select the desired calculation mode. API 14.3 is the latest orifice calculations introduced in 1992. AGA3 is the orifice calculation that was used previously. All new installations are recommended to use API 14.3 for orifice calculations.

Here is the prompt window for one equation type. This prompt window pops up when you enter a valid

value in the **Flow Equation Type** line and press —ENTER.

DENSITY OF DRY AIR MLB/MOL

Typical value would be 28.9625.

RELATIVE DENSITY

The real gas relative density is used in the calculations of the compressibility factor, flowing and reference densities (required only when AGA8 or NX19 is used).

FLOW RATE LOW/HIGH LIMIT

The high/low flow rate alarm is activated, when the flowrate exceeds or is below the set limit. The alarm will be documented with time, date, and totalizer.

DENSITY CALCULATION TYPE (0-3)

Calc. #	Calculation Type	Comments and Limitations
0 =	NX19	
1 =	AGA8 Gross Method 1	Relative Density: 0.554–0.87
		Heating.Value: 477–1150 BTU/SCF
2 =	AGA8 Gross Method 2	Relative Density: 0.554–0.87
		Heating. Value 477–1150 BTU/SCF
3 =	AGA8 Detail Method	Relative Density: 0.07–1.52
		Heating. Value 0–1800 BTU/SCF

AGA 8 detail method can be used for gases other than natural gas, such as methane, carbon dioxide, ethane, and hydrogen sulfide.

AGA3 DATA

To set AGA3 flow parameters, set **Meter** | **Meter** Data | **Flow** Equation Type = 0 and press ←ENTER. You will then access a submenu in which you can set the parameters below.

Pipe I.D. Inches

Orifice ID Inches

Pipe ID in inches is the measured inside pipe diameter to 5 decimals at reference conditions. Orifice ID in inches is the measured diameter of the orifice at reference conditions.

DP Cutoff

The Micro MV Gas Flow Computer suspends all calculations whenever the DP, in inches of water column, is less than this value. This function is vital for suppressing extraneous data when the DP transmitter drifts around the zero mark under no-flow conditions.

Y Factor (0=None,1=Upstream,2=Downstream)

Y factor is the expansion factor through the orifice. The user must enter the position of the pressure and temperature sensors. Select y=1 if the sensors are installed upstream of the orifice plate. Select y=2 if the sensors are down stream of the orifice plate.

Select 0=Flange Tap, 1=Pipe Tap

Tap position is where the differential transmitter is fitted. Select 0 = flange fitted or 1 = pipe fitted.

Isentropic Exponent (Specific Heat)

Ratio of specific heat is a constant associated with each product. Even though it varies slightly with temperature and pressure, in most cases it is assumed to be a constant.

Viscosity in Centipoise

Even though viscosity will shift with temperature and pressure changes, the effect on the calculations is negligent. Therefore using a single value is appropriate in most cases. Enter viscosity in centipoise.

Reference Temperature of Orifice

Reference temperature of orifice is the temperature at which the orifice bore internal diameter was measured. Commonly 68 °F is used.

Orifice Thermal Expansion Coeff. E-6

Orifice thermal expansion is the linear expansion coefficient of orifice material.

is the initial enganision escriberation of stiller inaccinati			
Type 304 and 316 Stainless	9.25 E-6		
Monel	7.95 E-6		
Carbon Steel	6.20 E-6		

API 14.3 DATA (NEW AGA3)

To set API 14.3 flow parameters, set **Meter** | **Meter** Data | **Flow** Equation Type = 1 and press ←ENTER. You will then access a submenu in which you can set the parameters below.

Pipe I.D. Inches

Orifice ID Inches

Pipe ID in inches is the measured inside pipe diameter to 5 decimals at reference conditions. Orifice ID in inches is the measured diameter of the orifice at reference conditions.

DP Cutoff

The Micro MV Gas Flow Computer suspends all calculations whenever the DP, in inches of water column, is less than this value. This function is vital for suppressing extraneous data when the DP transmitter drifts around the zero mark under no-flow conditions.

Y Factor (0=None,1=Upstream,2=Downstream)

Y factor is the expansion factor through the orifice. The user must enter the position of the pressure and temperature sensors. Select y=1 if the sensors are installed upstream of the orifice plate. Select y=2 if the sensors are down stream of the orifice plate.

Isentropic Exponent (Specific Heat)

Ratio of specific heat is a constant associated with each product. Even though it varies slightly with temperature and pressure, in most cases it is assumed as a constant.

Viscosity in Centipoise

Even though viscosity will shift with temperature and pressure changes, the effect on the calculations is negligent. Therefore using a single value is appropriate in most cases. Enter viscosity in centipoise.

Reference Temperature of Orifice

Reference Temperature of Pipe

These parameters give temperature at which the bore internal diameter was measured on the orifice and pipe respectively. Commonly 68 °F is used.

Orifice Thermal Expansion Coeff. E-6

Pipe Thermal Expansion Coeff. E-6

These parameters give the linear expansion coefficients of the orifice and pipe materials respectively.

Type 304 and 316 Stainless	9.25 E-6
Monel	7.95 E-6
Carbon Steel	6.20 E-6

AGA 7 DATA (FREQUENCY)

To set AGA 7 flow parameters, set **Meter** | **Meter** Data | **Flow** Equation Type = 2 and press \leftarrow ENTER. You will then access a submenu in which you can set the parameters below.

K Factor

K Factor is the number of pulses per unit volume, i.e. 1000 pulses/CF. The meter's tag would normally indicate the K Factor.

Meter Factor

Meter Factor is a correction to the K Factor for this individual meter, applied multiplicatively to the K factor.

Flow Cutoff Frequency

The Micro MV Gas Flow Computer will quit totalizing when the turbine frequency (or other frequency input) is below this set limit. This feature is to reduce extraneous noise appearing as volume data when the meter is down for period of time.

This value is entered as pulses per second.

VENTURI DATA

To set Venturi flow parameters, set **Meter** | **Meter** Data | **Flow** Equation Type = 3 and press \leftarrow ENTER. You will then access a submenu in which you can set the parameters below.

Pipe I.D. Inches

Orifice ID Inches

Pipe ID in inches is the measured inside pipe diameter to 5 decimals at reference conditions. Orifice ID in inches is the measured diameter of the orifice at reference conditions.

DP Cutoff

The Micro MV Gas Flow Computer suspends all calculations whenever the DP, in inches of water column, is less than this value. This function is vital for suppressing extraneous data when the DP transmitter drifts around the zero mark under no-flow conditions.

Y Factor (0=None,1=Upstream,2=Downstream)

Y factor is the expansion factor through the venturi. The user must enter the position of the pressure and temperature sensors. Select y=1 if the sensors are installed upstream of the venturi. Select y=2 if the sensors are down stream of the venturi.

Isentropic Exponent (Specific Heat)

Ratio of specific heat is a constant associated with each product. Even though it varies slightly with temperature and pressure, in most cases it is assumed as a constant.

Reference Temperature of Orifice

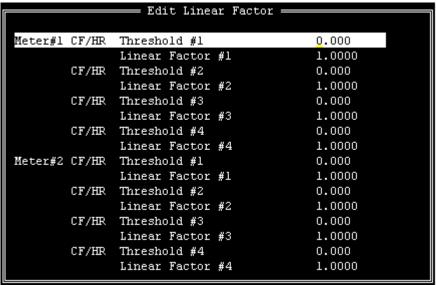
Reference Temperature of Pipe

These parameters give temperature at which the bore internal diameter was measured on the orifice and pipe respectively. Commonly 68 °F is used.

Pipe Thermal Expansion Coeff. E-6

Pipe thermal expansion is the linear expansion coefficient of pipe material.

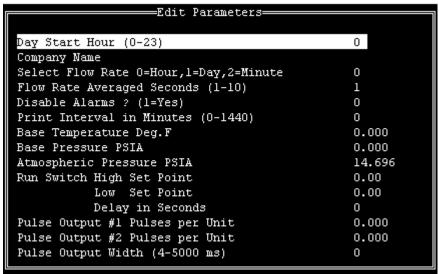
Type 304 and 316 Stainless	9.25 E-6
Monel	7.95 E-6
Carbon Steel	6.20 E-6


Discharge Coefficient C

Typical value is 0.995.

Mass (MLB/HR) =
$$0.0997424 \times \frac{C \times Y \times F_a \times d^2}{\sqrt{1-\beta^4}} \times \sqrt{\rho \times DP} \times 3.6$$

Linear Factor


Meter | Linear Factor

Enter the different correction factors for the meter at different flow rates. The Micro MV Gas Flow Computer will perform linear interpolation each second. Notice that even though using this feature enhances the measurement accuracy and range, performing audit trail on a linearized meter factor is very difficult.

Other Parameters

All parameters in this section are in the submenu **Meter** | **Other Parameters** | ... unless otherwise noted.

DAY START HOUR (0-23)

Day start hour is used for daily totalizer reset operation.

COMPANY NAME

Up to 20 characters. The company name appears in the reports.

FLOW RATE SELECTION

The flow rate will be based on daily basis, hourly, or minute.

FLOW RATE AVERAGED SECOND

The flow rate is averaged for 1-10 seconds to minimize fluctuating flow rate conditions. This number averages the current flow rate by adding it to the previous seconds' flow rate, and then displays an averaged smoothed number. Only a low resolution pulse meter requires this function.

DISABLE ALARMS

Use Disable Alarms to ignore alarms. When the alarm function is disabled alarms are not logged. Alarms are also not logged if the DP is below the cut-off limit.

PRINT INTERVALS IN MINUTES (0-1440)

When the second port (RS-232) of the Micro MV Gas Flow Computer is configured as printer port, a snapshot report is generated every print interval (i.e., every five minutes, every hour, or every ten hours).

BASE TEMPERATURE

The basis reference temperature for all corrections. Used, for example, when seller contracts to sell to buyer at an agreed base temperature. Typically 60.0 °F in US units, 15 °C in Metric units.

BASE PRESSURE

The basis reference pressure for all corrections. Used, for example, when seller contracts to sell to buyer at an agreed base pressure. Typical values are 14.73 PSIA for US units, 1.01325 bar in Metric units.

ATMOSPHERIC PRESSURE

This pressure is the local pressure or contracted atmospheric pressure to be used. Typical value is 14.696 PSIA.

Run Switching

Run switching is used to switch from tube one to tube two, when flow rate reaches certain limits. The Micro MV Gas Flow Computer has one active output that can be dedicated to this function. The time delay allows for some delay in switching.

Note: if Run Switching is being used, then the meter should be configured for a single stream (see Set Up under Meter).

RUN SWITCH HIGH SET POINT

When this flow rate value is exceeded and after the delay timer expires, the switch output will activate. This output normally opens meter run two. The Micro MV Gas Flow Computer provides open collector type output that requires external power.

RUN SWITCH LOW SET POINT

When the flow rate drops below this value and stays below it until the delay timer expires, the output switch will be turned off to shut meter two.

PULSE OUTPUT AND PULSE OUTPUT WIDTH

Pulse Output is used to activate a sampler or external totalizer. The number selected will be pulses per unit volume or per unit mass. If 0.1 pulse is selected, the one pulse will be given every 10 unit volumes has passed through the meter.

Pulse Output Width is the duration, in milliseconds, of one complete pulse cycle (where each cycle is the pulse plus a wait period, in a 50/50 ratio). For example: if POW = 500 msec, the Micro MV Gas Flow Computer at most can produce one pulse each second regardless of the pulse per unit volume selected (500 msec pulse + 500 msec wait). If POW = 10 msec the Micro MV Gas Flow Computer can produce up to 50 pulses per second.

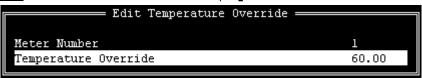
The Micro MV Gas Flow Computer's maximum pulse output is 125 pulses/sec. The Pulse Output in combination with the Pulse Output Width should be set appropriately.

Date and Time

Meter | Date/Time

The PC software will show the current date and time from the PC. Press \square to download that date and time to the flow computer. Press \square to upload the date and time from the flow computer.

Parameter Overrides


<u>Temperature Override</u> Meter | Temperature Override

Pressure Override Meter | Pressure Override

Heating Value Override Meter | Heating Value Override

Base Density Override Meter | Base Dens Override

FPV Override Meter | Fpv Override

An override value is entered when no live parameter value is available, or when a different value from live value should be used. In the diagnostic screen, the fail code will appear as 9. Zero in the data entry indicates use live value.

Heating Value Override is used in the AGA8 calculation GROSS METHOD 1. In addition the heating value totalizer requires the heating value; without a BTU override value entered, the Energy Flowrate will always equal zero. Enter this number in BTU/SCF(standard cubic feet).

Base Density Override is used to override the calculated base density and affects the net calculations only. For products other than natural gas, you must enter base density override for net calculations.

FPV override: used to enter a value to override the NX19 supercompressibility factor.

Security Code

Meter | Security Code

```
---Security Code=
Security Code for
                                                      0
    Meter Setup, Meter Parameters, Other Parameters
    Calculation Parameters
Security Code for
   Date/Time, Transducer Tag
    Assignment - Transducer, Status Input, Switch Output
                 Analog Output
Security Code for
    Override Value - Meter Temperature, Meter Pressure
Security Code for
    Access Code, Load File, Set Up
```

Several levels of security codes have been selected to fit different levels of responsibility. Up to six numeric code can be used for each entry. If the security code is not used, then there will not be any security code prompt in the menu.

INPUT/OUTPUT

Transducer Input Assignment

Parameters in this section are in the submenu I/O|Transducer Input Assignment | ... unless otherwise noted. Throughout this section the label [Parameter] includes all these parameters unless otherwise noted: DP, Temperature, Pressure, Density, and Dens.Temperature.

Note: This prompt window has more parameters that can be seen in the above example. Others may be reached by scrolling down the list. The actual naumber of parameters that need to be set is a function of the number of (nonzero) input assignments on Meters 1 and 2.

TRANSDUCER INPUT ASSIGNMENT

This discussion applies to all [Parameter] Assignment parameters.

The Micro MV Gas Flow Computer provides 4 analog inputs, 4 status input/switch outputs, one density frequency input, two turbine inputs, one 4 wire RTD inputs, and 2 multi variable inputs. In order for the Micro MV Gas Flow Computer to read the live input, the input must be properly assigned and properly wired.

0=	Not Used	
1=	Analog#1	
2=	Analog#2	
3=	Analog#3	

4=	Analog#4
5=	RTD

7 =	Dens.Freq (Not Selectable)		
	10 = Multi. Variable Module #1		
11 = Multi. Variable Module #2			

SPARE ASSIGNMENT

Spare input is used for display and alarm purpose only. It is not used in the calculation process. To read spare input value, use the diagnostic screen.

<u>4MA</u>

Enter the 4mA value for the transducer.

Note that this value cannot be edited if [Parameter] Assignment = 0. Therefore to set the parameter Meter#1 Temperature @4mA the Temperature Assignment parameter cannot equal zero.

Note that any **[Parameter]** can potentially have a **@4mA** setting.

<u> 20мА</u>

Enter the 20mA value for the transducer.

Note that this value cannot be edited if [Parameter] Assignment = 0. Therefore to set the parameter Meter#1 Temperature @20mA the Temperature Assignment parameter cannot equal zero.

Note that any **[Parameter]** can potentially have a **@20mA** setting.

Low/HI LIMIT

Enter the low and high limits. When live value exceeds high limit or less than low limit, a alarm log will be generated.

Note that this value cannot be edited if [Parameter] Assignment = 0. Therefore to set the parameter Meter#1 Temperature Low Limit the Temperature Assignment parameter cannot equal zero.

MAINTENANCE VALUE

The value to be used when the transmitter fails, or while calibrating. For calibration, set fail code to 1 while calibrating.

Note that this value cannot be edited if [Parameter] Assignment = 0. Therefore to set the parameter Meter#1 Temperature Maintenance the Temperature Assignment parameter cannot equal zero.

Note that any [Parameter] can potentially have a Maintenance setting.

FAIL CODE

Fail Code 0: always use the live value even if the transmitter failed.

Fail Code 1: always use the maintenance value

Fail Code 2: use maintenance value if transmitter failed. i.e. 4-20mA is above 21.75 or

below 3.25)

Note that this value cannot be edited if [Parameter] Assignment = 0. Therefore to set the parameter Meter#1 Temperature Maintenance the Temperature Assignment parameter cannot equal zero.

Note that any [Parameter] can potentially have a Maintenance setting.

DENSITY PERIOD LOW/HIGH LIMITS

Density Period is the time period in micro-second. The densitometer fails if the density period exceeds the density period low or high limits. If the densitometer fails and density fail code is set to 2, the maintenance value will be used.

Transducer Tag ID

I/O|Transducer Tag ID

Up to 8 alphanumeric ID number. The transmitters are referred to according to the TAG ID. All alarms are labeled according to TAG ID.

Calibration Mode

I/O|Calibrate Mode

CALIBRATE MODE

To calibrate Flow Computer, totalizers will continue at same rate where live parameters will show actual value, i.e. flowrate, DP, pressure etc. Enter '1' to enable this feature.

SET TIME (1-9 HOUR)

This entry is the duration for the calibrate mode. After time expires, the Micro MV Gas Flow Computer will resume its normal operation.

METER #1/#2 MASS FLOWRATE

Override the mass flowrate during the calibration.

Calibration

See details in chapter 1

Status Input /Switch Output Assignment

I/O|Status Input/Switch Output Assignment

	Assignment	1. Comments
1.	N/A	
2	Calibration Mode	
3	Event Status	
4	Alarm Acknowledge	Reset the previous occurred alarms output bit

Switch Output Assignment

User can assign an output to each of the Micro MV Gas Flow Computer's output switches from this list. The Micro MV Gas Flow Computer switch outputs are open collector type, requiring external D.C power. Outputs in the top list,"Pulse Outputs", require a definition of pulse output per unit volume. Therefore a Pulse Output Width must be defined when one of these switch types are chosen. These outputs are available through swtiches 1 or 2 only.

Outputs in the bottom list,"Contact Type Outputs", are ON/OFF type outputs. They can be assigned to any of the four switch outputs.

Switches 1 and 2 can be pulse or contact type output; switches 3, 4 are contact-type output only.

ASSIGNMENTS - PULSE OUTPUTS

	Meter 1	Meter 2	Station
Gross	101	105	109
Net	102	106	110
Mass	103	107	111
Energy	104	108	112

ASSIGNMENTS - CONTACT TYPE OUTPUTS

	Meter 1	Meter2
Temperature Low	126	136
Temperature High	127	137
Pressure Low	128	138
Pressure High	129	139
Density Low	130	140
Density High	131	141
Dens.Temp Low	132	142
Dens.Temp High	133	143
DP Low	134	144
DP High	135	145
Meter Down	120	123
Flow Rate Low	121	124
Flow Rate High	122	125
N/A		
N/A		

Meter-Independent Parameters		
Day Ended	119	
Dens. Period Low	146	
Dens. Period High	147	
AGA8 Out of Range	148	
NX19 Out of Range	149	
N/A	150	
Active Alarms	151	
Occurred Alarms	152	
WatchDog	157	
Remote Control	158	
Run Switch	159	

Note: Assignments 113–118 are not used.

Analog Output Assignment

4-20mA selection must be proportional and within the range of the selected parameter.

ASSIGNMENTS:

	Meter 1	Meter 2	Station
Gross Flow Rate	1	5	9
Net Flow Rate	2	6	10
Mass Flow Rate	3	7	11
Energy Flow Rate	4	8	12

	Meter 1	Meter2
DP	13	21
Temperature	14	22
Pressure	15	23
Density	16	24
Density Temp	17	25
Dens.b	18	26
DP LOW	19	27
DP HIGH	20	28
Specific Gravity	30	32

Meter-Independent Parameters		
Spare #1	33	
Spare #2	34	
Remote Control*	35	

Examples:

9 = Station Gross Flowrate

30 = Meter 1 Specific Gravity

25 = Meter 2 Density Temperature

Note: Assignments 29 and 31 are not used.

*Note: Remote control output can be controlled through the Modbus communication link.

Note: Dens.b = Base Density

DP = Differential Pressure

Remote Control Analog Output Setpoint

Set analog output assignment to 35 (remote control), then enter 0-100 percentage to control the analog output.

Micro MV Gas Flow Computer Display Assignment

Display assignment select up to 16 assignments. The Micro MV Gas Flow Computer will scroll through them at the assigned delay time.

ASSIGNMENT

4 Digits – 1st: Forward/Reverse – 0:Forward,1:Reverse

2nd – Meter Number – 1:Meter#1, 2:Meter#2, 3:Station

3rd, 4th: Selection

Selection	Description
01	Flow Rate
02	Daily Total
03	Cum. Total
04	Previous Daily total
05	DP/DP Low, High
06	Temperature, Pressure
07	Density, Density at Base
08	Density Freq, Dens.Period, Un-Corr. Density
09	Density Temperature, Density Pressure
10	Flow and Density Calculation Type
11	Spare #1, Spare #2
12	Previous Day AVG Temperature, Pressure, SG
13	Alarms
14	Date, Time

Examples:

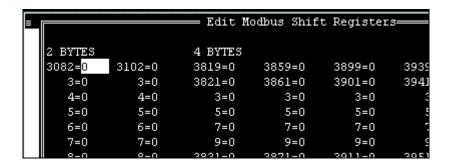
101= Meter#1 Flowrate

102= Meter #1 Daily Total

302= Station Daily Total

113= Meter#1 Alarm

14= Date, Time


Modbus Shift

Reassigns Modbus address registers on the Micro MV Gas Flow Computer to predefined Modbus registers for easy polling and convenience. Use Modbus Shift to collect values in scattered Modbus registers into a consecutive order. The Micro MV Gas Flow Computer will repeat the assigned variables into the selected locations.

Note: some Modbus registers are 2 byte/16 bit, and some are 4 byte/32 bit. Register size incompatibility could cause rejection to certain address assignments. Refer to the Modbus Address Table Registers in Chapter 5.

Example: you want to read the current status of switches #1 and #2 (addresses 2617 and 2618) and the Daily Gross Total for Meter #1 (addresses 3173). Make assignments such as:

3082=2617 (2 bytes) 3083=2618 (2 bytes) 3819=3173 (4 bytes)

Modbus Shift - Floating Point

Use Modbus Shift to collect values in scattered Modbus floating point registers into a consecutive order. The Micro MV Gas Flow Computer will repeat the assigned variables(Refer to the Modbus Address Table Registers in Chapter 5) into the selected locations(7501-7600)

BOOLEAN STATEMENTS

From the Micro MV Gas Flow Computer Configuration Software, Point cursor to 'I/O', scroll down to 'Boolean Statements', then press 'Enter' and the following menu will be displayed:

Boolean Points – 4 digits	s (0001-0800, 7831-7899)	F2:UPLOAD,F3:DOWNLOAD
#70	#80	#90
#71	#81	#91
#72	#82	#92
#73	#83	#93
#74	#84	#94
#75	#85	#95
#76	#86	#96
#77	#87	#97
#78	#88	#98
#79	#89	#99

Enter the boolean statements (up to 30 statements). Each statement contains up to two boolean variables (optionally preceded by '/') and one of the boolean function (&, +, *). 4 digits are **required** for referencing programmable variables or boolean points. (Example: 0001)

PROGRAM VARIABLE STATEMENTS

From the Micro MV Gas Flow Computer Configuration Software, Point cursor to **'I/O'**, scroll down to **`Program Variable Statements'**, then press **'Enter'** and the following menu will be displayed:

#31	#54	(4 digits), F2:UPLOAD, F3:DOWN	
#32	#55	#78	
#33	#56	#79	
#34	#57	#80	
#35	#58	#81	
#36	#59	#82	
#37	#60	#83	
#38	#61	#84	
#39	#62	#85	
#40	#63	#86	
#41	#64	#87	
#42	#65	#88	
#43	#66	#89	
#44	#67	#90	
#45	#68	#91	
#46	#69	#92	
#47	#70	#93	
#48	#71	#94	
#49	#72	#95	
#50	#73	#96	
#51	#74	#97	
#52	#75	#98	
#53	#76	#99	

Enter the user programmable statements (up to 69 statements). Each statement contains up to three variables and separated by one of the mathematical functions. <u>4 digits are required</u> for referencing programmable variables or boolean points. (Example: 0001+7801)

BOOLEAN STATEMENTS AND FUNCTIONS

Each programmable boolean statement consists of two boolean variables optionally preceded a boolean 'NOT' function (/) and separated by one of the boolean functions (&, +,*). Each statement is evaluated every 100 milliseconds. Boolean variables have only two states 0 (False, OFF) or 1 (True, ON). Any variable (integer or floating point) can be used in the boolean statements. The value of Integer or floating point can be either positive (TRUE) or negative (FALSE).

Boolean Functions	Symbol		
NOT	/		
AND	&		
OR	+		
EXCLUSIVE OR	*		

Boolean points are numbered as follows:

```
0100 through 0199
                           Meter #1 Boolean Points
                           Meter #2 Boolean Points
0200 through 0299
         1<sup>st</sup> digit – always 0, 2<sup>nd</sup> digit – meter number.
                  Gross Flow Pulses
        0n01
                  Net Flow Pulses
         0n02
         0n03
                  Mass Flow Pulses
                  Energy Flow Pulses
        0n04
                  Meter Active
         0n05
                  Spare
        0n06
                  Any Alarms
        0n07
        0n08-0n10
                           Spare
                  DP Override in use
        0n11
                  Temperature Override in use
        0n12
         0n13
                  Pressure Override in use
        0n14
                  Density Override in use
                  Densitometer Temperature Overide in use
        0n15
        0n16-0n19
                          Spare
         0n20
                  Flow Rate High Alarm
                  Flow Rate Low Alarm
        0n21
         0n22
                  Temperature High Alarm
                  Temperature Low Alarm
         0n23
         0n24
                  Pressure High Alarm
                  Pressure Low Alarm
         0n25
         0n26
                  Density High Alarm
                  Density Low Alarm
         0n27
        0n28
                  Density Temp High Alarm
                  Density Temp Low Alarm
        0n29
                  DP High Alarm
        0n30
        0n31
                  DP Low Alarm
301 through 0699 Spare
0701 through 0799
                           Station Boolean Points
                  Station Gross Flow Pulses
        0701
        0702
                  Station Net Flow Pulses
         0703
                  Station Mass Flow Pulses
        0704
                  Station Energy Flow Pulses
        0705-0710 Spare
        0711
                  Run Switch
0801 through 0899
                           Command Boolean Points
         0801
                  Spare
         0802
                  Alarm Acknowledge
```

See Boolean Statements.

VARIABLE STATEMENTS AND MATHEMATICAL FUNCTIONS

Each statement can contain up to 3 variables or constants.

<u>Function</u> <u>Symbol</u>

ADD + Add the two variables or constant

SUBTRACT - Subtract the variable or constant

MULTIPLY * Multiply the two variables or constant

DIVIDE / Divide the two variables or constants

CONSTANT # The number following is interpreted as a constant

Example: 7801=#2

POWER & 1st variable to the power of 2nd variable

ABSOLUTE \$ unsigned value of variable

EQUAL = Move result to another variable

Variable within the range of 7801-7830,

7831-7899 (floating points)

Variable within the range of 5031-5069 (long integer)

IF STATEMENT) Compares the variable to another

Example- 7801)T7832 (Go to 7832 if var 7801 >= 0)

GOTO STATEMENT T Go to a different statement

COMPARE % Compare a value (equal to)

Natural Log of variable

Greater > Greater than or equal to

Example: 7801>7802T7832 (Go to 7832 if 7801>=7802)

Order of precedence – absolute, power, multiply, divide, add and subtract.

Same precedence – left to right

Variables stored on the hourly report -

7791-7800 -

The variables 7801-7810 will be stored at 7791-7800

First 5 Variables (7801-7805) will be **reset** at the end of hour.

Scratch Pad Variables - Floating Point - 7801-7830 (Read or Write)

- Long Integer - 5031 - 5069 (Read or Write)

7791-7800 - Last Hour Program Variables (Read Only)

7831-7899 - Programmable Variable Statements

REPORTS

Current Data - Snapshot Totalizer Updates

This report consists of two sections. The upper section is primarily the non-changing parameters, the bottom section is the dynamic. Press any key to move from one section of the report to the other. Press <F8> to pause, then press <F5> to print, or enter the file name and press <F6> to capture the snapshot data.

Previous Hourly Data

Up to 32 previous hourly data are stored in the Micro MV Gas Flow Computer. Enter starting hour and date, the Micro MV Gas Flow Computer will go backward from that selected time and date. Current hour cannot be selected. Press <F4> to display, then press <F5> to print, or enter the file name and press <F6> to capture the **Previous Hourly Report**.

Previous Daily Data

Enter start date, and the Micro MV Gas Flow Computer will move backward from the entered data and time. Up to 32 previous daily reports can be retrieved. Current day data cannot be retrieved. Press <F4> to display, press <F5> to print, or enter the file name and press <F6> to capture the **Previous Daily Report**.

Previous Month Data

Up to 12 previous month data are stored in the Micro MV Gas Flow Computer. Select number of previous month data to display, print, or capture. Current month data cannot be retrieved. Press <F4> to display, press <F5> to print, or enter the file name and press <F6> to capture the "Previous"

Previous Alarm Data

Up to 100 previous alarm data can be retrieved. Starting from the most recent to the oldest. Press <F4> to display, press <F5> to print, or enter the file name and press <F6> to capture the **Previous Alarm Report**.

F7 : ABORT	COMMUNICATION STA	TUS : OK	Press Any Key to	Continu
DATE 07/05/97	TIME 12:37:41		ANAOUT#2 OVERRANGE	
	M1F DAILY MASS	451.145	M2F DAILY MASS	91.92
DATE 07/03/97	TIME 15:35:21	METER#2 A	GA8 OUT OF RANGE	
	M1F DAILY MASS	215.415	M2F DAILY MASS	.00
DATE 07/03/97	TIME 15:35:19		METER#2 MASS HI	
	MID DOTTU MACC	21E 400	MOD DOLLU MOCC	aa

Audit Trail Report

The audit trail report shows changed configuration parameters that could influence the calculated numbers. The Micro MV Gas Flow Computer provides up to 100 event logs (100 pairs of new and old parameters; some zero parameters cannot be logged). One purpose for audit trail is to backtrack calculation errors that result from mistakes by the operator of the flow computer. Press <F4> to display, press <F5> to print, or enter the file name and press <F6> to capture the "Audit Trail Report".

F7 : ABORT	COMMUNICATION STATUS : OK	Pr	ess f	iny Key	to Continu
SYSTEM START	DATE 07/06/97 TIME 13:02:15				
POWER FAILED	DATE 07/06/97 TIME 12:54:35				
DATE 07/05/97	TIME 12:37:21 M1F MASS	450.947	M2F	MASS	91.884
	PULSE OUTPUT #1 VOLUME	OLD	.029	NEW	10.000
SYSTEM START	DATE 07/03/97 TIME 16:44:33				
POWER FAILED	DATE 07/03/97 TIME 16:44:21				
DATE 07/03/97	TIME 15:50:52 M1F MASS	224.805	M2F	MASS	1.340
METER#2	PRESSURE ASSIGNMENT	OLD	10	NEW	11
DATE 07/03/97	TIME 15:50:52 M1F MASS	224.805	M2F	MASS	1.340
METER#2	TEMPERATURE ASSIGNMENT	OLD	10	NEW	11
DATE 07/03/97	TIME 15:50:52 M1F MASS	224.805	M2F	MASS	1.340
METER#2	DP LOW ASSIGNMENT	OLD	10	NEW	11
DATE 07/03/97	TIME 15:36:35 M1F MASS	216.289	M2F	MASS	.110
METER#2	TEMPERATURE FAIL CODE	OLD	2	NEW	1
DATE 07/03/97	TIME 15:36:35 M1F MASS	216.289	M2F	MASS	.110
63FT6590	TEMPERATURE FAIL CODE	OLD	2	NEW	1
DATE 07/03/97		215.405	M2F	MASS	.000
METER#2	PRESSURE FAIL CODE	OLD	0	NEW	2
DATE 07/02/07	TIME 1E-3E-10 MID MACC	215 405	MOD	MACC	999

Build User Report

One screen can be built or edited with this menu. Any text can be used. Modbus register must follow the "^" sign in order for the program to retrieve the address location.

Available Address - 3001-3130, 3131-3817, 4181-4999,5041-5101,7001-7096,7776-7831,9001-9387,9401-9403.

View User Report

To monitor the Build User Report. Print user reports through the PC's parallel port.

-			1	U		1		
F8:Pause	Esc:Main	Menu		COMMUNI	CATION	STATUS	:	ок
			TEST	Г 1				
	TOTAL L 390455 387099	0						

Build User Report

One screen can be built or edited with this menu. Any text can be used. Modbus register must follow the "^" sign in order for the program to retrieve the address location.

View User Report

To monitor the **Build User Report**. User reports can be printed through the PC parallel port–see **Print | Files**.

Formatted Ticket Report

```
F7 : ABORT
                             COMMUNICATION STATUS : TIMEOUT
                                                                                                          Press Any Key to Continu
                                                               DATE 00/00/00
                                                                                                      TIME 00:00:00
COMPANY NAME
COMPANY NAME
METER LOCATION
UNIT NO 1 METER
PIPE ID.IN.
ORIFICE ID.IN.
DENS.CORR.FACTOR
DENS DRY AIR LBM/MOL
HEATING VALUE BTU
ENTROPY BTU/LB
K FACTOR
                                 METER ID
                                                      63FT6590
                                                         7.98200
                                                         4.75000
                                                      1.00000
                                                       1000.000
                                                       0.000000
K FACTOR
                                                      1000.000
                   TOTAL
DAILY TOTAL
GROS MCF 184.669
NET MCF 15050.631
MASS MLB 857.645
MMBTU 15050.631
CUMULATIVE TOTAL
GROS MCF 1096.723
NET MCF 69122.688
GROS MCF
NET MCF
MASS MLB
MMBTU
                       3938.885
                     65320.944
 MSBTU
```

The Micro MV Gas Flow Computer allow the user to make personal ticket report. This ticket report is just for display and printing purposes. To make this report, user must use "Last Daily Data Area" in the Modbus registers (3431-3703).

Example:

```
DYNAMIC FLUID BATCH REPORT
METER 1 GROSS TOTAL ^3453
METER 1 MASS TOTAL ^3459

Results - The report will look as follows:

DYNAMIC FLUID BATCH REPORT
METER 1 GROSS TOTAL 3000
METER 1 MASS TOTAL 1258
```

Ticket Report

Select 0=Standard Report, 1=Format Ticket Report

Standard is the default report format that is programmed in the Micro MV Gas Flow Computer. Format is according to the formatted daily report.

Capture File Name - capture that file under certain name.

<u>Auto Data Retrieval</u>

This function is made to replace printers and use a PC to poll the configured units on time basis (Hourly or Daily). All parameters polled will be stored in the configured file name. Each unit ID will have an individual file name. The PC or laptop must be on at the time it has to get the data, and the user must activate that function by pressing <F3> and leaving the PC on. The data format can be either standard or user defined format. This function is to eliminate the need for paper and make the process more environmentally friendly. Echo to the local printer can be enabled where reports will be stored on hard drive and printed to a parallel printer.

PRINT

Print "Help" File

Turn on parallel printer, point the cursor to **Help**, press <**ENTER>**, and then press <**F**5> to print **Help** file.

Print Modbus Registers

Turn on parallel printer, point the cursor to **Modbus** Reg, press <ENTER>, and then press <F5> to print Modbus registers.

Print Calibration Data

Calibration data are programmed parameters in the data file. To print, turn on parallel printer, point the cursor to the Calib.Data, press <ENTER>, and then press <F5>.

Print Files

The user can print the files that were captured. Turn on parallel printer, point the cursor to the desired file, and then press <ENIER>.

CHAPTER 3: Data Entry Through Front Panel Display

The Data entry is a menu driven type construction.

Four Keys - ESC/Mode, Enter/Select, Down Arrow, Right Arrow

These keys can be used by using a reflective object. The reflective object must be placed in front of the key to get a response.

Function

ESC/Mode Kev

This key serves dual functions. In order to access the data entry, the mode key has to be activated. The mode key is on/off type key. This key will get the security code prompt, and then using select, enter key with the arrow keys to access the program. Place the reflective object on and then off for each step. Once the data menu function access is completed, exit by using the escape key.

Select/Enter Key

It is used to stop screen from scrolling, to select data entry, and accept the data configurations. It is on/off type key. Place the reflective object in front of key, and then move away before the next step.

Down Arrow Key, Right Arrow Key

Scrolling keys, the **Right Key** function is to scroll **right** way for selecting the number to be changed, and then changing the number by using **Down Arrow Key**

MAIN MENU

It consists primarily of series of topics. Your valid choices are the two Arrow Keys and select/enter key. Use Down or Right Arrow keys to make your selection and then use select/enter key. Use Esc/Mode key to go back to previous mode.

Security Code

1	Enter Security Code	00000	
Enter the right security co	do to be able to change data.		_

Calibrate /1=M.Var

Enter 0 to calibrate analog input 1-4, RTD, analog output 1-4, or enter '1' to calibrate multi.variable

Calibrate/1=M.Var

Override Meter No.

Date Time Configuration

Enable Calib. Mode
Analog Input (1-4)
RTD Input

Analog Output (1-4)

Enable Calibrate Mode

Enter '1' to enable calibrate mode. Calibration mode will set the flow computer to continue totalizing at same rate while all values are still showing live readings.

Calibrate Analog Input, RTD

0=Offset is a single point calibration that will offset zero and span.

1=Full – zero and span must be calibrated.

2=Reset to factory calibration.

0=Offset,1=Full 2=Reset

Offset (Single Point)

Induce the signal into the analog input, wait for 10 seconds for the reading to stabilize, then enter the offset.

Enter Offset 8.000

Current Value 7.9000

FULL (ZERO AND SPAN CALIBRATION)

1. Calibrate Low Point (4mA or 75 Ω ,), induce the known live value for the low set point, and wait for 10 seconds for the reading to stabilize. Now enter in that value.

First Point 0.000

Current Value
0.9000

2. Calibrate High Point (20mA or $120\ \Omega$), induce the known live value for the high set point, and then wait for 10 seconds for the reading to stabilize. Now enter in that value.

Second Point 20.000

Current Value 19.900

Reset (Use Default)

Enter '2' to use manufacture default.

Calibrate Analog Output

0=Offset is a single point calibration that will offset zero and span.

1=Full – zero and span must be calibrated.

2=Reset to factory calibration.

0=Offset,1=Full 2=Reset

Offset (Single Point)

Enter the live output value reading in the end device.

Enter mA 4.000

Reading mA 4.000

Full (Zero and Span Calibration)

1.The screen will show the minimum possible signal 4mA. Enter the live output value reading in the end device i.e. 4mA.

Enter 4mA 4.000

Reading mA 4.000

2. Now the flow computer will output full scale 20mA. Enter the live output i.e. 20mA

Enter 20mA 20.000

Reading mA 20.000

Reset (Use Default)

Enter '2' to use manufacture default.

Calibrate Multivariable

Select DP, Pressure, or Temperature to be calibrated.

Calibrate Muli.Var.

DP Inches

Pressure PSIG

Temperature DEG.F

Enter the calibrate method (9-Offset, 1-Full, 2-Reset)

0=Offset,1=Full

2=Reset

OFFSET (SINGLE POINT)

Induce the live value, then enter the offset.

Enter Offset

10.0000

Current Value

10.9000

Full (Zero and Span Calibration)

1. Calibrate Low Point - induce the low range signal, and enter in that value.

First Point

0.0000

Current Value

0.9000

2. Calibrate High Point - induce the high range signal, and enter in that value.

Second Point

250.0000

Current Value

250.0000

Reset (Use Default)

Enter '2' to use manufacture default.

Override Meter No.

Enter the meter number 1 or 2 to change meter override value

TF/PF/MF
HV/FPV
Dens.b/DCF
Orifice/Pipe/DP

TF/PF/MF

TF - Temperature Deg.F

This value is entered when no live temperature is available, or when a different value from the live value should be used.

PF - Pressure PSIG

This value is entered when no live temperature is available, or when a different value from the live value should be used.

MF - Meter Factor

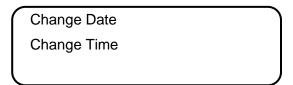
Enter the value to change current meter factor (AGA7 Method)

HV/FPV

Heating Value Override is used in the AGA8 calculation GROSS METHOD 1. In addition the heating value totalizer requires the heating value; without a BTU override value entered, the Energy Flowrate will always equal zero. Enter this number in BTU/SCF(standard cubic feet).

FPV override: used to enter a value to override the NX19 supercompressibility factor.

Dens.b/DCF


Base Density Override is used to override the calculated base density and affects the net calculations only. For products other than natural gas, you must enter base density override for net calculations.

DCF- Density Correction Factor

Orifice/Pipe/DP

Orifice ID in inches is the measured inside pipe diameter to 5 decimals at reference conditions **Pipe ID** in inches is the measured diameter of the orifice at reference conditions. **DP Override** in inches of water.

Date/Time

Change Date

Month	09	1
Day	08	
Year	00	
Change Date 1=Yes		

Enter Month (1-12), Day (1-31), Year(0-99) and then enter '1' to change date.

Change Time

Hour	09
Minute	08
Second	00
Change Time 1=Yes	

Enter Hour (0-23), Minute (0-59), Second (0-59) and then enter '1' to change time.

Configuration

Configuration

Configure Meter No 1

Configure I/O

Configue Meter

Flow Equation 0-3 1 0=AGA3,1=New AGA3, 2=AGA7,3=Venturi

Flow Equation Type (0-3)

- 0 = AGA3 (OLD AGA3, 1985 Orifice Equations)
- 1 = API 14.3 (NEW AGA3, 1992 Orifice Equations)

Pulse Output Others

- 2 = AGA7 (Frequency Type Input)
- 3 = Venturi

AGA3/New AGA3/Venturi

Orifice ID	10.00000
Pipe ID,	5.00000
DP Cut Off	1.0000
Viscosity	.024500

Pipe I.D. Inches

Orifice ID Inches

Pipe ID in inches is the measured inside pipe diameter to 5 decimals at reference conditions. Orifice ID in inches is the measured diameter of the orifice at reference conditions.

DP Cutoff

The Micro MV Gas Flow Computer suspends all calculations whenever the DP, in inches of water column, is less than this value. This function is vital for suppressing extraneous data when the DP transmitter drifts around the zero mark under no-flow conditions.

Viscosity in Centipoise

Even though viscosity will shift with temperature and pressure changes, the effect on the calculations is negligent. Therefore using a single value is appropriate in most cases. Enter viscosity in centipoise.

AGA7

K Fact	or	100	0.000	
Meter	Factor	1.00	0000	
Flow C	ut Off Freq.	1		

K FACTOR

K Factor is the number of pulses per unit volume, i.e. 1000 pulses/barrel. The tag on the meter would normally indicate the K Factor.

Meter Factor

Meter Factor is a correction to the K Factor for this individual meter, applied multiplicatively to the K factor.

FLOW CUTOFF FREQUENCY

The Smart Flow Computer will quit totalizing, when frequency is below the set limit. This feature is to reduce noise effect when the meter is down for period of time. The totalizer will stop totalizing when the frequency is below the cut off limit.

Configure I/O

Analog Output Meter I/O

Status/Switch F.C.Display

Analog Output

(Ana.Out#1 Assign	1	1
l	Ana.Out#2 Assign	0	
l	Ana.Out#3 Assign	0	
l	Ana.Out#4 Assign	0	J
/			/

ASSIGNMENTS:

4-20mA selection must be proportional and within the range of the selected parameter.

ASSIGNMENTS:

	Meter 1	Meter 2	Station
Gross Flowrate	1	5	9
Net Flowrate	2	6	10
Mass Flowrate	3	7	11
Energy Flowrate	4	8	12

	Meter	Meter2
	1	
DP	13	21
Temperature	14	22
Pressure	15	23
Density	16	24
Density Temp	17	25
Dens.b	18	26
DP LOW	19	27
DP HIGH	20	28
Specific Gravity	30	32

Meter-Independent Paramete	rs
Spare #1	33
Spare #2	34
Remote Control*	35

Examples:

9 = Station Gross Flowrate

30 = Meter 1 Specific Gravity

25 = Meter 2 Density Temperature

Note: Assignments 29 and 31 are not used.

*Note: Remote control output can be controlled through the Modbus communication link.

Note: Dens.b = Base Density

DP = Differential Pressure

Meter I/O

Temperature Deg.F

Pressure PSIG

DP Inches Densitometer

ASSIGNMENTS

0=	Not Used
1=	Analog#1
2=	Analog#2
3=	Analog#3

4=	Analog#4
5=	RTD

7 =	Dens.Freq (Not Selectable)		
10 =	Multi. Variable Module #1		
11 =	Multi. Variable Module #2		

<u>4MA</u>

Enter the 4mA value for the transducer.

20MA

Enter the 20mA value for the transducer.

Status Input /Switch Output Assignment

(Status/Switch#1	000
l	Status/Switch#2	001
l	Status/Switch#3	000
l	Status/Switch#4	000

	Assignment	Comments
1.	N/A	
2	Calibration Mode	
3	Event Status	
4.	Alarm Acknowledge	Reset the previous occurred alarms output bit

Switch Output Assignment

User can assign an output to each of the Micro MV Gas Flow Computer's output switches from this list. The Micro MV Gas Flow Computer switch outputs are sourcing through switch power input power. Outputs in the top list,"Pulse Outputs", require a definition of pulse output per unit volume. Therefore a Pulse Output Width must be defined when one of these switch types are chosen. These outputs are available through swtiches 1 or 2 only.

Outputs in the bottom list,"Contact Type Outputs", are ON/OFF type outputs. They can be assigned to any of the four switch outputs.

Switches 1 and 2 can be pulse or contact type output; switches 3, 4 are contact-type output only.

Assignments - Pulse Outputs

	Meter 1	Meter 2	Station
Gross	101	105	109
Net	102	106	110
Mass	103	107	111
Energy	104	108	112

ASSIGNMENTS - CONTACT TYPE OUTPUTS

	Meter1	Meter2
Temperature Low	126	136
Temperature High	127	137
Pressure Low	128	138
Pressure High	129	139
Density Low	130	140
Density High	131	141
Dens.Temp Low	132	142
Dens.Temp High	133	143
DP Low	134	144
DP High	135	145
Meter Down	120	123
Flow Rate Low	121	124
Flow Rate High	122	125
N/A	153	155
N/A	154	156

Meter-Independent Parameters		
Day Ended	119	
Dens. Period Low	146	
Dens. Period High	147	
AGA8 Out of Range	148	
NX19 Out of Range	149	
N/A	150	
Active Alarms	151	
Occurred Alarms	152	
WatchDog	157	
Remote Control	158	
Run Switch	159	

Examples:

110= Station Net Flowrate (pulse output)

148= AGA8 out of Range

Flow Computer Display Assignment

FC.Display#1	000
FC.Display#2	001
FC.Display#3	000
FC.Display#4	000

Display assignment select up to 16 assignments. The Micro MV Gas Flow Computer will scroll through them at the assigned delay time.

<u>Assignment</u>

4 Digits –

 1^{st} : Forward/Reverse - 0:Forward,1:Reverse 2^{nd} - Meter Number - 1:Meter#1, 2:Meter#2, 3:Station

3rd, 4th: Selection

Selection	5. <u>Description</u>
01	Flow Rate
02	Daily Total
03	Cum. Total
04	Previous .Daily total
05	DP/DP Low, High
06	Temperature, Pressure
07	Density, Density at Base
08	Density Freq, Dens.Period, Un-Corr. Density
09	Density Temperature, Pressure
10	Flow and Density Calculation Type
11	Spare #1, Spare #2
12	Previous Day.AVG Temperature, Pressure, SG
13	Alarms
14	Date, Time

Examples:

101= Meter#1 Flowrate

102= Meter #1 Daily Total

302= Station Daily Total

113= Meter #1 Alarms

14= Date, Time

Pulse Output

	Pulse Output	
	#1 P/Unit#1	1.000
l	#2 P/Unit#2	1.000
l	Pulse Width	50

PULSE OUTPUT AND PULSE OUTPUT WIDTH

Pulse Output is used to activate a sampler or external totalizer. The number selected will be pulses per unit volume or per unit mass. If 0.1 pulse is selected, the one pulse will be given every 10 unit volumes has passed through the meter.

Pulse Output Width is the duration, in milliseconds, of one complete pulse cycle (where each cycle is the pulse plus a wait period, in a 50/50 ratio). For example: if POW = 500 msec, the Micro MV Gas Flow Computer at most can produce one pulse each second regardless of the pulse per unit volume selected (500 msec pulse + 500 msec wait). If POW = 10 msec the Micro MV Gas Flow Computer can produce up to 50 pulses per second.

The Micro MV Gas Flow Computer's maximum pulse output is 125 pulses/sec. The Pulse Output in combination with the Pulse Output Width should be set appropriately.

Others

Day Start Hour	7	
Print Interval	1440	
0=Hour,1=Day,2=Min	0	
Disable Alarms	0	J

DAY START HOUR (0-23)

Day start hour is used for daily totalizer reset operation.

PRINT INTERVALS IN MINUTES (0-1440)

When the second port (RS-232) of the Micro MV Gas Flow Computer is configured as printer port, a snapshot report is generated every print interval (i.e., every five minutes, every hour, or every ten hours).

FLOW RATE SELECTION

The flow rate will be based on hourly basis, daily, or minute.

DISABLE ALARMS

Use Disable Alarms to ignore alarms. When the alarm function is disabled alarms are not logged. Alarms are also not logged if the DP is below the cut-off limit.

CHAPTER 4: FLOW EQUATIONS

Common Terms

The following terms are used throughout this chapter.

Term	Definition	Units	Examples
q	Flowrate: volume or mass displaced per unit time	See equations	q _{mass} , q _{energy}
T	Temperature	°F unless noted	
DP	Differential Pressure across measuring device	Inches H ₂ O column	
d	Orifice Diameter	Inches	d, d_r, d_m
D	Pipe Diameter	Inches	D , D_r , D_m
β	$= \frac{d}{D} = \frac{Orifice \ diameter}{Pipe \ diameter}$	Dimensionalless ratio	β , β_r
ρ	Density (usually of the fluid)	Lb/ft ³	$ ho_{\mathrm{flowing}}$, $ ho_{\mathrm{m}}$
μ	Viscosity	centipoise	
HN	Heating Value		
Y	Expansion factor	Dimensionalless	

Subscripts: Conventions Used

This Subscript	Means	Examples
r	At reference conditions	$T_{r,p}$ = reference temperature of the pipe
O (letter o)	Refers to the orifice	$T_{r,O}$ = reference temperature of the orifice
P	Refers to the pipe	
flowing	At flow conditions	$\rho_{flowing}$ = density at flow conditions
cal	Calibration conditions	T_{cal} , P_{cal}
m	At measured conditions	D_m = pipe diameter at measured temp.

Other Common Expressions

For all equations,

Energy Flowrate = $q_{net} \times HN \times 10^{-3}$ = MMBTU/Hr

AGA3

Please see *Common Terms* at the beginning of this chapter. For more information, please see AGA3 Publication.

$$\begin{aligned} \mathbf{MassFlowrate} &= \mathbf{\textit{q}_{mass}} = K \times F_a \times A \times 3.6 \\ &= \mathbf{MLb/Hr} \\ \mathbf{NetFlowrate} &= \frac{q_{mass}}{\rho_{reference}} = \mathbf{MCF/Hr} \\ \mathbf{GrossFlowrate} &= \frac{q_{mass}}{flowing} = \mathbf{MCF/Hr} \end{aligned}$$

Where:

$$F_a = Orifice Thermal Expansion Factor$$

= $l + C_O(T_{flowing} - T_{r,O})$

 C_O = Thermal Coefficient of expansion for orifice

 $T_{r,O}$ = Reference Temperature of the orifice

$$K = \frac{\sqrt{\frac{4K_0E}{A \times B} + K_0^2}}{2}$$

$$A = 0.099742275d^2Y \sqrt{\rho_{flowing} \times DP}$$

$$B = \frac{7.142974 \times 10^4}{\pi \times \mu \times d}$$

API 14.3

For more information, please see *Orifice Metering of Natural Gas*, 3rd edition.

 $= \frac{\pi}{4} \times N_c \times C_d \times E_v \times d^2 \times Y \times \sqrt{2DP \times Density} \times .001$ **Mass Flow Rate**

= Mass Flow **Net Flow Rate**

Mass Flow **Gross Flow Rate** Flowing Density

Energy Flow Rate = Net Flow Rate × Heating Value × .001

Where:

 $N_c = Units Conversion Constant$

 $C_d = Orifice \ Plate \ Coefficient \ of \ Discharge$ $E_v = \frac{1}{\sqrt{1-\beta^4}} = Velocity \ of \ Approach \ Factor$

d = Orifice plate bore diameter

Y = Expansion Factor

 $DP = Orifice \ Differential \ Pressure$

	US unit
N_c	323.279
Density	lb/ft ³
Gross Flow Rate/HR	MCF
Net Flow Rate/HR	MSCF
Mass Flow Rate/HR	MLB
Energy Flow Rate/HR	MMBTU

AGA 7

Please see *Common Terms* at the beginning of this chapter.

Gross Flowrate =
$$\frac{v_{signal} \times F_M \times F_L \times 3.6}{F_K} = q_{gross} \text{(MCF/Hr)}$$

$$\textbf{Net Flow} \textbf{Flow} \textbf{rate} = \frac{q_{gross} \rho_{flowing}}{\rho_{reference}} = \textbf{MCF/Hr}$$

$$\mathbf{MassFlow} \mathbf{rate} = q_{gross} \rho_{flowing} = \mathbf{MCF/Hr}$$

 $v_{signal} = Frequency of the signal input, pulses/sec$

 $F_M = Meter\ Factor$

 $F_L = Linear\ Factor$

 $F_K = Nominal\ K\ Factor$

Venturi

Please see *Common Terms* at the beginning of this chapter. For further information please see *Measurement Engineering Handbook*.

$$\begin{aligned} \textbf{MassFlowrate} &= 0.3590722 \sqrt{\rho_{flowing} \times DP} \times \frac{C \times F_a \times d^2 Y}{\sqrt{1-\beta^4}} \\ &= \textbf{\textit{q}}_{mass} \text{ (MLB/HR)} \\ \textbf{Net Flowrate (MCF/HR)} &= \frac{q_{mass}}{\rho_{reference}} \\ \textbf{Gross Flowrate (MCF/HR)} &= \frac{q_{mass}}{\rho_{flowing}} \\ &\qquad Where: \end{aligned}$$

C = Discharge coefficien t C (manual entry)

DENSITY EQUATIONS

Sarasota Density GM/CC

Sarasota density is calculated using the frequency signal produced by a Sarasota densitometer, and applying temperature and pressure corrections as shown below.

Where:

$$T_{0p} = T_{coef} \times (T - T_{cal}) + P_{coef} \times (P - P_{cal}) + T_0$$

DCF = Density Correction Factor

 $D_0 = Calibration \ constant, \ mass/volume, \ gm/cm^3$

t = Densitometer oscillation period in microseconds.

 $t_0 = A \ calibration \ constant \ in \ microseconds$

 $T_{coef} = Temperature \ coefficient \ in \ microseconds/{}^{\circ}F$

P = Flowing pressure in PSIG

 $P_{coef} = Pressure coefficien t in microseconds/PSIG$

 P_{cal} = Calibration pressure in PSIG

UGC Density GM/CC

UGC density is calculated using the frequency signal produced by a UGC densitometer, and applying temperature and pressure corrections as shown below

$$\textbf{Corrected Density} = DCF \times P_{flowing} \{ [K(P_{off} + d) \times 10^{-6}] + [K_T(T_{flowing} - T_{cal})] + d \}$$

Where:

$$d = K_0 + K_1 t + K_2 t^2$$

 K_0 , K_1 , K_2 = Calibration Constants

 $t = Densitometer\ oscillatio\ n\ period\ in\ microseconds$

DCF = Density Correction Factor

K = Pressure Constant

 $P_{off} = Pressure Offset$

 $K_T = Temperature Coefficient$

 $T_{cal} = Temperature \ coefficien \ t \ in \ microseconds/°F$

Solartron Density GM/CC

Solartron density is calculated using the frequency signal produced by a Solartron densitometer, and applying temperature and pressure corrections as shown below.

DENSITY AT 20 DEG.C AND 0 BAR

$$D = K_0 + K_1 t + K_2 t^2$$

Where:

t = Densitometer Oscillation Period in microseconds

 K_0 , K_1 , K_2 = Calibration Constants Supplied by Solartron

TEMPERATURE CORRECTED DENSITY

$$DT = D[1 + K_{18}(T - 20) + K_{19}(T - 20)]$$

ADDITIONAL EQUATION FOR GAS OFFSET DATA

The following equation can provide more accurate measurement for Argon/Methane Gas Mixture over density range 60 to 200 kg/m³.

$$DA = DT + (1 + K3/(DT + K4)x0.00236 - G/(T + 273))$$

G = Gas Specific Gravity / Ratio of Specific Heats.

Density (GM/CC)= Density(KG/M3) / 1000.0

AGA8 Gross Method 1

Refer to Transmission Measurement Committee Report No. 8

AGA8 Gross Method 2

Refer to Transmission Measurement Committee Report No. 8

AGA8 Detail Method

Refer to Transmission Measurement Committee Report No. 8

CHAPTER 5: MODBUS DATA

MODBUS PROTOCOL

TRANSMISSION MODE

	ASCII	RTU
DATA BITS	7	8
START BITS	1	1
PARITY	EVEN,ODD	NONE
STOP BITS	1	1
ERROR CHECKING	LRC	CRC
BAUD RATE	1200-9600	1200-9600

ASCII FRAMING

Framing is accomplished by using colon (:) character indicating the beginning of frame and carriage (CR), line feed (LF) for the end of frame

ASCII MESSAGE FORMAT

	ADDRESS	FUNCTION	DATA	ERR\CHECK		_
:	2 CHAR	2 CHAR	Nx2 CHAR	2 CHAR	CR	LF
8 BITS	16 BITS	16 BITS	Nx16 BITS	16 BITS	8 BITS	8 BITS

RTU FRAMING

Frame synchronization is done by time basis only. The Smart Flow Computer allows 3.5 characters time without new characters coming in before proceeding to process the message and resetting the buffer.

RTU MESSAGE FORMAT

ADDDEGG	FUNCTION	DATA	000
ADDRESS	FUNCTION	DATA	CRC
8 BITS	8 BITS	Nx8 BITS	16 BITS

FUNCTION CODE

To inform the slave device of what function to perform

FUNCTION CODE	ACTION
01	
03	Read Strings or Multiple 16 Bits
16	Write Strings or Multiple 16 Bits

ERROR CHECK

LRC MODE

The LRC check is transmitted as two ASCII hexadecimal characters. First, the message has to be stripped of the :, LF, CR, and then converted the HEX ASCII to Binary. Add the Binary bits and then two's complement the result.

CRC MODE

The entire message is considered in the CRC mode. Most significant bit is transmitted first. The message is pre-multiplied by 16. The integer quotient digits are ignored and the 16-bit remainder is appended to the message as the two CRC check bytes. The resulting message including the CRC, when divided by the same polynomial (X16+X15+X2+1) at the receiver which will give zero remainder if no error has occurred.

EXCEPTION RESPONSE

Exception response comes from the slave if it finds errors in communication. The slave responds to the master echoing the slave address, function code (with high bit set), exception code and error check. To indicate that the response is notification of an error, the high order bit of the function code is set to 1.

EXCEPTION CODE	DESCRIPTION
01	Illegal Function
02	Illegal Data Address
03	Illegal Data Value

BROADCAST COMMAND

All units listen to Unit ID Zero, and none will respond when that write function is broadcasted.

MODBUS EXAMPLES

FUNCTION CODE 03 (Read Single or Multiple Register Points)

RTU MODE - Read Address 3076

ADDR	FUNC	STARTIN	STARTING POINT		# OF POINTS		
	CODE	HI	LO	HI	LO	CHE	CK
01	03	0C	04	00	01	C6	9B

<u>Response</u>

4000	FUNC	BYTE	DA	CRC		
ADDR	CODE	COUNTS	HI	LO	CHE	
01	03	02	00	01	79	84

Write Address 3076

ADDR	FUNC CODE	START POINT		# OF POINTS		BYTE COUNTS	DATA		CRC	
	CODE	HI	LO	Η	LO	COUNTS	HI	LO	CHECK	
01	10	0C	04	00	01	02	00	01	AA	14

<u>Response</u>

ADDR	FUNC CODE	START ADDR		# OF POINTS	CF CHE	_
С	10	0C 04		01	43	58

ASCII MODE - Read Address 3076

	ADDR		FUNC CODE		STARTING POINT			# OF POINTS				LRC				
					HI		LO		HI		LO		CHECK			
:	30	31	30	33	30	43	30	43	30	30	30	31	45	42	CR	LF

<u>Response</u>

	ADD	R	FUNC		BYTE		DATA				LRC CHECK			
	,,,,,,,,,,		CODE		COUNT		HI		LO					
:	30	31	30	33	30	32	30	30	30	31	46	39	CR	LF

MODBUS ADDRESS TABLE - 16 BITS

<u>ADDRESS</u>	DESCRIPTION	DECIMAL	READ/WRITE
2534	Flow Copmputer Display Delay	0 Inferred	Read/Write
2535	Flow Copmputer Assignment #1	0 Inferred	Read/Write
2536	Flow Copmputer Assignment #2	0 Inferred	Read/Write
2537	Flow Copmputer Assignment #3	0 Inferred	Read/Write
2538	Flow Copmputer Assignment #4	0 Inferred	Read/Write
2539	Flow Copmputer Assignment #5	0 Inferred	Read/Write
2540	Flow Copmputer Assignment #6	0 Inferred	Read/Write
2541	Flow Copmputer Assignment #7	0 Inferred	Read/Write
2542	Flow Copmputer Assignment #8	0 Inferred	Read/Write
2543	Flow Copmputer Assignment #9	0 Inferred	Read/Write
2544	Flow Copmputer Assignment #10	0 Inferred	Read/Write
2545	Flow Copmputer Assignment #11	0 Inferred	Read/Write
2546	Flow Copmputer Assignment #12	0 Inferred	Read/Write
2547	Flow Copmputer Assignment #13	0 Inferred	Read/Write
2548	Flow Copmputer Assignment #14	0 Inferred	Read/Write
2549	Flow Copmputer Assignment #15	0 Inferred	Read/Write
2550	Flow Copmputer Assignment #16	0 Inferred	Read/Write
2000	1 low copinputer Assignment #10	o inicirca	rcad/write
2551	Flow Copmputer ID or Unit ID	0 Inferred	Read/Write
2552	reserved		
2553	Port 1 Modbus Type (0=RTU,1=ASCII)	0 Inferred	Read/Write
2554	Port 1 Parity(0=None,1=Odd,2=Even)	0 Inferred	Read/Write
2555	Port 1 Baud Rate(0=1200,1=2400,3=4800,4=	9600)	
2556	reserved		
2557	Port 1 RTS Delay in Milliseconds	0 Inferred	Read/Write
2558-2559	reserved		
2560	Port 2 Select 0=RTS,1=Printer	0 Inferred	Read/Write
2561	Port 2 Modbus Type (0=RTU,1=ASCII)	0 Inferred	Read/Write
2562	Port 2 Parity(0=None,1=Odd,2=Even)	0 Inferred	Read/Write
2563	Port 2 Baud Rate(0=1200,1=2400,3=4800,4=	9600)	
2564	Reserved		
2565	Port 2 RTS Delay in Milliseconds	0 Inferred	Read/Write
2566	Printer- Number of Nulls	0 Inferred	Read/Write
2567	Reserved		
2568	Spara		
2569	Spare Meter Bank 0-One Meter 1-Two Meters	0 Inferred	Read/Write
	Meter Bank 0=One Meter,1=Two Meters	0 Inferred	
2570 2571	Select 0=Single, 1=Dual Streams		Read/Write
2571	Station Total 0=None,1=Add,2=Sub	0 Inferred 0 Inferred	Read/Write
2572 2573	Meter #1 Use Stack DP (1=Yes)		Read/Write
2573 2574	Meter #2 Use Stack DP (1=Yes)	0 Inferred	Read/Write
2574 2575	Common Process 1–Yes	0 Inferred	Read/Write
2575 2576	Common Pressure 1=Yes	0 Inferred	Read/Write
2576 2577	Density#1 0=None,1=4-20mA,2=S,3=U,3=S	0 Inferred	Read/Write
2577	Spare		

2578 2579	Use Meter Temp as Dens.Temp#1 0=N,1=Y Spare	0 Inferred	Read/Write
2580	Common Density 1=Yes	0 Inferred	Read/Write
2581	Density#2 0=None,1=4-20mA,2=S,3=U,3=S	0 Inferred	Read/Write
2582	Spare "O B T		D 100/ '/
2583 2584	Use Meter Temp#2 as Dens.Temp 1=Yes Spare	0 Inferred	Read/Write
2585-2592	Reserved		
2593	Flow Rate Display 0=Hour,1=Day,2=Minute	0 Inferred	Read/Write
2594	Flowrate Averaged Seconds (1-10)	0 Inferred	Read/Write
2595	Day Start Hour (0-23)	0 Inferred	Read/Write
2596-2605 2606	Company Name Disable Alarms ? (0=No, 1=Yes)	40 Chars 0 Inferred	Read/Write Read/Write
2607	Print Interval in Minutes (0-1440)	0 Inferred	Read/Write
2608	Run Switch Delay	0 Inferred	Read/Write
2609	Pulse Width	0 Inferred	Read/Write
2610-2612	Spare		
2613-2616	Spare		
2617	Status Input/Switch Output #1 (0=OFF,1=ON)	0 Inferred	Read/Write
2618	Status Input/Switch Output #2 (0=OFF,1=ON)		Read/Write
2619	Status Input/Switch Output #3 (0=OFF,1=ON)		Read/Write
2620	Status Input/Switch Output #4 (0=OFF,1=ON)	0 Inferred	Read/Write
2621 2622	Spare Meter #1 Flow Cut Off Freq. (0-99)	0 Inferred	Read/Write
2623	Meter #2 Flow Cut Off Freq. (0-99)	0 Inferred	Read/Write
2624-2633	Meter Location	40 Chars.	Read/Write
2634-2637	Meter #1 ID	8 Chars.	Read/Write
2638 2639	Meter#1 Density Calction Type Spare	0 Inferred	Read/Write
2640-2643	Meter #2 ID	8 Chars.	Read/Write
2644	Meter#2 Density Calction Type	0 Inferred	Read/Write
2645-2646	reserved		D 100/11
2647 2648	Meter #1 AGA7 Select Mass Pulses (1=Yes)	0 Inferred 0 Inferred	Read/Write Read/Write
2649-2651	Meter #2 AGA7 Select Mass Pulses (1=Yes) Reserved	Ullileffed	Read/Wille
2652-2797	Sapre		
2798	Meter #1 DP Low Assignment	0 Inferred	Read/Write
2799	Meter #1 Temperature Assignment	0 Inferred	Read/Write
2800	Meter #1 Pressure Assignment	0 Inferred	Read/Write
2801 2802	Meter #1 Density Assignment Meter #1 Density Temp. Assignment	0 Inferred 0 Inferred	Read/Write Read/Write
2803	Meter #1 DP High Assignment	0 Inferred	Read/Write
2804	Meter #2 DP Low Assignment	0 Inferred	Read/Write
2805	Meter #2 Temperature Assignment	0 Inferred	Read/Write
2806	Meter #2 Pressure Assignment	0 Inferred	Read/Write
2807 2808	Meter #2 Density Assignment	0 Inferred	Read/Write
ZOUO	Meter #2 Density Temp. Assignment	0 Inferred	Read/Write

Modbus Address Table – 16 Bits

<u>ADDRESS</u>	DESCRIPTION	DECIMAL	READ/WRITE
2809	Meter #2 DP High Assignment	0 Inferred	Read/Write
2810	Spare #1 Assignment	0 Inferred	Read/Write
2811	Spare #2 Assignment	0 Inferred	Read/Write
2812	Meter #1 DP Fail Code	0 Inferred	Read/Write
2813	Meter #1 Temperature Fail Code	0 Inferred	Read/Write
2814	Meter #1 Pressure Fail Code	0 Inferred	Read/Write
2815	Meter #1 Density Fail Code	0 Inferred	Read/Write
2816	Meter #1 Density Temp Fail Code	0 Inferred	Read/Write
2817	Spare	o iilielieu	ixeau/vviile
2818	Meter #2 DP Fail Code	0 Inferred	Read/Write
2819	Meter #2 Temperature Fail Code	0 Inferred	Read/Write
2820	Meter #2 Pressure Fail Code	0 Inferred	Read/Write
2821		0 Inferred	Read/Write
2822	Meter #2 Density Fail Code	0 Inferred	Read/Write
	Meter #2 Density Temp Fail Code	o interred	Read/write
2823	Spare #1 Failure Code	O Informed	DoodAMrito
2824	Spare #1 Failure Code	0 Inferred	Read/Write
2825	Spare #2 Failure Code	0 Inferred	Read/Write
2826	Spare	O losta ma al	Dood Mile
2827	Analog Output #1 Assign	0 Inferred	Read/Write
2828	Analog Output #2 Assign	0 Inferred	Read/Write
2829	Analog Output #3 Assign	0 Inferred	Read/Write
2830	Analog Output #4 Assign	0 Inferred	Read/Write
2831	Meter#1 NX19 Method (1=Analysis Method)	0 Inferred	Read/Write
2832	Meter#2 NX19 Method (1=Analysis Method)	0 Inferred	Read/Write
2833	Spare	011	D 100/10
2834	Meter#1 Y Factor Select (1=Y1, 2=Y2)	0 Inferred	Read/Write
2835	Meter#1 Tap Select (0=Flange, 1=Pipe)	0 Inferred	Read/Write
2836	Meter#2 Y Factor Select (1=Y1, 2=Y2)	0 Inferred	Read/Write
2837	Meter#2 Tap Select (0=Flange, 1=Pipe)	0 Inferred	Read/Write
2838	Meter#1 Calculation Method	0 Inferred	Read/Write
2839	Meter#2 Calculation Method	0 Inferred	Read/Write
2840	Meter#2 Nozzle Type	0 Inferred	Read/Write
2841-2844	Analog Input #1 Tag Name	8 Chars	Read/Write
2845-2848	Analog Input #2 Tag Name	8 Chars	Read/Write
2849-2852	Analog Input #3 Tag Name	8 Chars	Read/Write
2853-2856	Analog Input #4 Tag Name	8 Chars	Read/Write
2857-2860	RTD Input Tag Name	8 Chars	Read/Write
2861-2864	Density Input Tag Name	8 Chars	Read/Write
2865-2868	Analog Output #1 Tag Name	8 Chars	Read/Write
2869-2872	Analog Output #2 Tag Name	8 Chars	Read/Write
2873-2876	Analog Output #3 Tag Name	8 Chars	Read/Write
2877-2880	Analog Output #4 Tag Name	8 Chars	Read/Write
2881-2932	Spare		
2933	Status Input/Switch Output #1 Assign	0 Inferred	Read/Write
2934	Status Input/Switch Output #2 Assign	0 Inferred	Read/Write
2935	Status Input/Switch Output #3 Assign	0 Inferred	Read/Write
2936	Status Input/Switch Output #4 Assign	0 Inferred	Read/Write
2937-2960	Spare		
, , ,	•		

Modbus Address Table - 16 Bits

<u>ADDRESS</u>	DESCRIPTION	DECIMAL	READ/WRITE
2961-2964	Multi.Var.#1 DP Tag	8 Chars.	Read/Write
2965-2968	Multi.Var.#1 Pressure Tag	8 Chars.	Read/Write
2969-2972	Multi.Var.#1 Temperature Tag	8 Chars.	Read/Write
2973-2976	Multi.Var.#2 DP Tag	8 Chars.	Read/Write
2977-2980	Multi.Var.#2 Pressure Tag	8 Chars.	Read/Write
2981-2984	Multi.Var.#2 Temperature Tag	8 Chars.	Read/Write
2985	Analog Output#1 –Remote Control (0-100)	0 Inferred	Read/Write
2986	Analog Output#2 –Remote Control (0-100)	0 Inferred	Read/Write
2987	Analog Output#3 –Remote Control (0-100)	0 Inferred	Read/Write
2988	Analog Output#4 –Remote Control (0-100)	0 Inferred	Read/Write

ADDRESS	DESCRIPTION	DECIMAL I	READ/WRITE
3001 3002-3006	Version Number Spare	2 Inferred	Read
3007 3008-3011	Meter #1 Product Used Meter #1 ID	0 Inferred 8 Chars	Read Read
3012 3013 3014-3017 3018	Spare Meter #2 Product Used Meter #2 ID Flow Computer Unit Number	0 Inferred 8 Chars 0 Inferred	Read Read Read
3019 3020-3023 Sp	Disable Alarms (1=Yes) pare	0 Inferred	Read
3024 3025	Enable Calibration Mode (1=Yes) Calibration – Set Time (1-9 Hours)	0 Inferred 0 Inferred	Read Read
3026	Last Daily Report Request (1=Latest,35=Older Daily Data Area in Location 3431-3753	est) 0 Inferred	Read/Write
3027	Last Monthly Report Request(1=Latest,12=Ol Set Last Monthly Report Request to 1 Monthly Data Area in Location 3431-3753	dest) 0 Inferre	edRead/Write
3028 3029	Last Hourly Report Request – Starting Hour Last Hourly Report Request	0 Inferred 0 Inferred	Read/Write Read/Write
3030 3031	Last Alarm Report Request Last Audt Report Request	0 Inferred 0 Inferred	Read/Write Read/Write

ADDRESS	DESCRIPTION	DECIMAL	READ/WRITE
Scaled Data A	Area		
3032	Meter #1 Gross Flowrate	0 Inferred	Read
3033	Meter #1 Net Flowrate	0 Inferred	Read
3034	Meter #1 Mass Flowrate	0 Inferred	Read
3035	Meter #1 Energy Flowrate	0 Inferred	Read
3036-3043	Spare		
3044	Meter #2 Gross Flowrate	0 Inferred	Read
3045	Meter #2 Net Flowrate	0 Inferred	Read
3046	Meter #2 Mass Flowrate	0 Inferred	Read
3047	Meter #2 Energy Flowrate	0 Inferred	Read
3048-3055	Spare		
3056	Spare #1 Data	0 Inferred	Read
3057	Spare #2 Data	0 Inferred	Read
3058	Meter #1 DP	0 Inferred	Read
3059	Meter #1 Temperature	0 Inferred	Read
3060	Meter #1 Pressure	0 Inferred	Read
3061	Meter #1 Density	0 Inferred	Read
3062	Meter #1 Dens.Temperature	0 Inferred	Read
3063	Meter #2 DP	0 Inferred	Read
3064	Meter #2 Temperature	0 Inferred	Read
3065	Meter #2 Pressure	0 Inferred	Read
3066	Meter #2 Density	0 Inferred	Read
3067	Meter #2 Dens.Temperature	0 Inferred	Read
SCALED DAT	A AREA ENDS		

SCALED DATA AREA ENDS

Retrieve History Data ACK Flag 0 Inferred 3123 Read/Write

Modbus 16-bit Address Table Ends

ADDRESS DESCRIPTION

DECIMAL READ/WRITE

*Non-resettable accumulated volume will roll over at 9999999.				
3131	Meter #1 Gross Flowrate	2 inferred	Read	
3133	Meter #1 Net Flowrate	2 inferred	Read	
3135	Meter #1 Mass Flowrate	2 inferred	Read	
3137	Meter #1 Energy Flowrate	2 inferred	Read	
3139	Meter #1 DP Low	4 Inferred	Read	
3141	Meter #1 DP High	4 Inferred	Read	
3143	Meter #1 DP	4 Inferred	Read	
3145	Meter #1 Temperature	1 Inferred	Read	
3147	Meter #1 Pressure	1 Inferred	Read	
3149	Meter #1 Density	6 Inferred	Read	
3151	Meter #1 Density Temperature	1 Inferred	Read	
3153	Meter #1 Density.b	6 Inferred	Read	
3155	Meter #1 SG	6 Inferred	Read	
3157	Meter #1 Y Factor	6 Inferred	Read	
3159	Meter #1 K/CD/LMF	6 Inferred	Read	
3161	Meter #1 FA	6 Inferred	Read	
3163	Meter #1 FPV/FRA	6 Inferred	Read	
3165	Meter #1 Meter Factor	6 Inferred	Read	
3167	Meter #1 Linear Factor	6 Inferred	Read	
3169-3171	Spare			
3173	Meter #1 Daily Gross Total	0 inferred	Read	
3175	Meter #1 Daily Net Total	0 inferred	Read	
3177	Meter #1 Daily Mass Total	0 Inferred	Read	
3179	Meter #1 Daily Energy Total	0 Inferred	Read	
3181	Meter #1 Cumulative Gross Total*	0 Inferred	Read	
3183	Meter #1 Cumulative Net Total*	0 Inferred	Read	
3185	Meter #1 Cumulative Mass Total*	0 Inferred	Read	
3187	Meter #1 Cumulative Energy Total*	0 Inferred	Read	
3189-3203	Spare			
3205	Meter #2 Gross Flowrate	2 Inferred	Read	
3207	Meter #2 Net Flowrate	2 Inferred	Read	
3209	Meter #2 Mass Flowrate	2 Inferred	Read	
3211	Meter #2 Energy Flowrate	2 Inferred	Read	
3213	Meter #2 DP Low	4 Inferred	Read	
3215	Meter #2 DP High	4 Inferred	Read	
3217	Meter #2 DP	4 Inferred	Read	
3219	Meter #2 Temperature	1 Inferred	Read	
3221	Meter #2 Pressure	1 Inferred	Read	

ADDRESS	DESCRIPTION	DECIMAL	READ/WRITE
3223 3225 3227 3229 3231 3233 3235 3237 3239 3241 3243-3245	Meter #2 Density Meter #2 Density Temperature Meter #2 Density.b Meter #2 SG Meter #2 Y Factor Meter #2 K/CD/LMF Meter #2 FA Meter #2 FPV/FRA Meter #2 Meter Factor Meter #2 Linear Factor Spare	6 Inferred 1 Inferred 6 Inferred 6 Inferred 6 Inferred 6 Inferred 6 Inferred 6 Inferred 6 Inferred 6 Inferred	Read Read Read Read Read Read Read Read
3247 3249 3251 3253 3255 3257 3259 3261 3263-3277	Meter #2 Daily Gross Total Meter #2 Daily Net Total Meter #2 Daily Mass Total Meter #2 Daily Energy Total Meter #2 Cumulative Gross Total* Meter #2 Cumulative Net Total* Meter #2 Cumulative Mass Total* Meter #2 Cumulative Energy Total* Spare	O Inferred	Read Read Read Read Read Read Read
3279 3281 3283 3285	Station Gross Flowrate Station Net Flowrate Station Mass Flowrate Station Energy Flowrate	2 Inferred 2 Inferred 2 Inferred 2 Inferred	Read Read Read Read
3287 3289 3291 3293 3295 3297 3299 3301	Station Daily Gross Total Station Daily Net Total Station Daily Mass Total Station Daily. Energy Total Station Cum. Gross Total Station Cum. Net Total Station Cum. Mass Total Station Cum. Energy Total	O Inferred	Read Read Read Read Read Read Read
3303-3317 3319 3321 3323 3325 3327-3333 3335 3337 3339 3341 3343-3349	Spare Meter #1 Hourly Gross Total Meter #1 Hourly Net Total Meter #1 Hourly Mass Total Meter #1 Hourly Energy Total Spare Meter #2 Hourly Gross Total Meter #2 Hourly Net Total Meter #2 Hourly Mass Total Meter #2 Hourly Energy Total Spare	O Inferred	Read Read Read Read Read Read Read
3351 3353	Meter #1 Monthly Gross Total Meter #1 Monthly Net Total	0 Inferred 0 Inferred	Read Read

ADDRESS	DESCRIPTION	DECIMAL R	EAD/WRITE
3353 3355 3357 3359-3365	Meter #1 Monthly Net Total Meter #1 Monthly Mass Total Meter #1 Monthly Energy Total Spare	0 Inferred 0 Inferred 0 Inferred	Read Read Read
3367 3369 3371 3373 3375-3381	Meter #2 Monthly Gross Total Meter #2 Monthly Net Total Meter #2 Monthly Mass Total Meter #2 Monthly Energy Total Spare	0 Inferred 0 Inferred 0 Inferred 0 Inferred	Read Read Read Read
3383 3385 3387 3389 3391 3393 3395-3429	Spare #1 Spare #2 Analog Output #1 Output % Analog Output #2 Output % Meter #1 Uncorrected Density Meter #2 Uncorrected Density Spare	4 Inferred 4 Inferred. 2 Inferred 2 Inferred 6 Inferred 6 Inferred	Read Read Read Read Read Read

ADDRESS DESCRIPTION

DECIMAL READ/WRITE

Last Daily or Monthly Data Area

Set Last Daily Report Request (3026) to 1=Latest,32=Oldtest Daily Data Area in Location 3431-3753

Set Last Monthly Report Request (3027) to 1=Latest,12=Oldtest Monthly Data Area in Location 3431-3753

3431	Batch Type/Disp/Bank/Station Flag	0 Inferred	Read
3433	Day/Month Start Date	0 Inferred	Read
3435	Day/Month Start Time	0 Inferred	Read
3437	Meter#1 ID	8 Chars.	Read
3439	Meter#2 ID	8 Chars.	Read
3441	Meter#1 Flowing Times Meter #1 Gross Total Meter #1 Net Total Meter #1 Mass Total Meter #1 Energy Total	1 Inferred	Read
3443		0 Inferred	Read
3445		0 Inferred	Read
3447		0 Inferred	Read
3449		0 Inferred	Read
3451	Meter #1 Average DP Meter #1 Average Temperature Meter #1 Average Pressure Meter #1 Average DP_EXT Meter #1 Average Heating Value Meter #1 Average SG	4 Inferred	Read
3453		1 Inferred	Read
3455		1 Inferred	Read
3457		4 Inferred	Read
3459		3 Inferred	Read
3461		6 Inferred	Read
3473 3475 3477 3479 3481 3483 3485 3487 3489 3481 3483 3485 3487 3489 3491 3493 3495	Meter #1 Average N2 Meter #1 Average CO2 Meter #1 Average Methane Meter #1 Average Ethane Meter #1 Average Propane Meter #1 Average Water Meter #1 Average H2S Meter #1 Average H2 Meter #1 Average CO Meter #1 Average Oxygen Meter #1 Average i-Butane Meter #1 Average i-Pentane Meter #1 Average i-Pentane Meter #1 Average n-Pentane Meter #1 Average n-Hexane Meter #1 Average n-Hexane Meter #1 Average n-Heptane Meter #1 Average n-Octane	4 Inferred	Read Read Read Read Read Read Read Read
3497 3499 3501 3503 3505-3567	Meter #1 Average n-Nonane Meter #1 Average n-Decane Meter #1 Average Helium Meter #1 Average Argon Spare	4 Inferred 4 Inferred 4 Inferred 4 Inferred	Read Read Read Read

ADDRESS	DESCRIPTION	DECIMAL F	READ/WRITE
3569-3571	Meter#2 ID	8 Chars	Read
3573	Meter#2 Flowing Times	0 Inferred	Read
3575	Meter#2 Gross Total	0 Inferred	Read
3577	Meter #2 Net Total	0 Inferred	Read
3579	Meter #2 Mass Total	0 Inferred	Read
3581	Meter #2 Energy Total	0 Inferred	Read
3583	Meter #2 Average DP	4 Inferred	Read
3585	Meter #2 Average Temperature	1 Inferred	Read
3587	Meter #2 Average Pressure	1 Inferred	Read
3589	Meter #2 Average DP_EXT	4 Inferred	Read
3591	Meter #2 Average Heating Value	3 Inferred	Read
3593	Meter #2 Average SG	6 Inferred	Read
3595	Meter #2 Average N2	4 Inferred	Read
3597	Meter #2 Average CO2	4 Inferred	Read
3599	Meter #2 Average Methane	4 Inferred	Read
3601	Meter #2 Average Ethane	4 Inferred	Read
3603	Meter #2 Average Propane	4 Inferred	Read
3605	Meter #2 Average Water	4 Inferred	Read
3607	Meter #2 Average H2S	4 Inferred	Read
3609	Meter #2 Average H2	4 Inferred	Read
3611	Meter #2 Average CO	4 Inferred	Read
3613	Meter #2 Average Oxygen	4 Inferred	Read
3615	Meter #2 Average i-Butane	4 Inferred	Read
3617	Meter #2 Average n-Butane	4 Inferred	Read
3619	Meter #2 Average i-Pentane	4 Inferred	Read
3621	Meter #2 Average n-Pentane	4 Inferred	Read
3623	Meter #2 Average n-Hexane	4 Inferred	Read
3625	Meter #2 Average n-Heptane	4 Inferred	Read
3627	Meter #2 Average n-Octane	4 Inferred	Read
3629	Meter #2 Average n-Nonane	4 Inferred	Read
3631	Meter #2 Average n-Decane	4 Inferred	Read
3633	Meter #2 Average Helium	4 Inferred	Read
3635	Meter #2 Average Argon	4 Inferred	Read
3637-3699	Spare		
3701	Station Gross	0 Inferred	Read
3703	Station Net	0 Inferred	Read
3705	Station Mass	0 Inferred	Read
3707	Station Energy	0 Inferred	Read
3709-3715	Spare		

LAST DAILY OR MONTHLY DATA AREA ENDS

ADDRESS	DESCRIPTION	DECIMAL	READ/WRITE
3549-3553	Spare		<u> </u>
3705-3765	Spare		
3767-3785	Reserved		
3787	Request Start Date	0 Inferred	Read/Write
3789-4149	Reserved	0000	11000,11110
4151	Meter #1 Densitometer Period	3 Inferred	Read
4153	Meter #2 Densitometer Period	3 Inferred	Read
4155-4199	Spare Spare		D 100/1/
4201	Date (MMDDYY)	0 Inferred	Read/Write
4203 4205-4243	Time (HHMMSS) Spare	0 Inferred	Read/Write
	·		
NX19 Metho	<u>od</u>		
4245	Meter#1 Mol Percentage of Methane	4 Inferred	Read/Write
4247	Meter#1 Mol Percentage of Ethane	4 Inferred	Read/Write
4249	Meter#1 Mol Percentage of Propane	4 Inerred	Read/Write
4251	Meter#1 Mol Percentage of Iso-Butane	4 Inferred	Read/Write
4253	Meter#1 Mol Percentage of N-Butane	4 Inferred	Read/Write
4255	Meter#1 Mol Percentage of Iso-Pentane	4 Inferred	Read/Write
4257 4259	Meter#1 Mol Percentage of N-Pentane	4 Inferred 4 Inferred	Read/Write Read/Write
4261	Meter#1 Mol Percentage of N-Hexane Meter#1 Mol Percentage of Heptane	4 Inferred	Read/Write
4263	Meter#1 Mol Percentage of N-Octane	4 Inferred	Read/Write
4265	Meter#1 Mol Percentage of CO2	4 Inferred	Read/Write
4267	Meter#1 Mol Percentage of N2	4 Inferred	Read/Write
4269-4285	Spare		
4287	Meter#2 Mol Percentage of Methane	4 Inferred	Read/Write
4289	Meter#2 Mol Percentage of Ethane	4 Inferred	Read/Write
4291	Meter#2 Mol Percentage of Propane	4 Inerred	Read/Write
4293	Meter#2 Mol Percentage of Iso-Butane	4 Inferred	Read/Write
4295	Meter#2 Mol Percentage of N-Butane	4 Inferred	Read/Write
4297 4299	Meter#2 Mol Percentage of Iso-Pentane Meter#2 Mol Percentage of N-Pentane	4 Inferred 4 Inferred	Read/Write Read/Write
4301	Meter#2 Mol Percentage of N-Hexane	4 Inferred	Read/Write
4303	Meter#2 Mol Percentage of Heptane	4 Inferred	Read/Write
4305	Meter#2 Mol Percentage of N-Octane	4 Inferred	Read/Write
4307	Meter#2 Mol Percentage of CO2	4 Inferred	Read/Write
4309	Meter#2 Mol Percentage of N2	4 Inferred	Read/Write
4311-4327	Spare		

ADDRESS	DESCRIPTION	DECIMAL	READ/WRITE
AGA 8 GRO	DSS METHOD 1		
4245	Meter#1 Mol % of Carbon Dioxide	4 Inferred	Read/Write
4247	Meter#1 Mol % of Hydrogen	4 Inferred	Read/Write
4249	Meter#1 Mol % of Carbon Monoxide	4 Inferred	Read/Write
4251-4285	Spare		
4287	Meter#2 Mol % of Carbon Dioxide	4 Inferred	Read/Write
4289	Meter#2 Mol % of Hydrogen	4 Inferred	Read/Write
4291	Meter#2 Mol % of Carbon Monoxide	4 Inferred	Read/Write
4293-4327	Spare		
AGA 8 GRO	OSS METHOD 2		
4245	Meter#1 Mol % of Nitrogen	4 Inferred	Read/Write
4247	Meter#1 Mol % of Carbon Dioxide	4 Inferred	Read/Write
4249	Meter#1 Mol % of Hydrogen	4 Inferred	Read/Write
4251	Meter#1 Mol % of Carbon Monoxide	4 Inferred	Read/Write
4253-4285	Spare		
4287	Meter#2 Mol % of Nitrogen	4 Inferred	Read/Write
4289	Meter#2 Mol % of Carbon Dioxide	4 Inferred	Read/Write
4291	Meter#2 Mol % of Hydrogen	4 Inferred	Read/Write
4293	Meter#2 Mol % of Carbon Monoxide	4 Inferred	Read/Write
4295-4327	Spare		

ADDRESS DESCRIPTION DECIMAL READ/WRITE

4245 Meter#1 Mol % of Methane	AGA 8 Detail Method				
4247 Meter#1 Mol % of Nitrogen 4 Inferred Read/Write 4249 Meter#1 Mol % of Ethane 4 Inferred Read/Write 4251 Meter#1 Mol % of Ethane 4 Inferred Read/Write 4253 Meter#1 Mol % of Propane 4 Inferred Read/Write 4255 Meter#1 Mol % of Propane 4 Inferred Read/Write 4257 Meter#1 Mol % of Hydrogen Sulfide 4 Inferred Read/Write 4259 Meter#1 Mol % of Hydrogen 4 Inferred Read/Write 4261 Meter#1 Mol % of Carbon Monoxide 4 Inferred Read/Write 4263 Meter#1 Mol % of i-Butane 4 Inferred Read/Write 4265 Meter#1 Mol % of i-Butane 4 Inferred Read/Write 4267 Meter#1 Mol % of i-Pentane 4 Inferred Read/Write 4273 Meter#1 Mol % of i-Hexane 4 Inferred Read/Write 4273 Meter#1 Mol % of i-Hoxane 4 Inferred Read/Write 4275 Meter#1 Mol % of i-Nonane 4 Inferred Read/Write 4276 Meter#1 Mol % of i-Nonane	4245	Meter#1 Mol % of Methane	4 Inferred	Read/Write	
4249 Meter#1 Mol % of Carbon Dioxide 4 Inferred Read/Write 4251 Meter#1 Mol % of Ethane 4 Inferred Read/Write 4253 Meter#1 Mol % of Propane 4 Inferred Read/Write 4225 Meter#1 Mol % of Propane 4 Inferred Read/Write 4257 Meter#1 Mol % of Hydrogen 4 Inferred Read/Write 4259 Meter#1 Mol % of Hydrogen 4 Inferred Read/Write 4261 Meter#1 Mol % of Carbon Monoxide 4 Inferred Read/Write 4263 Meter#1 Mol % of Oxygen 4 Inferred Read/Write 4265 Meter#1 Mol % of i-Butane 4 Inferred Read/Write 4267 Meter#1 Mol % of i-Pentane 4 Inferred Read/Write 4271 Meter#1 Mol % of i-Hexane 4 Inferred Read/Write 4271 Meter#1 Mol % of i-Hexane 4 Inferred Read/Write 4275 Meter#1 Mol % of i-Decane 4 Inferred Read/Write 4277 Meter#1 Mol % of i-Decane 4 Inferred Read/Write 4281 Meter#2 Mol % of Methane					
4251 Meter#1 Mol % of Ethane 4 Inferred Read/Write 4253 Meter#1 Mol % of Propane 4 Inferred Read/Write 4225 Meter#1 Mol % of Water 4 Inferred Read/Write 4257 Meter#1 Mol % of Hydrogen 4 Inferred Read/Write 4259 Meter#1 Mol % of Carbon Monoxide 4 Inferred Read/Write 4261 Meter#1 Mol % of Carbon Monoxide 4 Inferred Read/Write 4263 Meter#1 Mol % of Carbon Monoxide 4 Inferred Read/Write 4265 Meter#1 Mol % of i-Butane 4 Inferred Read/Write 4267 Meter#1 Mol % of i-Pentane 4 Inferred Read/Write 4274 Meter#1 Mol % of i-Pentane 4 Inferred Read/Write 4273 Meter#1 Mol % of i-Hebtane 4 Inferred Read/Write 4275 Meter#1 Mol % of i-Decane 4 Inferred Read/Write 4275 Meter#1 Mol % of i-Decane 4 Inferred Read/Write 4281 Meter#1 Mol % of Methane 4 Inferred Read/Write 4283 Meter#2 Mol % of Sethane					
4253 Meter#1 Mol % of Propane 4 Inferred Read/Write 4255 Meter#1 Mol % of Water 4 Inferred Read/Write 4257 Meter#1 Mol % of Hydrogen 4 Inferred Read/Write 4259 Meter#1 Mol % of Hydrogen 4 Inferred Read/Write 4261 Meter#1 Mol % of Carbon Monoxide 4 Inferred Read/Write 4263 Meter#1 Mol % of Oxygen 4 Inferred Read/Write 4265 Meter#1 Mol % of i-Butane 4 Inferred Read/Write 4267 Meter#1 Mol % of i-Pentane 4 Inferred Read/Write 4273 Meter#1 Mol % of i-Pentane 4 Inferred Read/Write 4271 Meter#1 Mol % of i-Hexane 4 Inferred Read/Write 4275 Meter#1 Mol % of i-Octane 4 Inferred Read/Write 4277 Meter#1 Mol % of i-Nonane 4 Inferred Read/Write 4281 Meter#1 Mol % of Foctane 4 Inferred Read/Write 4283 Meter#1 Mol % of Foctane 4 Inferred Read/Write 4284 Meter#2 Mol % of States <td< td=""><td></td><td></td><td></td><td></td></td<>					
4225 Meter#1 Mol % of Water 4 Inferred Read/Write 4257 Meter#1 Mol % of Hydrogen 4 Inferred Read/Write 4259 Meter#1 Mol % of Hydrogen 4 Inferred Read/Write 4261 Meter#1 Mol % of Carbon Monoxide 4 Inferred Read/Write 4263 Meter#1 Mol % of Oxygen 4 Inferred Read/Write 4265 Meter#1 Mol % of i-Butane 4 Inferred Read/Write 4267 Meter#1 Mol % of i-Pentane 4 Inferred Read/Write 4270 Meter#1 Mol % of i-Pentane 4 Inferred Read/Write 4271 Meter#1 Mol % of i-Hexane 4 Inferred Read/Write 4273 Meter#1 Mol % of i-Hexane 4 Inferred Read/Write 4275 Meter#1 Mol % of i-Octane 4 Inferred Read/Write 4277 Meter#1 Mol % of i-Docane 4 Inferred Read/Write 4281 Meter#1 Mol % of Helium 4 Inferred Read/Write 4283 Meter#1 Mol % of Methane 4 Inferred Read/Write 4287 Meter#2 Mol % of Salon					
4257Meter#1 Mol % of Hydrogen Sulfide4 InferredRead/Write4259Meter#1 Mol % of Carbon Monoxide4 InferredRead/Write4261Meter#1 Mol % of Carbon Monoxide4 InferredRead/Write4263Meter#1 Mol % of Oxygen4 InferredRead/Write4265Meter#1 Mol % of i-Butane4 InferredRead/Write4267Meter#1 Mol % of i-Pentane4 InferredRead/Write4269Meter#1 Mol % of i-Pentane4 InferredRead/Write4271Meter#1 Mol % of n-Pentane4 InferredRead/Write4273Meter#1 Mol % of i-Hexane4 InferredRead/Write4275Meter#1 Mol % of i-Octane4 InferredRead/Write4277Meter#1 Mol % of i-Octane4 InferredRead/Write4281Meter#1 Mol % of i-Decane4 InferredRead/Write4283Meter#1 Mol % of Argon4 InferredRead/Write4285Meter#1 Mol % of Argon4 InferredRead/Write4287Meter#2 Mol % of Methane4 InferredRead/Write4289Meter#2 Mol % of Carbon Dioxide4 InferredRead/Write4291Meter#2 Mol % of Ethane4 InferredRead/Write4293Meter#2 Mol % of Forpane4 InferredRead/Write4294Meter#2 Mol % of Hydrogen Sulfide4 InferredRead/Write4297Meter#2 Mol % of Hydrogen4 InferredRead/Write4303Meter#2 Mol % of i-Butane4 InferredRead/Write4301Meter#2 Mol % of		• • • • • • • • • • • • • • • • • • •			
4259Meter#1 Mol % of Hydrogen4 InferredRead/Write4261Meter#1 Mol % of Carbon Monoxide4 InferredRead/Write4263Meter#1 Mol % of Oxygen4 InferredRead/Write4265Meter#1 Mol % of i-Butane4 InferredRead/Write4267Meter#1 Mol % of n-Butane4 InferredRead/Write4269Meter#1 Mol % of i-Pentane4 InferredRead/Write4271Meter#1 Mol % of i-Pentane4 InferredRead/Write4273Meter#1 Mol % of i-Hexane4 InferredRead/Write4275Meter#1 Mol % of i-Octane4 InferredRead/Write4277Meter#1 Mol % of i-Docane4 InferredRead/Write4281Meter#1 Mol % of i-Decane4 InferredRead/Write4283Meter#1 Mol % of i-Decane4 InferredRead/Write4285Meter#1 Mol % of Argon4 InferredRead/Write4287Meter#2 Mol % of Methane4 InferredRead/Write4289Meter#2 Mol % of Of Propane4 InferredRead/Write4293Meter#2 Mol % of Fropane4 InferredRead/Write4295Meter#2 Mol % of Propane4 InferredRead/Write4299Meter#2 Mol % of Hydrogen4 InferredRead/Write4301Meter#2 Mol % of Garbon Monoxide4 InferredRead/Write4303Meter#2 Mol % of Garbon Monoxide4 InferredRead/Write4301Meter#2 Mol % of Frentane4 InferredRead/Write4309Meter#2 Mol % of i-Butane<					
4261 Meter#1 Mol % of Carbon Monoxide 4 Inferred Read/Write 4263 Meter#1 Mol % of Oxygen 4 Inferred Read/Write 4265 Meter#1 Mol % of i-Butane 4 Inferred Read/Write 4267 Meter#1 Mol % of i-Butane 4 Inferred Read/Write 4269 Meter#1 Mol % of i-Pentane 4 Inferred Read/Write 4271 Meter#1 Mol % of i-Hexane 4 Inferred Read/Write 4273 Meter#1 Mol % of i-Hexane 4 Inferred Read/Write 4275 Meter#1 Mol % of i-Octane 4 Inferred Read/Write 4277 Meter#1 Mol % of i-Docane 4 Inferred Read/Write 4281 Meter#1 Mol % of -Decane 4 Inferred Read/Write 4283 Meter#1 Mol % of Argon 4 Inferred Read/Write 4285 Meter#2 Mol % of Methane 4 Inferred Read/Write 4287 Meter#2 Mol % of Oxform 4 Inferred Read/Write 4288 Meter#2 Mol % of Carbon Dioxide 4 Inferred Read/Write 4299 Meter#2 Mol % of Propane 4 Inferred Read/Write 4291 Meter#2 Mol		, ,			
4265Meter#1 Mol % of i-Butane4 InferredRead/Write4267Meter#1 Mol % of n-Butane4 InferredRead/Write4269Meter#1 Mol % of i-Pentane4 InferredRead/Write4271Meter#1 Mol % of n-Pentane4 InferredRead/Write4273Meter#1 Mol % of i-Hexane4 InferredRead/Write4275Meter#1 Mol % of n-Heptane4 InferredRead/Write4277Meter#1 Mol % of i-Octane4 InferredRead/Write4281Meter#1 Mol % of i-Decane4 InferredRead/Write4283Meter#1 Mol % of Helium4 InferredRead/Write4285Meter#1 Mol % of Argon4 InferredRead/Write4287Meter#2 Mol % of Methane4 InferredRead/Write4289Meter#2 Mol % of Sitrogen4 InferredRead/Write4291Meter#2 Mol % of Ethane4 InferredRead/Write4293Meter#2 Mol % of Ethane4 InferredRead/Write4295Meter#2 Mol % of Hydrogen4 InferredRead/Write4299Meter#2 Mol % of Hydrogen4 InferredRead/Write4301Meter#2 Mol % of Hydrogen4 InferredRead/Write4303Meter#2 Mol % of Carbon Monoxide4 InferredRead/Write4307Meter#2 Mol % of i-Butane4 InferredRead/Write4309Meter#2 Mol % of i-Pentane4 InferredRead/Write4311Meter#2 Mol % of i-Pentane4 InferredRead/Write4315Meter#2 Mol % of i-Pentane4 Infe			4 Inferred		
4265Meter#1 Mol % of i-Butane4 InferredRead/Write4267Meter#1 Mol % of n-Butane4 InferredRead/Write4269Meter#1 Mol % of i-Pentane4 InferredRead/Write4271Meter#1 Mol % of n-Pentane4 InferredRead/Write4273Meter#1 Mol % of i-Hexane4 InferredRead/Write4275Meter#1 Mol % of n-Heptane4 InferredRead/Write4277Meter#1 Mol % of i-Octane4 InferredRead/Write4281Meter#1 Mol % of i-Decane4 InferredRead/Write4283Meter#1 Mol % of Helium4 InferredRead/Write4285Meter#1 Mol % of Argon4 InferredRead/Write4287Meter#2 Mol % of Methane4 InferredRead/Write4289Meter#2 Mol % of Sitrogen4 InferredRead/Write4291Meter#2 Mol % of Ethane4 InferredRead/Write4293Meter#2 Mol % of Ethane4 InferredRead/Write4295Meter#2 Mol % of Hydrogen4 InferredRead/Write4299Meter#2 Mol % of Hydrogen4 InferredRead/Write4301Meter#2 Mol % of Hydrogen4 InferredRead/Write4303Meter#2 Mol % of Carbon Monoxide4 InferredRead/Write4307Meter#2 Mol % of i-Butane4 InferredRead/Write4309Meter#2 Mol % of i-Pentane4 InferredRead/Write4311Meter#2 Mol % of i-Pentane4 InferredRead/Write4315Meter#2 Mol % of i-Pentane4 Infe	4263	Meter#1 Mol % of Oxygen	4 Inferred	Read/Write	
4269Meter#1 Mol % of i-Pentane4 InferredRead/Write4271Meter#1 Mol % of n-Pentane4 InferredRead/Write4273Meter#1 Mol % of i-Hexane4 InferredRead/Write4275Meter#1 Mol % of i-Heptane4 InferredRead/Write4277Meter#1 Mol % of i-Octane4 InferredRead/Write4279Meter#1 Mol % of i-Decane4 InferredRead/Write4281Meter#1 Mol % of Helium4 InferredRead/Write4283Meter#1 Mol % of Argon4 InferredRead/Write4285Meter#1 Mol % of Argon4 InferredRead/Write4287Meter#2 Mol % of Methane4 InferredRead/Write4289Meter#2 Mol % of Carbon Dioxide4 InferredRead/Write4291Meter#2 Mol % of Ethane4 InferredRead/Write4293Meter#2 Mol % of Propane4 InferredRead/Write4295Meter#2 Mol % of Water4 InferredRead/Write4299Meter#2 Mol % of Hydrogen4 InferredRead/Write4301Meter#2 Mol % of Hydrogen4 InferredRead/Write4303Meter#2 Mol % of Carbon Monoxide4 InferredRead/Write4305Meter#2 Mol % of Oxygen4 InferredRead/Write4307Meter#2 Mol % of i-Butane4 InferredRead/Write4311Meter#2 Mol % of i-Pentane4 InferredRead/Write4313Meter#2 Mol % of i-Pentane4 InferredRead/Write4311Meter#2 Mol % of i-Hexane4 Inferr		• •	4 Inferred	Read/Write	
4271Meter#1 Mol % of n-Pentane4 InferredRead/Write4273Meter#1 Mol % of i-Hexane4 InferredRead/Write4275Meter#1 Mol % of n-Heptane4 InferredRead/Write4277Meter#1 Mol % of i-Octane4 InferredRead/Write4279Meter#1 Mol % of i-Decane4 InferredRead/Write4281Meter#1 Mol % of i-Decane4 InferredRead/Write4283Meter#1 Mol % of Helium4 InferredRead/Write4285Meter#1 Mol % of Argon4 InferredRead/Write4287Meter#2 Mol % of Methane4 InferredRead/Write4289Meter#2 Mol % of Sitrogen4 InferredRead/Write4291Meter#2 Mol % of Carbon Dioxide4 InferredRead/Write4293Meter#2 Mol % of Fropane4 InferredRead/Write4295Meter#2 Mol % of Propane4 InferredRead/Write4297Meter#2 Mol % of Hydrogen4 InferredRead/Write4301Meter#2 Mol % of Hydrogen4 InferredRead/Write4303Meter#2 Mol % of Hydrogen4 InferredRead/Write4304Meter#2 Mol % of i-Butane4 InferredRead/Write4305Meter#2 Mol % of i-Butane4 InferredRead/Write4307Meter#2 Mol % of i-Butane4 InferredRead/Write4311Meter#2 Mol % of i-Pentane4 InferredRead/Write4313Meter#2 Mol % of i-Pentane4 InferredRead/Write4314Meter#2 Mol % of i-Hexane4 Infer	4267	Meter#1 Mol % of n-Butane	4 Inferred	Read/Write	
4273Meter#1 Mol % of i-Hexane4 InferredRead/Write4275Meter#1 Mol % of n-Heptane4 InferredRead/Write4277Meter#1 Mol % of i-Octane4 InferredRead/Write4279Meter#1 Mol % of i-Nonane4 InferredRead/Write4281Meter#1 Mol % of i-Decane4 InferredRead/Write4283Meter#1 Mol % of Helium4 InferredRead/Write4285Meter#1 Mol % of Argon4 InferredRead/Write4289Meter#2 Mol % of Nitrogen4 InferredRead/Write4291Meter#2 Mol % of Carbon Dioxide4 InferredRead/Write4293Meter#2 Mol % of Ethane4 InferredRead/Write4295Meter#2 Mol % of Propane4 InferredRead/Write4297Meter#2 Mol % of Water4 InferredRead/Write4301Meter#2 Mol % of Hydrogen Sulfide4 InferredRead/Write4303Meter#2 Mol % of Carbon Monoxide4 InferredRead/Write4303Meter#2 Mol % of Oxygen4 InferredRead/Write4305Meter#2 Mol % of Oxygen4 InferredRead/Write4309Meter#2 Mol % of i-Butane4 InferredRead/Write4311Meter#2 Mol % of i-Pentane4 InferredRead/Write4313Meter#2 Mol % of i-Pentane4 InferredRead/Write4315Meter#2 Mol % of i-Hexane4 InferredRead/Write4316Meter#2 Mol % of i-Octane4 InferredRead/Write4321Meter#2 Mol % of i-Octane	4269	Meter#1 Mol % of i-Pentane	4 Inferred	Read/Write	
4275Meter#1 Mol % of n-Heptane4 InferredRead/Write4277Meter#1 Mol % of i-Octane4 InferredRead/Write4279Meter#1 Mol % of i-Nonane4 InferredRead/Write4281Meter#1 Mol % of i-Decane4 InferredRead/Write4283Meter#1 Mol % of Helium4 InferredRead/Write4285Meter#1 Mol % of Argon4 InferredRead/Write4287Meter#2 Mol % of Methane4 InferredRead/Write4289Meter#2 Mol % of Ocarbon Dioxide4 InferredRead/Write4291Meter#2 Mol % of Ethane4 InferredRead/Write4293Meter#2 Mol % of Propane4 InferredRead/Write4295Meter#2 Mol % of Propane4 InferredRead/Write4297Meter#2 Mol % of Hydrogen Sulfide4 InferredRead/Write4301Meter#2 Mol % of Hydrogen4 InferredRead/Write4303Meter#2 Mol % of Oxygen4 InferredRead/Write4305Meter#2 Mol % of Oxygen4 InferredRead/Write4307Meter#2 Mol % of i-Butane4 InferredRead/Write4311Meter#2 Mol % of i-Butane4 InferredRead/Write4313Meter#2 Mol % of i-Pentane4 InferredRead/Write4314Meter#2 Mol % of i-Pentane4 InferredRead/Write4315Meter#2 Mol % of i-Hexane4 InferredRead/Write4316Meter#2 Mol % of i-Octane4 InferredRead/Write4321Meter#2 Mol % of i-Nonane4 Inf	4271	Meter#1 Mol % of n-Pentane	4 Inferred	Read/Write	
4277Meter#1 Mol % of i-Octane4 InferredRead/Write4279Meter#1 Mol % of i-Nonane4 InferredRead/Write4281Meter#1 Mol % of i-Decane4 InferredRead/Write4283Meter#1 Mol % of Helium4 InferredRead/Write4285Meter#1 Mol % of Argon4 InferredRead/Write4287Meter#2 Mol % of Methane4 InferredRead/Write4289Meter#2 Mol % of Ocarbon Dioxide4 InferredRead/Write4291Meter#2 Mol % of Carbon Dioxide4 InferredRead/Write4293Meter#2 Mol % of Ethane4 InferredRead/Write4295Meter#2 Mol % of Propane4 InferredRead/Write4297Meter#2 Mol % of Water4 InferredRead/Write4301Meter#2 Mol % of Hydrogen4 InferredRead/Write4301Meter#2 Mol % of Hydrogen4 InferredRead/Write4303Meter#2 Mol % of Carbon Monoxide4 InferredRead/Write4305Meter#2 Mol % of Oxygen4 InferredRead/Write4307Meter#2 Mol % of i-Butane4 InferredRead/Write4311Meter#2 Mol % of i-Pentane4 InferredRead/Write4313Meter#2 Mol % of i-Pentane4 InferredRead/Write4315Meter#2 Mol % of i-Hexane4 InferredRead/Write4316Meter#2 Mol % of i-Hexane4 InferredRead/Write4319Meter#2 Mol % of i-Nonane4 InferredRead/Write4321Meter#2 Mol % of i-Docane4	4273	Meter#1 Mol % of i-Hexane	4 Inferred	Read/Write	
4279Meter#1 Mol % of i-Nonane4 InferredRead/Write4281Meter#1 Mol % of i-Decane4 InferredRead/Write4283Meter#1 Mol % of Helium4 InferredRead/Write4285Meter#1 Mol % of Argon4 InferredRead/Write4287Meter#2 Mol % of Argon4 InferredRead/Write4289Meter#2 Mol % of Nitrogen4 InferredRead/Write4291Meter#2 Mol % of Carbon Dioxide4 InferredRead/Write4293Meter#2 Mol % of Ethane4 InferredRead/Write4295Meter#2 Mol % of Propane4 InferredRead/Write4297Meter#2 Mol % of Water4 InferredRead/Write4299Meter#2 Mol % of Hydrogen4 InferredRead/Write4301Meter#2 Mol % of Hydrogen4 InferredRead/Write4303Meter#2 Mol % of Carbon Monoxide4 InferredRead/Write4305Meter#2 Mol % of Oxygen4 InferredRead/Write4307Meter#2 Mol % of i-Butane4 InferredRead/Write4309Meter#2 Mol % of i-Pentane4 InferredRead/Write4311Meter#2 Mol % of i-Pentane4 InferredRead/Write4313Meter#2 Mol % of i-Hexane4 InferredRead/Write4315Meter#2 Mol % of i-Octane4 InferredRead/Write4319Meter#2 Mol % of i-Nonane4 InferredRead/Write4321Meter#2 Mol % of i-Decane4 InferredRead/Write4325Meter#2 Mol % of Helium4 Inferred </td <td>4275</td> <td>Meter#1 Mol % of n-Heptane</td> <td>4 Inferred</td> <td>Read/Write</td>	4275	Meter#1 Mol % of n-Heptane	4 Inferred	Read/Write	
4281Meter#1 Mol % of i-Decane4 InferredRead/Write4283Meter#1 Mol % of Helium4 InferredRead/Write4285Meter#1 Mol % of Argon4 InferredRead/Write4287Meter#2 Mol % of Argon4 InferredRead/Write4289Meter#2 Mol % of Nitrogen4 InferredRead/Write4291Meter#2 Mol % of Carbon Dioxide4 InferredRead/Write4293Meter#2 Mol % of Ethane4 InferredRead/Write4295Meter#2 Mol % of Propane4 InferredRead/Write4297Meter#2 Mol % of Water4 InferredRead/Write4299Meter#2 Mol % of Hydrogen Sulfide4 InferredRead/Write4301Meter#2 Mol % of Hydrogen4 InferredRead/Write4303Meter#2 Mol % of Carbon Monoxide4 InferredRead/Write4305Meter#2 Mol % of Oxygen4 InferredRead/Write4307Meter#2 Mol % of i-Butane4 InferredRead/Write4309Meter#2 Mol % of i-Pentane4 InferredRead/Write4311Meter#2 Mol % of i-Pentane4 InferredRead/Write4313Meter#2 Mol % of i-Hexane4 InferredRead/Write4315Meter#2 Mol % of i-Heptane4 InferredRead/Write4317Meter#2 Mol % of i-Octane4 InferredRead/Write4323Meter#2 Mol % of i-Decane4 InferredRead/Write4325Meter#2 Mol % of Helium4 InferredRead/Write	4277	Meter#1 Mol % of i-Octane	4 Inferred	Read/Write	
4283Meter#1 Mol % of Helium4 InferredRead/Write4285Meter#1 Mol % of Argon4 InferredRead/Write4287Meter#2 Mol % of Methane4 InferredRead/Write4289Meter#2 Mol % of Nitrogen4 InferredRead/Write4291Meter#2 Mol % of Carbon Dioxide4 InferredRead/Write4293Meter#2 Mol % of Ethane4 InferredRead/Write4295Meter#2 Mol % of Propane4 InferredRead/Write4297Meter#2 Mol % of Hydrogen Sulfide4 InferredRead/Write4301Meter#2 Mol % of Hydrogen4 InferredRead/Write4303Meter#2 Mol % of Carbon Monoxide4 InferredRead/Write4305Meter#2 Mol % of Oxygen4 InferredRead/Write4307Meter#2 Mol % of i-Butane4 InferredRead/Write4309Meter#2 Mol % of i-Butane4 InferredRead/Write4311Meter#2 Mol % of i-Pentane4 InferredRead/Write4313Meter#2 Mol % of i-Pentane4 InferredRead/Write4315Meter#2 Mol % of i-Hexane4 InferredRead/Write4317Meter#2 Mol % of i-Hexane4 InferredRead/Write4319Meter#2 Mol % of i-Octane4 InferredRead/Write4321Meter#2 Mol % of i-Nonane4 InferredRead/Write4323Meter#2 Mol % of i-Decane4 InferredRead/Write4325Meter#2 Mol % of Helium4 InferredRead/Write	4279	Meter#1 Mol % of i-Nonane	4 Inferred	Read/Write	
4287 Meter#2 Mol % of Argon 4 Inferred Read/Write 4289 Meter#2 Mol % of Nitrogen 4 Inferred Read/Write 4291 Meter#2 Mol % of Carbon Dioxide 4 Inferred Read/Write 4293 Meter#2 Mol % of Ethane 4 Inferred Read/Write 4295 Meter#2 Mol % of Propane 4 Inferred Read/Write 4297 Meter#2 Mol % of Water 4 Inferred Read/Write 4299 Meter#2 Mol % of Hydrogen 4 Inferred Read/Write 4301 Meter#2 Mol % of Hydrogen 4 Inferred Read/Write 4303 Meter#2 Mol % of Carbon Monoxide 4 Inferred Read/Write 4305 Meter#2 Mol % of Oxygen 4 Inferred Read/Write 4307 Meter#2 Mol % of Oxygen 4 Inferred Read/Write 4309 Meter#2 Mol % of i-Butane 4 Inferred Read/Write 4309 Meter#2 Mol % of i-Butane 4 Inferred Read/Write 4311 Meter#2 Mol % of i-Pentane 4 Inferred Read/Write 4313 Meter#2 Mol % of i-Pentane 4 Inferred Read/Write 4315 Meter#2 Mol % of i-Hexane 4 Inferred Read/Write 4316 Meter#2 Mol % of i-Hexane 4 Inferred Read/Write 4317 Meter#2 Mol % of i-Hexane 4 Inferred Read/Write 4319 Meter#2 Mol % of i-Octane 4 Inferred Read/Write 4321 Meter#2 Mol % of i-Docane 4 Inferred Read/Write 4323 Meter#2 Mol % of i-Decane 4 Inferred Read/Write 4323 Meter#2 Mol % of i-Decane 4 Inferred Read/Write 4325 Meter#2 Mol % of Helium 4 Inferred Read/Write	4281	Meter#1 Mol % of i-Decane	4 Inferred	Read/Write	
4287 Meter#2 Mol % of Methane 4 Inferred Read/Write 4289 Meter#2 Mol % of Nitrogen 4 Inferred Read/Write 4291 Meter#2 Mol % of Carbon Dioxide 4 Inferred Read/Write 4293 Meter#2 Mol % of Ethane 4 Inferred Read/Write 4295 Meter#2 Mol % of Propane 4 Inferred Read/Write 4297 Meter#2 Mol % of Water 4 Inferred Read/Write 4299 Meter#2 Mol % of Hydrogen Sulfide 4 Inferred Read/Write 4301 Meter#2 Mol % of Hydrogen 4 Inferred Read/Write 4303 Meter#2 Mol % of Carbon Monoxide 4 Inferred Read/Write 4305 Meter#2 Mol % of Oxygen 4 Inferred Read/Write 4307 Meter#2 Mol % of i-Butane 4 Inferred Read/Write 4309 Meter#2 Mol % of n-Butane 4 Inferred Read/Write 4311 Meter#2 Mol % of i-Pentane 4 Inferred Read/Write 4313 Meter#2 Mol % of i-Pentane 4 Inferred Read/Write 4315 Meter#2 Mol % of i-Hexane 4 Inferred Read/Write 4316 Meter#2 Mol % of n-Heptane 4 Inferred Read/Write 4317 Meter#2 Mol % of n-Heptane 4 Inferred Read/Write 4319 Meter#2 Mol % of i-Octane 4 Inferred Read/Write 4321 Meter#2 Mol % of i-Octane 4 Inferred Read/Write 4323 Meter#2 Mol % of i-Decane 4 Inferred Read/Write 4324 Meter#2 Mol % of i-Decane 4 Inferred Read/Write 4325 Meter#2 Mol % of Helium 4 Inferred Read/Write	4283	Meter#1 Mol % of Helium	4 Inferred	Read/Write	
4289Meter#2 Mol % of Nitrogen4 InferredRead/Write4291Meter#2 Mol % of Carbon Dioxide4 InferredRead/Write4293Meter#2 Mol % of Ethane4 InferredRead/Write4295Meter#2 Mol % of Propane4 InferredRead/Write4297Meter#2 Mol % of Water4 InferredRead/Write4299Meter#2 Mol % of Hydrogen Sulfide4 InferredRead/Write4301Meter#2 Mol % of Carbon Monoxide4 InferredRead/Write4303Meter#2 Mol % of Oxygen4 InferredRead/Write4305Meter#2 Mol % of i-Butane4 InferredRead/Write4307Meter#2 Mol % of i-Butane4 InferredRead/Write4309Meter#2 Mol % of i-Pentane4 InferredRead/Write4311Meter#2 Mol % of i-Pentane4 InferredRead/Write4313Meter#2 Mol % of i-Hexane4 InferredRead/Write4315Meter#2 Mol % of i-Hexane4 InferredRead/Write4317Meter#2 Mol % of i-Octane4 InferredRead/Write4319Meter#2 Mol % of i-Nonane4 InferredRead/Write4321Meter#2 Mol % of i-Decane4 InferredRead/Write4323Meter#2 Mol % of Helium4 InferredRead/Write	4285	Meter#1 Mol % of Argon	4 Inferred	Read/Write	
4289Meter#2 Mol % of Nitrogen4 InferredRead/Write4291Meter#2 Mol % of Carbon Dioxide4 InferredRead/Write4293Meter#2 Mol % of Ethane4 InferredRead/Write4295Meter#2 Mol % of Propane4 InferredRead/Write4297Meter#2 Mol % of Water4 InferredRead/Write4299Meter#2 Mol % of Hydrogen Sulfide4 InferredRead/Write4301Meter#2 Mol % of Carbon Monoxide4 InferredRead/Write4303Meter#2 Mol % of Oxygen4 InferredRead/Write4305Meter#2 Mol % of i-Butane4 InferredRead/Write4307Meter#2 Mol % of i-Butane4 InferredRead/Write4309Meter#2 Mol % of i-Pentane4 InferredRead/Write4311Meter#2 Mol % of i-Pentane4 InferredRead/Write4313Meter#2 Mol % of i-Hexane4 InferredRead/Write4315Meter#2 Mol % of i-Hexane4 InferredRead/Write4317Meter#2 Mol % of i-Octane4 InferredRead/Write4319Meter#2 Mol % of i-Nonane4 InferredRead/Write4321Meter#2 Mol % of i-Decane4 InferredRead/Write4323Meter#2 Mol % of Helium4 InferredRead/Write	4207	Motor#2 Mol 9/ of Mothons	1 Informad	DoodAMrito	
4291Meter#2 Mol % of Carbon Dioxide4 InferredRead/Write4293Meter#2 Mol % of Ethane4 InferredRead/Write4295Meter#2 Mol % of Propane4 InferredRead/Write4297Meter#2 Mol % of Water4 InferredRead/Write4299Meter#2 Mol % of Hydrogen Sulfide4 InferredRead/Write4301Meter#2 Mol % of Hydrogen4 InferredRead/Write4303Meter#2 Mol % of Carbon Monoxide4 InferredRead/Write4305Meter#2 Mol % of Oxygen4 InferredRead/Write4307Meter#2 Mol % of i-Butane4 InferredRead/Write4309Meter#2 Mol % of n-Butane4 InferredRead/Write4311Meter#2 Mol % of i-Pentane4 InferredRead/Write4313Meter#2 Mol % of n-Pentane4 InferredRead/Write4315Meter#2 Mol % of i-Hexane4 InferredRead/Write4317Meter#2 Mol % of i-Octane4 InferredRead/Write4319Meter#2 Mol % of i-Octane4 InferredRead/Write4321Meter#2 Mol % of i-Nonane4 InferredRead/Write4323Meter#2 Mol % of i-Decane4 InferredRead/Write4325Meter#2 Mol % of Helium4 InferredRead/Write					
4293Meter#2 Mol % of Ethane4 InferredRead/Write4295Meter#2 Mol % of Propane4 InferredRead/Write4297Meter#2 Mol % of Water4 InferredRead/Write4299Meter#2 Mol % of Hydrogen Sulfide4 InferredRead/Write4301Meter#2 Mol % of Hydrogen4 InferredRead/Write4303Meter#2 Mol % of Carbon Monoxide4 InferredRead/Write4305Meter#2 Mol % of Oxygen4 InferredRead/Write4307Meter#2 Mol % of i-Butane4 InferredRead/Write4309Meter#2 Mol % of n-Butane4 InferredRead/Write4311Meter#2 Mol % of i-Pentane4 InferredRead/Write4313Meter#2 Mol % of n-Pentane4 InferredRead/Write4315Meter#2 Mol % of i-Hexane4 InferredRead/Write4317Meter#2 Mol % of i-Heptane4 InferredRead/Write4319Meter#2 Mol % of i-Octane4 InferredRead/Write4321Meter#2 Mol % of i-Nonane4 InferredRead/Write4323Meter#2 Mol % of i-Decane4 InferredRead/Write4325Meter#2 Mol % of Helium4 InferredRead/Write					
4295Meter#2 Mol % of Propane4 InferredRead/Write4297Meter#2 Mol % of Water4 InferredRead/Write4299Meter#2 Mol % of Hydrogen Sulfide4 InferredRead/Write4301Meter#2 Mol % of Hydrogen4 InferredRead/Write4303Meter#2 Mol % of Carbon Monoxide4 InferredRead/Write4305Meter#2 Mol % of Oxygen4 InferredRead/Write4307Meter#2 Mol % of i-Butane4 InferredRead/Write4309Meter#2 Mol % of n-Butane4 InferredRead/Write4311Meter#2 Mol % of i-Pentane4 InferredRead/Write4313Meter#2 Mol % of i-Hexane4 InferredRead/Write4315Meter#2 Mol % of i-Hexane4 InferredRead/Write4317Meter#2 Mol % of i-Octane4 InferredRead/Write4319Meter#2 Mol % of i-Octane4 InferredRead/Write4321Meter#2 Mol % of i-Nonane4 InferredRead/Write4323Meter#2 Mol % of i-Decane4 InferredRead/Write4325Meter#2 Mol % of Helium4 InferredRead/Write					
4297Meter#2 Mol % of Water4 InferredRead/Write4299Meter#2 Mol % of Hydrogen Sulfide4 InferredRead/Write4301Meter#2 Mol % of Hydrogen4 InferredRead/Write4303Meter#2 Mol % of Carbon Monoxide4 InferredRead/Write4305Meter#2 Mol % of Oxygen4 InferredRead/Write4307Meter#2 Mol % of i-Butane4 InferredRead/Write4309Meter#2 Mol % of n-Butane4 InferredRead/Write4311Meter#2 Mol % of i-Pentane4 InferredRead/Write4313Meter#2 Mol % of n-Pentane4 InferredRead/Write4315Meter#2 Mol % of i-Hexane4 InferredRead/Write4317Meter#2 Mol % of n-Heptane4 InferredRead/Write4319Meter#2 Mol % of i-Octane4 InferredRead/Write4321Meter#2 Mol % of i-Nonane4 InferredRead/Write4323Meter#2 Mol % of i-Decane4 InferredRead/Write4325Meter#2 Mol % of Helium4 InferredRead/Write					
4299Meter#2 Mol % of Hydrogen Sulfide4 InferredRead/Write4301Meter#2 Mol % of Hydrogen4 InferredRead/Write4303Meter#2 Mol % of Carbon Monoxide4 InferredRead/Write4305Meter#2 Mol % of Oxygen4 InferredRead/Write4307Meter#2 Mol % of i-Butane4 InferredRead/Write4309Meter#2 Mol % of n-Butane4 InferredRead/Write4311Meter#2 Mol % of i-Pentane4 InferredRead/Write4313Meter#2 Mol % of n-Pentane4 InferredRead/Write4315Meter#2 Mol % of i-Hexane4 InferredRead/Write4317Meter#2 Mol % of n-Heptane4 InferredRead/Write4319Meter#2 Mol % of i-Octane4 InferredRead/Write4321Meter#2 Mol % of i-Nonane4 InferredRead/Write4323Meter#2 Mol % of i-Decane4 InferredRead/Write4325Meter#2 Mol % of Helium4 InferredRead/Write		•			
4301 Meter#2 Mol % of Hydrogen 4 Inferred Read/Write 4303 Meter#2 Mol % of Carbon Monoxide 4 Inferred Read/Write 4305 Meter#2 Mol % of Oxygen 4 Inferred Read/Write 4307 Meter#2 Mol % of i-Butane 4 Inferred Read/Write 4309 Meter#2 Mol % of n-Butane 4 Inferred Read/Write 4311 Meter#2 Mol % of i-Pentane 4 Inferred Read/Write 4313 Meter#2 Mol % of n-Pentane 4 Inferred Read/Write 4313 Meter#2 Mol % of i-Hexane 4 Inferred Read/Write 4315 Meter#2 Mol % of i-Hexane 4 Inferred Read/Write 4317 Meter#2 Mol % of n-Heptane 4 Inferred Read/Write 4319 Meter#2 Mol % of i-Octane 4 Inferred Read/Write 4321 Meter#2 Mol % of i-Decane 4 Inferred Read/Write 4323 Meter#2 Mol % of i-Decane 4 Inferred Read/Write 4325 Meter#2 Mol % of Helium 4 Inferred Read/Write					
4303 Meter#2 Mol % of Carbon Monoxide 4 Inferred Read/Write 4305 Meter#2 Mol % of Oxygen 4 Inferred Read/Write 4307 Meter#2 Mol % of i-Butane 4 Inferred Read/Write 4309 Meter#2 Mol % of n-Butane 4 Inferred Read/Write 4311 Meter#2 Mol % of i-Pentane 4 Inferred Read/Write 4313 Meter#2 Mol % of n-Pentane 4 Inferred Read/Write 4315 Meter#2 Mol % of i-Hexane 4 Inferred Read/Write 4317 Meter#2 Mol % of n-Heptane 4 Inferred Read/Write 4319 Meter#2 Mol % of i-Octane 4 Inferred Read/Write 4321 Meter#2 Mol % of i-Nonane 4 Inferred Read/Write 4323 Meter#2 Mol % of i-Decane 4 Inferred Read/Write 4325 Meter#2 Mol % of Helium 4 Inferred Read/Write		• •			
4305Meter#2 Mol % of Oxygen4 InferredRead/Write4307Meter#2 Mol % of i-Butane4 InferredRead/Write4309Meter#2 Mol % of n-Butane4 InferredRead/Write4311Meter#2 Mol % of i-Pentane4 InferredRead/Write4313Meter#2 Mol % of n-Pentane4 InferredRead/Write4315Meter#2 Mol % of i-Hexane4 InferredRead/Write4317Meter#2 Mol % of n-Heptane4 InferredRead/Write4319Meter#2 Mol % of i-Octane4 InferredRead/Write4321Meter#2 Mol % of i-Nonane4 InferredRead/Write4323Meter#2 Mol % of i-Decane4 InferredRead/Write4325Meter#2 Mol % of Helium4 InferredRead/Write					
4307 Meter#2 Mol % of i-Butane 4 Inferred Read/Write 4309 Meter#2 Mol % of n-Butane 4 Inferred Read/Write 4311 Meter#2 Mol % of i-Pentane 4 Inferred Read/Write 4313 Meter#2 Mol % of n-Pentane 4 Inferred Read/Write 4315 Meter#2 Mol % of i-Hexane 4 Inferred Read/Write 4317 Meter#2 Mol % of n-Heptane 4 Inferred Read/Write 4319 Meter#2 Mol % of i-Octane 4 Inferred Read/Write 4321 Meter#2 Mol % of i-Nonane 4 Inferred Read/Write 4323 Meter#2 Mol % of i-Decane 4 Inferred Read/Write 4325 Meter#2 Mol % of Helium 4 Inferred Read/Write					
4309Meter#2 Mol % of n-Butane4 InferredRead/Write4311Meter#2 Mol % of i-Pentane4 InferredRead/Write4313Meter#2 Mol % of n-Pentane4 InferredRead/Write4315Meter#2 Mol % of i-Hexane4 InferredRead/Write4317Meter#2 Mol % of n-Heptane4 InferredRead/Write4319Meter#2 Mol % of i-Octane4 InferredRead/Write4321Meter#2 Mol % of i-Nonane4 InferredRead/Write4323Meter#2 Mol % of i-Decane4 InferredRead/Write4325Meter#2 Mol % of Helium4 InferredRead/Write					
4311Meter#2 Mol % of i-Pentane4 InferredRead/Write4313Meter#2 Mol % of n-Pentane4 InferredRead/Write4315Meter#2 Mol % of i-Hexane4 InferredRead/Write4317Meter#2 Mol % of n-Heptane4 InferredRead/Write4319Meter#2 Mol % of i-Octane4 InferredRead/Write4321Meter#2 Mol % of i-Nonane4 InferredRead/Write4323Meter#2 Mol % of i-Decane4 InferredRead/Write4325Meter#2 Mol % of Helium4 InferredRead/Write					
4313Meter#2 Mol % of n-Pentane4 InferredRead/Write4315Meter#2 Mol % of i-Hexane4 InferredRead/Write4317Meter#2 Mol % of n-Heptane4 InferredRead/Write4319Meter#2 Mol % of i-Octane4 InferredRead/Write4321Meter#2 Mol % of i-Nonane4 InferredRead/Write4323Meter#2 Mol % of i-Decane4 InferredRead/Write4325Meter#2 Mol % of Helium4 InferredRead/Write					
4315Meter#2 Mol % of i-Hexane4 InferredRead/Write4317Meter#2 Mol % of n-Heptane4 InferredRead/Write4319Meter#2 Mol % of i-Octane4 InferredRead/Write4321Meter#2 Mol % of i-Nonane4 InferredRead/Write4323Meter#2 Mol % of i-Decane4 InferredRead/Write4325Meter#2 Mol % of Helium4 InferredRead/Write					
4317Meter#2 Mol % of n-Heptane4 InferredRead/Write4319Meter#2 Mol % of i-Octane4 InferredRead/Write4321Meter#2 Mol % of i-Nonane4 InferredRead/Write4323Meter#2 Mol % of i-Decane4 InferredRead/Write4325Meter#2 Mol % of Helium4 InferredRead/Write					
4319Meter#2 Mol % of i-Octane4 InferredRead/Write4321Meter#2 Mol % of i-Nonane4 InferredRead/Write4323Meter#2 Mol % of i-Decane4 InferredRead/Write4325Meter#2 Mol % of Helium4 InferredRead/Write					
4321Meter#2 Mol % of i-Nonane4 InferredRead/Write4323Meter#2 Mol % of i-Decane4 InferredRead/Write4325Meter#2 Mol % of Helium4 InferredRead/Write		-			
4325 Meter#2 Mol % of Helium 4 Inferred Read/Write					
4325 Meter#2 Mol % of Helium 4 Inferred Read/Write					
4327 Meter#2 Mol % of Argon 4 Inferred Read/Write		Meter#2 Mol % of Helium	4 Inferred	Read/Write	
	4327	Meter#2 Mol % of Argon	4 Inferred	Read/Write	

AGA 8 DETAIL METHOD ENDS

ADDRESS	DESCRIPTION	DECIMAL	READ/WRITE
4329	Meter #1 Heating Value BTU/FT3	3 Inferred	Read/Write
4331	Meter #2 Heating Value BTU/FT3	3 Inferred	Read/Write
4333	Meter #1 FPV Override	6 Inferred	Read/Write
4335	Meter #2 FPV Override	6 Inferred	Read/Write
4337	Meter #1 Temperature Override	1 Inferred	Read/Write
4339	Meter #2 Temperature Override	1 Inferred	Read/Write
4341	Meter #1 Pressure Override	1 Inferred	Read/Write
4343	Meter #2 Pressure Override	1 Inferred	Read/Write
4345	Meter #1 Base Density Override	6 Inferred	Read/Write
4347	Meter #2 Base Density Override	6 Inferred	Read/Write
4349	Meter #1 DP Cut Off	4 Inferred	Read/Write
4351	Meter #1 Flowrate Low Limit	2 nferred	Read/Write
4353	Meter #1 Flowrate High Limit	2 Inferred	Read/Write
4355	Meter #1 Pipe ID	5 Inferred	Read/Write
4357	Meter #1 Orifice ID	5 Inferred	Read/Write
4359	Meter #2 DP Cut Off	4 Inferred	Read/Write
4361	Meter #2 Flowrate Low Limit	2Inferred	Read/Write
4363	Meter #2 Flowrate High Limit	2Inferred	Read/Write
4365	Meter #2 Pipe ID	5 Inferred	Read/Write
4367	Meter #2 Orifice ID	5 Inferred	Read/Write
4369	Meter #1 Density Dry Air	5 Inferred	Read/Write
4371	Meter #1 Relative Density	6 Inferred	Read/Write
4373	Meter #1 Ratio of Heat	4 Inferred	Read/Write
4375	Meter #1 Viscosity	6 Inferred	Read/Write
4377	Meter #1 Pipe Thermal E-6	2 Inferred	Read/Write
4379	Meter #1 Orifice Thermal E-6	2 Inferred	Read/Write
4381	Meter #1 Reference Temp of Pipe	2 Inferred	Read/Write
4383	Meter #1 Reference Temp of Orifice	2 Inferred	Read/Write
4385	Meter #2 Density Dry Air	5 Inferred	Read/Write
4387	Meter #2 Relative Density	6 Inferred	Read/Write
4389	Meter #2 Ratio of Heat	4 Inferred	Read/Write
4391	Meter #2 Viscosity	6 Inferred	Read/Write
4393	Meter #2 Pipe Thermal E-6	2 Inferred	Read/Write
4395	Meter #2 Orifice Thermal E-6	2 Inferred	Read/Write
4397	Meter #2 Refernece Temp of Pipe	2 Inferred	Read/Write
4399	Meter #2 Reference Temp of Orifice	2 Inferred	Read/Write
4401	Meter #1 DP Switch High %	2 Inferred	Read/Write
4403	Meter #2 DP Switch Low %	2 Inferred	Read/Write
4405	Meter #1 K Factor	3 Inferred	Read/Write
4407	Meter #1 Meter Factor	6 Inferred	Read/Write
4409	Meter #2 K Factor	3 Inferred	Read/Write
4411	Meter #2 Meter Factor	6 Inferred	Read/Write
4413	Meter #1 Flow Threshold #1	2 Inferred	Read/Write
4415	Meter #1 Flow Threshold #2	2 Inferred	Read/Write
4417	Meter #1 Flow Threshold #3	2 Inferred	Read/Write
4419	Meter #1 Flow Threshold #4	2 Inferred	Read/Write
4421	Meter #1 Linear Factor #1	6 Inferred	Read/Write

DESCRIPTION	DECIMAL	READ/WRITE
Meter #1 Linear Factor #2	6 Inferred	Read/Write
Meter #1 Linear Factor #3		Read/Write
Meter #1 Linear Factor #4	6 Inferred	Read/Write
M	011	D 1007 1
		Read/Write
		Read/Write Read/Write
		Read/Write
Meter #2 Linear Factor #4	6 Inferred	Read/Write
Spare		
Mater #4 DD Law @ Are A	4 lofe med	D = = = 1/1/1/1:4 =
		Read/Write
		Read/Write Read/Write
		Read/Write
•		Read/Write
Weter #1 Dr. Waintenance	4 IIIICIICU	ixeau/wiite
Meter #1 Temperature Deg.F @4mA	1 Inferred	Read/Write
Meter #1 Temperature Deg.F @20mA	1 Inferred	Read/Write
	1 Inferred	Read/Write
	1 Inferred	Read/Write
Meter #1 Temperature Deg.F Maintenance	1 Inferred	Read/Write
Meter #1 Pressure PSIG @4mA	1 Inferred	Read/Write
Meter #1 Pressure PSIG @20mA	1 Inferred	Read/Write
Meter #1 Pressure PSIG Low Limit	1 Inferred	Read/Write
Meter #1 Pressure PSIG High Limit	1 Inferred	Read/Write
Meter #1 Pressure PSIG Maintenance	1 Inferred	Read/Write
Meter #1 Density @4mA	6 Inferred	Read/Write
	6 Inferred	Read/Write
Meter #1 Density Low Limit	6 Inferred	Read/Write
Meter #1 Density High Limit	6 Inferred	Read/Write
Meter #1 Density Maintenance	6 Inferred	Read/Write
Meter #1 Dens,Temp DEG,F @4mA	1 Inferred	Read/Write
• • • • • • • • • • • • • • • • • • •	1 Inferred	Read/Write
Meter #1 Dens.Temp DEG.F Low Limit	1 Inferred	Read/Write
Meter #1 Dens.Temp DEG.F High Limit	1 Inferred	Read/Write
Meter #1 Dens.Temp DEG.F Maintenance	1 Inferred	Read/Write
Meter #1 DP High @4mA	4 Inferred	Read/Write
Meter #1 DP High @20mA	4 Inferred	Read/Write
Spare		
Meter #1 Density Correction Factor	5 Inferred	Read/Write
	Meter #1 Linear Factor #2 Meter #1 Linear Factor #3 Meter #1 Linear Factor #4 Meter #2 Flow Threshold #1 Meter #2 Flow Threshold #2 Meter #2 Flow Threshold #3 Meter #2 Flow Threshold #4 Meter #2 Linear Factor #1 Meter #2 Linear Factor #1 Meter #2 Linear Factor #3 Meter #2 Linear Factor #3 Meter #2 Linear Factor #4 Spare Meter #1 DP Low @4mA Meter #1 DP Low @20mA Meter #1 DP High Limit Meter #1 DP Maintenance Meter #1 Temperature Deg.F @4mA Meter #1 Temperature Deg.F Low Limit Meter #1 Temperature Deg.F High Limit Meter #1 Temperature Deg.F High Limit Meter #1 Temperature Deg.F Maintenance Meter #1 Pressure PSIG @4mA Meter #1 Pressure PSIG @20mA Meter #1 Pressure PSIG Maintenance Meter #1 Pressure PSIG Maintenance Meter #1 Density @4mA Meter #1 Density @20mA Meter #1 Density W20mA Meter #1 Density High Limit Meter #1 Density High Limit Meter #1 Density Maintenance Meter #1 Dens.Temp DEG.F @20mA Meter #1 Dens.Temp DEG.F @20mA Meter #1 Dens.Temp DEG.F W20mA	Meter #1 Linear Factor #2 Meter #1 Linear Factor #3 Meter #1 Linear Factor #3 Meter #2 Flow Threshold #1 Meter #2 Flow Threshold #2 Meter #2 Flow Threshold #3 Meter #2 Flow Threshold #3 Meter #2 Flow Threshold #4 Meter #2 Linear Factor #1 Meter #2 Linear Factor #1 Meter #2 Linear Factor #2 Meter #2 Linear Factor #3 Meter #2 Linear Factor #3 Meter #2 Linear Factor #4 Spare Meter #1 DP Low @4mA Meter #1 DP Low @20mA Meter #1 DP Low W20mA Meter #1 DP How Limit Meter #1 DP How Limit Meter #1 DP Maintenance Meter #1 Temperature Deg.F @4mA Meter #1 Temperature Deg.F W20mA Meter #1 Temperature Deg.F Low Limit Meter #1 Temperature Deg.F High Limit Meter #1 Temperature Deg.F Maintenance Meter #1 Pressure PSIG @4mA 1 Inferred Meter #1 Pressure PSIG W20mA Meter #1 Pressure PSIG Maintenance Meter #1 Density W4mA Meter #1 Pressure PSIG Maintenance Meter #1 Density W20mA Meter #1 Density Maintenance Meter #1 Density High Limit Meter #1 Density High Limi

Modbus Address Table – 32 Bits ADDRESS DESCRIPTION

ADDRESS	DESCRIPTION	DECIMAL	READ/WRITE
			_
4740	Mater #4 Dana Daviad Lavy Limit	O lasta una al	
4719 4721	Meter #1 Dens Period Low Limit	3 Inferred 3 Inferred	Read/Write Read/Write
4721 4723-4725	Meter #1 Dens.Period High Limit	3 IIIIeIIeu	Reau/wille
4123-4123	Spare		
4727	Meter #2 DP Low @4mA	4 Inferred	Read/Write
4729	Meter #2 DP Low @20mA	4 Inferred	Read/Write
4731	Meter #2 DP Low Limit	4 Inferred	Read/Write
4733	Meter #2 DP High Limit	4 Inferred	Read/Write
4735	Meter #2 DP Maintenance	4 Inferred	Read/Write
			D 100/11
4737	Meter #2 Temperature DEG.F @4mA	1 Inferred	Read/Write
4739	Meter #2 Temperature DEG.F @20mA	1 Inferred	Read/Write
4741	Meter #2 Temperature DEG.F Low Limit	1 Inferred	Read/Write
4743 4745	Meter #2 Temperature DEG.F High Limit	1 Inferred	Read/Write Read/Write
4745	Meter #2 Temperature DEG.F Maintenance	1 Inferred	Read/Wille
4747	Meter #2 Pressure PSIG @4mA	1 Inferred	Read/Write
4749	Meter #2 Pressure PSIG @20mA	1 Inferred	Read/Write
4751	Meter #2 Pressure PSIG Low Limit	1 Inferred	Read/Write
4753	Meter #2 Pressure PSIG High Limit	1 Inferred	Read/Write
4755	Meter #2 Pressure PSIG Maintenance	1 Inferred	Read/Write
	M		D 100/11
4757	Meter #2 Density @4mA	6 Inferred	Read/Write
4759 4764	Meter #2 Density @20mA	6 Inferred	Read/Write
4761 4763	Meter #2 Density Low Limit Meter #2 Density High Limit	6 Inferred 6 Inferred	Read/Write Read/Write
4765 4765	Meter #2 Density Maintenance	6 Inferred	Read/Write
4705	Weter #2 Density Waintenance	o inicirca	rcad, vviic
4767	Meter #2 Dens.Temp DEG.F @4mA	1 Inferred	Read/Write
4769	Meter #2 Dens.Temp DEG.F @20mA	1 Inferred	Read/Write
4771	Meter #2 Dens.Temp DEG.F Low Limit	1 Inferred	Read/Write
4773	Meter #2 Dens.Temp DEG.F High Limit	1 Inferred	Read/Write
4775	Meter #2 Dens.Temp DEG.F Maintenance	1 Inferred	Read/Write
4777	Meter #2 DP High @4mA	4 Inferred	Read/Write
4779	Meter #2 DP High @20mA	4 Inferred	Read/Write
4781-4785	Spare		
4787	Meter #2 Density Correction Factor	5 Inferred	Read/Write
4789	Meter #2 Dens.Period Low Limit	3 Inferred	Read/Write
4791	Meter #2 Dens.Period High Limit	3 Inferred	Read/Write
4793-4796	Spare	4 Inferred	Dood/Mrito
4797 4799	Spare#1 @4mA Spare#1 @20mA	4 Inferred	Read/Write Read/Write
4801	Spare#1 @2011A Spare#1 Lo-Limit	4 Inferred	Read/Write
4803	Spare#1 Hi-Limit	4 Inferred	Read/Write
4805	Spare#1 Maintenance	4 Inferred	Read/Write
4807	Spare#2 @4mA	4 Inferred	Read/Write
4809	Spare#2 @20mA	4 Inferred	Read/Write
4811	Spare#2 Lo-Limit	4 Inferred	Read/Write
=	i e e e e e e e e e e e e e e e e e e e		

<u>ADDRESS</u>	DESCRIPTION	DECIMAL	READ/WRITE
4813	Spare#2 Hi-Limit	4 Inferred	Read/Write
4815	Spare#2 Maintenance	4 Inferred	Read/Write
4817	Spare		
4819	Base Temperature DEG.F	3 Inferred	Read/Write
4821	Base Pressure PSIA	3 Inferred	Read/Write
4823	Run Switch Low Set Point	2 Inferred	Read/Write
4825	Run Switch High Set Point	2 Inferred	Read/Write
4827	Atmospheric Pressure PSIA	3 Inferred	Read/Write
4829	Pulse Output Volume #1 Pulses/Unit	3 Inferred	Read/Write
4831	Pulse Output Volume #2 Pulses/Unit	3 Inferred	Read/Write
4833	Analog Output #1 at 4 mA		
4835	Analog Output #1 at 20 mA		
4837	Analog Output #2 at 4 mA		
4839	Analog Output #2 at 20 mA		
4841	Analog Output #3 at 4 mA		
4843	Analog Output #3 at 20 mA		
4845	Analog Output #4 at 4 mA		
4847	Analog Output #4 at 20 mA		
	3 4		
Scratch Pad for	Program Variables – (Long Integer) 5031,5033-5069		
5031	Sratch Pad – Program Variable Integer		
5033	5		

ADDRESS DESCRIPTION

DECIMAL READ/WRITE

Last Hourly Data Area

3787 = Requested Date (mmddyy) (32 bits)

Requested Hour (16 bits) 3028 =

Last Hourly Report Request (16 bits) 3029 =

Set requested date, set requested hour, and then set last hourly report request to 1 in that order.

3787 = Requested Date (mmddyy) (32 bits)

3028 = Requested Hour (16 bits)

3029 = Last Hourly Report Request (16 bits)

Set requested date, set requested hour, and then set last hourly report request to 1 in that order.

8001	Date (mm/dd/yy)	0 Inferred	Read
8003	Time (hh/mm/ss)	0 Inferred	Read
8005	Meter#1 Hourly Duration of Flow	1 Inferred	Read
8007	Meter#1 GrossTotal	0 Inferred	Read
8009	Meter#1 Net Total	0 Inferred	Read
8011	Meter#1 Mass Total	0 Inferred	Read
8013	Meter#1 Energy Total	0 Inferred	Read
8015	Meter#1 Average Temperature	1 Inferred	Read
8017	Meter#1 Average Pressure	1 Inferred	Read
8019	Meter#1 Average DP	4 Inferred	Read
8021	Meter#1 Average DP EXT	4 Inferred	Read
8023	Meter#1 Average SG	6 Inferred	Read
8025	Meter#2 Hourly Duration of Flow	1 Inferred	Read
8027	Meter#2 Gross Total	0 Inferred	Read
8029	Meter#2 Net Total	0 Inferred	Read
8031	Meter#2 Mass Total	0 Inferred	Read
8033	Meter#2 Energy Total	0 Inferred	Read
8035	Meter#2 Average Temperature	1 Inferred	Read
8037	Meter#2 Average Pressure	1 Inferred	Read
8039	Meter#2 Average DP	4 Inferred	Read
8041	Meter#2 Average DP EXT	4 Inferred	Read
8043	Meter#2 Average SG	6 Inferred	Read

LAST HOURLY DATA AREA ENDS

ADDRESS DESCRIPTION

DECIMAL READ/WRITE

*Non-resettable accumulated volume will roll over at 9999999.

CURRENT D	ATA AREA		
9001	Meter #1 Calculation Type	0 Inferred	Read
9003	Meter #1 Flow Flag/Flow Dir	0 Inferred	Read
9005	Meter #1 Alarm Status Flag	0 Inferred	Read
9007	Meter #1 Daily Gross Total	0 inferred	Read
9009	Meter #1 Daily Net Total	0 inferred	Read
9011	Meter #1 Daily Mass Total	0 inferred	Read
9013	Meter #1 Daily Energy Total	0 inferred	Read
9013	Weter #1 Daily Lifergy Total	Ulliletted	Neau
9015	Meter #1 N2	4 Inferred	Read
9017	Meter #1 Co2	4 Inferred	Read
9019	Meter #1 Methane	4 Inferred	Read
9021	Meter #1 Ethane	4 Inferred	Read
9023	Meter #1 Propane	4 Inferred	Read
9025	Meter #1 Water	4 Inferred	Read
9027	Meter #1 H2S	4 Inferred	Read
9029	Meter #1 H2	4 Inferred	Read
9031	Meter #1 CO	4 Inferred	Read
9033	Meter #1 Oxygen	4 Inferred	Read
9035	Meter #1 I-Butane	4 Inferred	Read
9037	Meter #1 n-Butane	4 Inferred.	Read
9039	Meter#1 Heating Value	3 Inferred	Read
0000	Wetern Friedding Value	o imonou	rtoud
9041	Meter #1 Gross Flowrate	2 Inferred	Read
9043	Meter #1 Net Flowrate	2 Inferred	Read
9045	Meter #1 Mass Flowrate	2 Inferred	Read
9047	Meter #1 Energy Flowrate	2 Inferred	Read
9049	Meter #1 DP	4 Inferred	Read
9051	Meter #1 Temperature	1 Inferred	Read
9053	Meter #1 Pressure	1 Inferred	Read
9055	Meter #1 Density	6 Inferred	Read
9057	Meter #1 Dens.Temp	1 Inferred	Read
9059	Meter #1 Dens.b	6 Inferred	Read
9061	Meter #1 SG	6 Inferred	Read
9063	Meter #1 Y Factor	6 Inferred	Read
9065	Meter #1 K /CD/LMF	6 Inferred	Read
9067	Meter #1 FA	6 Inferred	Read
9069	Meter #1 FPV	6 Inferred	Read
9071-9081	Spare	o inicirca	Nead
9083	Meter #1 I-Pentane	4 Inferred	Read
	Meter #1 n-Pentane	4 Inferred	Read
9085	Meter #1 n-Pentane Meter #1 n-Hexane		
9087		4 Inferred	Read
9089	Meter #1 n-Heptane	4 Inferred	Read
9091	Meter #1 n-Octane	4 Inferred	Read
9093	Meter #1 n-Nonane	4 Inferred	Read
9095	Meter #1 n-Decane	4 Inferred	Read
9097	Meter #1 Helium	4 Inferred	Read

ADDRESS	DESCRIPTION	DECIMAL	READ/WRITE
9099 9101 9103-9131	Meter #1 Argon Meter #1 DP EXT Spare	4 Inferred 4 Inferred	Read Read
9133 9135 9137 9139	Meter #1 Cum. Gross Total* Meter #1 Cum. Net Total* Meter #1 Cum. Mass Total* Meter #1 Cum. Energy Total*	0 Inferred 0 Inferred 0 Inferred 0 Inferred	Read Read Read Read
9141 9143-9145 9147 9149 9151 9153 9155 9157 9159 9161 9163-9199	Meter #1 Density Calc. Type Meter #1 Meter ID Meter #1 Pipe ID Meter #1 Orifice ID Meter #1 Density Correction Factor Meter #1 Density of Dry Air Meter #1 Heating Value BTU/FT3 Meter #1 K Factor Date (mmddyy) Time (hhmmss) Spare	0 Inferred 8 Chars. 5 Inferred 5 Inferred 5 Inferred 3 Inferred 3 Inferred 0 Inferred 0 Inferred	Read Read Read Read Read Read Read Read
9201 9203 9205 9207 9209 9211 9213	Meter #2 Calculation Type Meter #2 Flow Flag/Flow Dir Meter #2 Alarm Status Flag Meter #2 Daily Gross Meter #2 Daily Net Meter #2 Daily Mass Meter #2 Daily Energy	0 Inferred 0 Inferred 0 Inferred 0 inferred 0 inferred 0 inferred	Read Read Read Read Read Read Read
9215 9217 9219 9221 9223 9225 9227 9229 9231 9233 9235 9237 9239	Meter #2 N2 Meter #2 Co2 Meter #2 Methane Meter #2 Ethane Meter #2 Propane Meter #1 Water Meter #2 H2S Meter #2 H2 Meter #2 CO Meter #2 CO Meter #2 I-Butane Meter #2 n-Butane Meter#2 Heating Value	4 Inferred 5 Inferred 6 Inferred 7 Inferred 8 Inferred 9 Inferred 9 Inferred 9 Inferred 9 Inferred	Read Read Read Read Read Read Read Read
9241 9243 9245 9247 9249	Meter #2 Gross Flowrate Meter #2 Net Flowrate Meter #2 Mass Flowrate Meter #2 Energy Flowrate Meter #2 DP	2 Inferred 2 Inferred 2 Inferred 2 Inferred 4 Inferred	Read Read Read Read Read

ADDRESS	DESCRIPTION	DECIMAL	READ/WRITE
9251	Motor #2 Tomporoturo	1 Inferred	Read
9253	Meter #2 Temperature Meter #2 Pressure	1 Inferred	
			Read
9255	Meter #2 Density	6 Inferred	Read
9257	Meter #2 Dens.Temp	1 Inferred	Read
9259	Meter #2 Dens.b	6 Inferred	Read
9261	Meter #2 SG	6 Inferred	Read
9263	Meter #2 Y Factor	6 Inferred	Read
9265	Meter #2 K /CD/LMF	6 Inferred	Read
9267	Meter #2 FA	6 Inferred	Read
9269	Meter #2 FPV	6 Inferred	Read
9271-9281	Spare		
9283	Meter #2 I-Pentane	4 Inferred	Read
9285	Meter #2 n-Pentane	4 Inferred	Read
9287	Meter #2 n-Hexane	4 Inferred	Read
9289	Meter #2 n-Heptane	4 Inferred	Read
9291	Meter #2 n-Octane	4 Inferred	Read
9293	Meter #2 n-Nonane	4 Inferred	Read
9295	Meter #2 n-Decane	4 Inferred	Read
9297	Meter #2 Helium	4 Inferred	Read
9299	Meter #2 Argon	4 Inferred	Read
9301	Meter #2 DP EXT	4 Inferred	Read
9303-9331	Spare		
9333	Meter #2 Cum. Gross Total*	0 Inferred	Read
9335	Meter #2 Cum. Net Total*	0 Inferred	Read
9337	Meter #2 Cum. Mass Total*	0 Inferred	Read
9339	Meter #2 Cum. Energy Total*	0 Inferred	Read
0000	Motor #2 Jam. Energy Total	o mionoa	rtodd
9341	Meter #2 Density Calc. Type	0 Inferred	Read
9343-9345	Meter #2 Meter ID	8 Chars.	Read
9347	Meter #2 Pipe ID	5 Inferred	Read
9349	Meter #2 Orifice ID	5 Inferred	Read
9351	Meter #2 Density Correction Factor	5 Inferred	Read
9353	Meter #2 Density of Dry Air	5 Inferred	Read
9355	Meter #2 Heating Value BTU/FT3	3 Inferred	Read
9357	Meter #2 K Factor	3 Inferred	Read
9359-9399	Spare		
9401	Spare #1 Data	4 Inferred	Read
9403	Spare #2 Data	4 Inferred	Read
	•		

FLOATING POINT - CURRENT DATA AREA - METER #1

7098	Daily Archive Record Number
	•
7099	Hourly Archive Record Number
7100	Spare
7101	Meter #1 Gross Flowrate
	Meter #1 Net Flowrate
7102	
7103	Meter #1 Mass Flowrate
7104	Meter #1 Energy Flowrate
7105	Meter #1 Daily Gross Total
7106	Meter #1 Daily Net Total
7107	Meter #1 Daily Mass Total
7108	Meter #1 Daily Energy Total
7109	Meter #1 Cum. Gross Total
7110	Meter #1 Cum. Net Total
7111	Meter #1 Cum. Msss Total
7112	Meter #1 Cum. Energy Total
7113	Meter#1 Dp
7114	Meter #1 Temperature
7115	Meter #1 Pressure
-	
7116	Meter #1 Density
7117	Meter #1 Heating Value
7118	Meter #1 Dens.b
7119	Meter #1 SG
7120	Meter #1 Y Factor
7121	Meter #1 K/CD/LMF
7122	Meter #1 FA
7123	Meter #1 FPV
7124	Meter #1 N2
7125	Meter #1 CO2
7126	Meter #1 Methane
7127	Meter #1 Etnane
7128	Meter #1 Propane
7129	Meter #1 Water
7130	Meter #1 H2S
7131	Meter #1 H2
7132	Meter #1 CO
7133	Meter #1 Oxygen
7134	Meter #1 I-Butane
7135	Meter #1 n-Butane
7136	Meter #1 I-Pentane
7137	Meter #1 n-Pentane
7138	Meter #1 n-Hexane
7139	Meter #1 n-Heptane
7140	Meter #1 n-Octane
7141	Meter #1 n-Nonane
7142	Meter #1 n-Decane
7143	Meter #1 Helium
7144	Meter #1 Argon
	- · - · · · · · · · · · · · · · · · · ·

FLOATING POINT - CURRENT DATA AREA

7145-7153 Spare

7154 Meter #1 Alarms (4th byte | 3rd byte | 2nd byte | 1st byte)

1 st Btye -

B0: Flowrate High Alarm
B1: Flowrate Low Alarm
B2: Temperature High Alarm
B3: Temperature Low Alarm
B4: Pressure High Alarm
B5: Pressure Low Alarm

B6 : Density/Gravity High Alarm B7 : Density/Gravity Low Alarm

2 nd Byte

B0 : Dens.Temperature High Alarm B1 : Dens.Temperature Low Alarm

B2 : DP High Alarm B3 : DP Low Alarm

B4 : Dens.Period High Alarm B5 : Dens.Period Low Alarm

3 rd Byte B0 : Down

B1: NX19 Out of Range B2: AGA8 Out of Range

FLOATING POINT- CURRENT DATA AREA - METER #2

7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312	Meter #2 Gross Flowrate Meter #2 Net Flowrate Meter #2 Mass Flowrate Meter #2 Energy Flowrate Meter #2 Daily Gross Total Meter #2 Daily Net Total Meter #2 Daily Mass Total Meter #2 Daily Energy Total Meter #2 Cum. Gross Total Meter #2 Cum. Net Total Meter #2 Cum. Msss Total Meter #2 Cum. Msss Total
7312	Meter #2 Cum. Energy Total Meter#2 Dp
7314	Meter #2 Temperature
7315	Meter #2 Pressure
7316	Meter #2 Density
7317	Meter #2 Heating Value
7318	Meter #2 Dens.b
7319	Meter #2 SG
7320	Meter #2 Y Factor
7321	Meter #2 K/CD/LMF
7322	Meter #2 FA
7323	Meter #2 FPV
7324	Meter #2 N2
7325	Meter #2 CO2
7326	Meter #2 Methane
7327	Meter #2 Etnane
7328 7329	Meter #2 Propane Meter #2 Water
7329 7330	Meter #2 H2S
7331	Meter #2 H2
7332	Meter #2 CO
7333	Meter #2 Oxygen
7334	Meter #2 I-Butane
7335	Meter #2 n-Butane
7336	Meter #2 I-Pentane
7337	Meter #2 n-Pentane
7338	Meter #2 n-Hexane
7339	Meter #2 n-Heptane
7340	Meter #2 n-Octane
7341	Meter #2 n-Nonane
7342	Meter #2 n-Decane
7343	Meter #2 Helium
7344	Meter #2 Argon

FLOATING POINT- CURRENT DATA AREA – METER #2

7345-7352 Spare

7353 Meter #2 Alarms (4 th byte | 3rd byte | 2nd byte | 1st byte)

1 st Btye -

B0 : Flowrate High Alarm
B1 : Flowrate Low Alarm
B2 : Temperature High Alarm
B3 : Temperature Low Alarm
B4 : Pressure High Alarm
B5 : Pressure Low Alarm

B6 : Density/Gravity High Alarm B7 : Density/Gravity Low Alarm

2nd Byte

B0 : Dens.Temperature High Alarm B1 : Dens.Temperature Low Alarm

B2 : DP High Alarm B3 : DP Low Alarm

B4 : Dens.Period High Alarm B5 : Dens.Period Low Alarm

3 rd Byte B0 : Down

B1: NX19 Out of Range B2: AGA8 Out of Range

FLOATING POINT - Previous Daily Data Area - Meter #1

7201	Date
7202	Time
7203	Flow Time (Min)
7204	Meter #1 Average DP
7205	Meter #1 Average Pressure
7206	Meter #1 Average Temperature
7207	Meter #1 Average DP/EXT
7208	Meter #1 Gross Total
7209	Meter #1 Net Total
7210	Meter #1 Mass Total
7211	Meter #1 Energy Total
7212	Meter #1 Average Heating Value
7213	Meter #1 Average SG
7214	Meter #1 Average N2
7215	Meter #1 Average CO2
7216	Meter #1 Average Methane
7217	Meter #1 Average Ethane
7218	Meter #1 Average Propane
7219	Meter #1 Average Water
7220	Meter #1 Average H2S
7221	Meter #1 Average H2
7222	Meter #1 Average CO
7223	Meter #1 Average Oxygen
7224	Meter #1 Average I-Butane
7225	Meter #1 Average n-Butane
7226	Meter #1 Average I-Pentane
7227	Meter #1 Average n-Pentane
7228	Meter #1 Average n-Hexane
7229	Meter #1 Average n-Heptane
7230	Meter #1 Average n-Octane
7231	Meter #1 Average n-Nonane
7232	Meter #1 Average n-Decane
7233	Meter #1 Average Helium
7234	Meter #1 Average Argon

FLOATING POINT - Previous Hourly Data Area - Meter #1

7241 7242	Date Time
7243	Flow Time
7244	Meter #1 Average DP
7245	Meter #1 Average Pressure
7246	Meter #1 Average Temperature
7247	Meter #1 Average DP/EXT
7248	Meter #1 Hourly Gross
7249	Meter #1 Hourly Net
7250	Meter #1 Hourly Mass
7251	Meter #1 Hourly Energy
7252	Program Variable #1
7253	Program Variable #2
7254	Program Variable #3
7255	Program Variable #4
7256	Program Variable #5
7257	Program Variable #6
7258	Program Variable #7
7259	Program Variable #8
7260	Program Variable #9
7261	Program Variable #10

FLOATING POINT - Previous Daily Data Area - Prog. Var

Flow Time (Min)
Program Variable #1
Program Variable #2
Program Variable #3
Program Variable #4
Program Variable #5
Program Variable #6
Program Variable #7
Program Variable #8
Program Variable #9
Program Variable #10

FLOATING POINT - Previous Daily Data Area - Meter #2

7401 7402 7403 7404	Date Time Flow Time (Min) Meter #2 Average DP
7405	Meter #2 Average Pressure
7406	Meter #2 Average Temperature
7407	Meter #2 Average DP/EXT
7408	Meter #2 Gross Total
7409	Meter #2 Net Total
7410	Meter #2 Mass Total
7411	Meter #2 Energy Total
7412	Meter #2 Average Heating Value
7413	Meter #2 Average SG
7414	Meter #2 Average N2
7415	Meter #2 Average CO2
7416	Meter #2 Average Methane
7417	Meter #2 Average Ethane
7418	Meter #2 Average Propane
7419	Meter #2 Average Water
7420	Meter #2 Average H2S
7421	Meter #2 Average H2
7422	Meter #2 Average CO
7423	Meter #2 Average Oxygen
7424	Meter #2 Average I-Butane
7425	Meter #2 Average n-Butane
7426	Meter #2 Average I-Pentane
7427	Meter#2 Average n-Pentane
7428	Meter #2 Average n-Hexane
7429	Meter #2 Average n-Heptane
7430	Meter #2 Average n-Octane
7431	Meter #2 Average n-Nonane
7432	Meter #2 Average n-Decane
7433	Meter #2 Average Helium
7434	Meter #2 Average Argon

FLOATING POINT - Previous Hourly Data Area _Meter #2

7441	Date
7442	Time
7443	Meter#1 Flow Time
7444	Meter #2 Average DP
7445	Meter #2 Average Pressure
7446	Meter #2 Average Temperature
7447	Meter #2 Average DP/EXT
7448	Meter #2 Hourly Gross Total
7449	Meter #2 Hourly Net Total
7450	Meter #2 Hourly Mass Total
7451	Meter #2 Hourly Energy Total

3123 (16 bits) ACK FLAG

0 Inferred Read/Write

FLOATING POINT - (701) Previous Daily Data Area - Meter #1

701 Date

Time

Average Heating Value

Average SG

Average Carbon Dioxide

Average Nitrogen
Average Methane
Average Ethane
Average Propane
Average Iso-Butane
Average I-Pentane
Average I-Pentane
Average Hexane
Average Heptane
Average Nonane
Average Octane
Average H2S
Average Hydrogen
Average Helium

Average Oxygen Average Carbon Monoxide

FLOATING POINT - (702) Previous Daily Data Area - Meter #2

702 Date

Time

Average Heating Value

Average SG

Average Carbon Dioxide

Average Nitrogen
Average Methane
Average Ethane
Average Propane
Average Iso-Butane
Average I-Pentane
Average I-Pentane
Average Hexane
Average Heptane
Average Nonane
Average Octane
Average H2S
Average Hydrogen
Average Helium

Average Oxygen

Average Carbon Monoxide

FLOATING POINT - (703) Previous Daily Data Area - Meter #1

703 Date

Time

Flow Time (Min.) Average Pressure Average Temperature

Gross Total Net Total Mass Total Energy Average DP Average DP/EXT

FLOATING POINT - (704) Previous Hourly Data Area - Meter #1

704 Date

Time

Flow Time (Min.)
Average Pressure
Average Temperature

Gross Total Net Total Mass Total Energy Total Average DP Average DP/EXT

FLOATING POINT - (705) Previous Daily Data Area - Meter #2

705 Date

Time

Flow Time (Min.) Average Pressure Average Temperature

Gross Total Net Total Mass Total Energy Total Average DP Average DP/EXT

FLOATING POINT - (706) Previous Hourly Data Area - Meter #2

706 Date

Time

Flow Time (Min.)
Average Pressure
Average Temperature

Gross Total Net Total Mass Total Energy Total Average DP Average DP/EXT

Programmable Floating Point Variable

Scratch Pad for Floating Point Variables – 7801-7830

7791-7800 - Last Hour Program Variables

7801-7810 - first 5 Variables, will be reset at the end of hour.

7831-7899 - Programmable Variable Statements

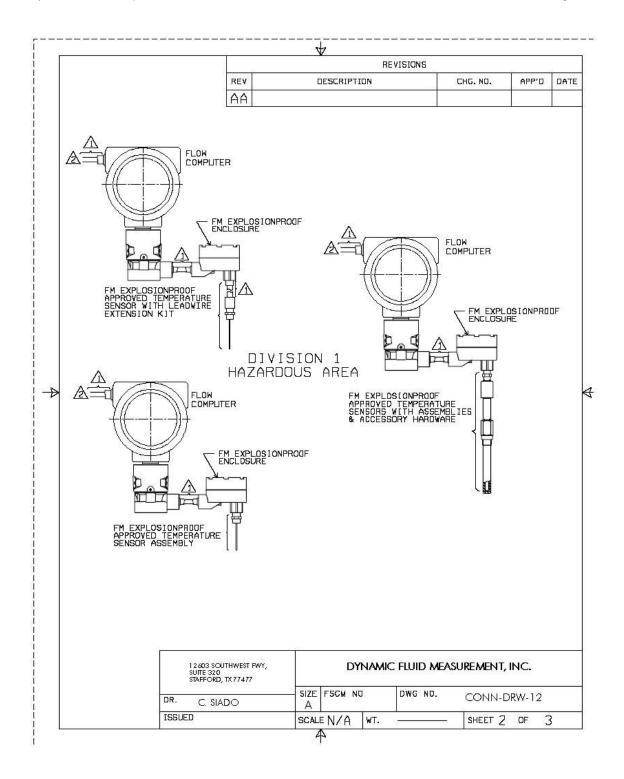
Hourly Programmable Variables 7052-7061

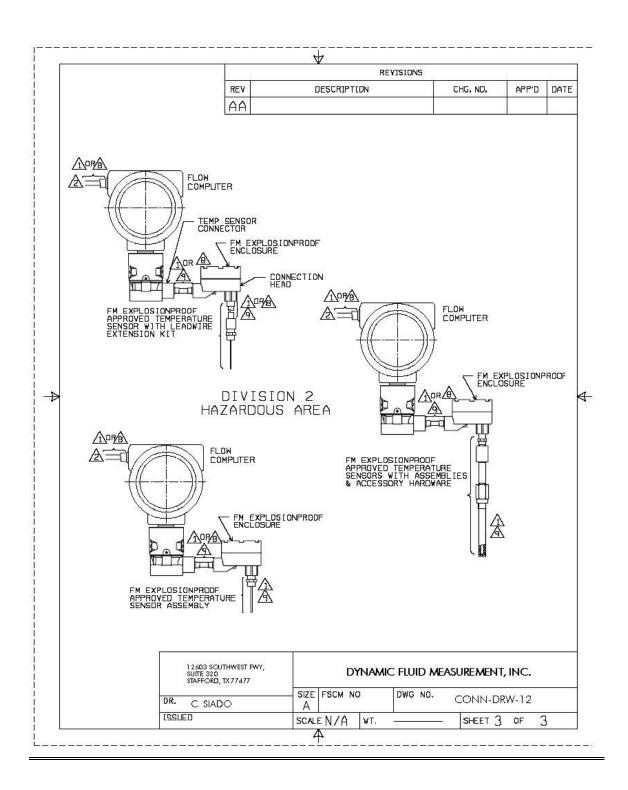
3787 = Requested Date (mmddyy) (32 bits)

3028 = Requested Hour (16 bits)

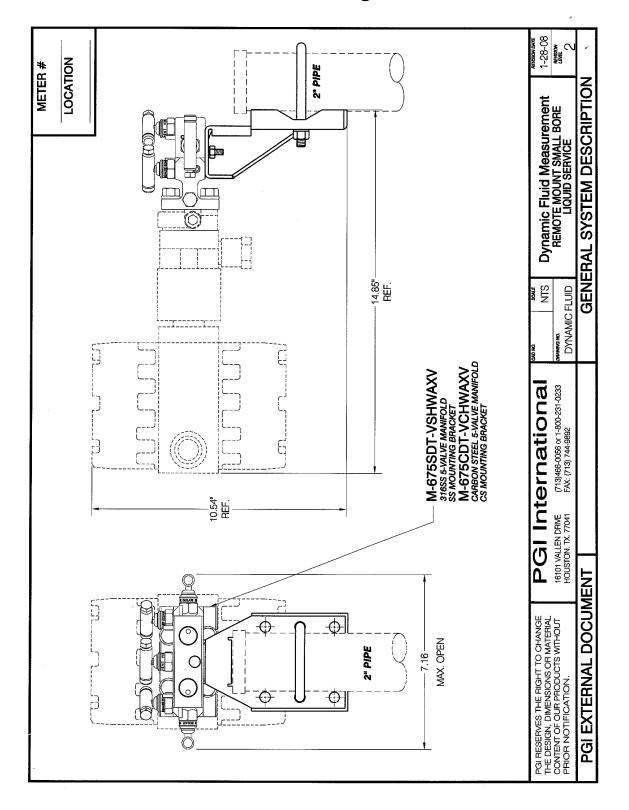
3029 = Last Hourly Report Request (16 bits)

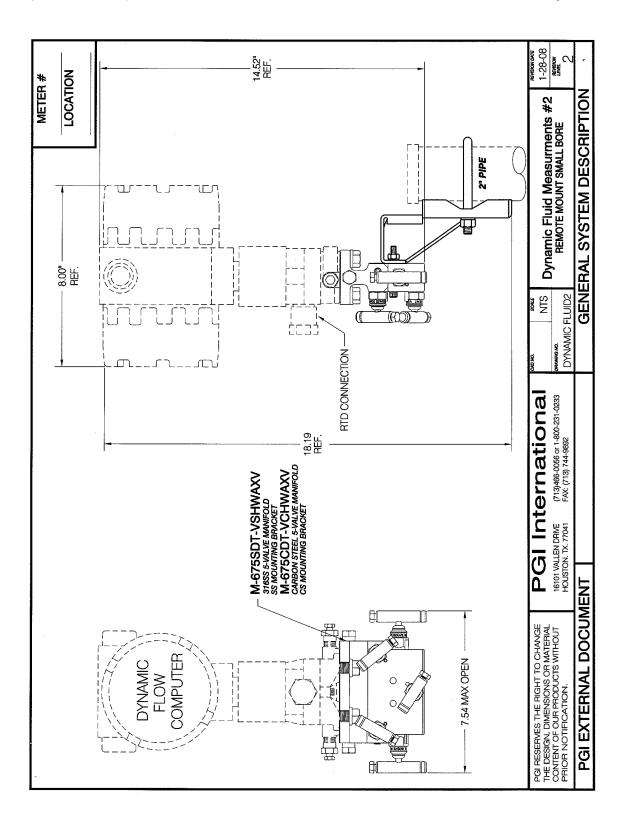
Set requested date, set requested hour, and then set last hourly report request to 1 in that order.

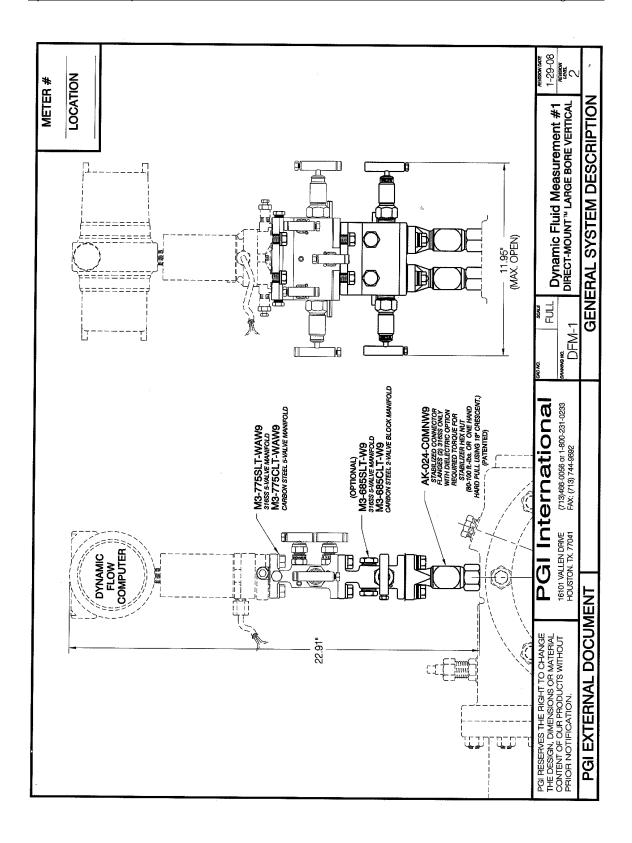

7052 Hourly Programmable Variables #1
7053 Hourly Programmable Variables #2
7054 Hourly Programmable Variables #3
7055 Hourly Programmable Variables #4
7056 Hourly Programmable Variables #5
7057 Hourly Programmable Variables #6

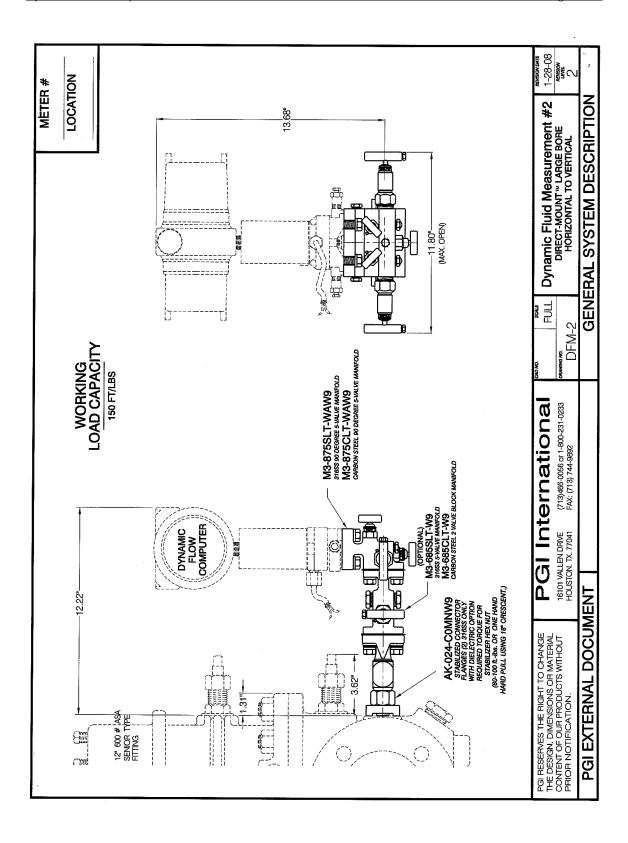

7058 Hourly Programmable Variables #7
 7059 Hourly Programmable Variables #8
 7060 Hourly Programmable Variables #9
 7061 Hourly Programmable Variables #10

CHAPTER 6: Installation Drawings


Explosion-Proof Installation Drawings


				- 1			₹	DEM	ETONE				
			REVISIONS										
-					AA A		DESCRIPTIO	N		HG. NO.	APP'D	□A [*]	
				L	пп				98			0	
	B				IN ACCORE	DANCE '	WITH						
	71-4	A NATIONAL ELECTRICAL CODE.											
	NON-INCENDIVE FIELD WIRING METHODS MAY BE USED FOR CONNECTING THE TEMPERATURE SENSING ASSEMBLY, WHEN USING NON-INCENDIVE FIELD												
	3 5. 1500/10 1								INSOR ASSEA)		
									NECTED TO				
		APPARA	TUS ARE	DEALC	ES WHICH	ARE INC	CAPABLE C	SIMPLE OF GEN	E APPARATUS' ERATING OR	STORING			
		MORE	THAN 1.	2V, 0.1	A, 25MW, 0	DR 20u.	I (RTD'S QI	JALIFY .	as simple ap	PARATUS).	9		
	Λ												
	<u>/8.\</u>	DIVISIO	N 2 WIRI	NG M	ETHOD.								
2													
D	C	CLASSII	INISTALLZ	TION	PZLITZLIM 2	: A CSA	∆PPP (\\/E	5					
	6.	CLASS II INSTALLATIONS MUST USE A CSA APPROVED DUST-INGITIONPROOF SENSOR.											
	5.	IN AMBI	ents gr	FATER	THAN 40°C	. SPRIN	G LOADEI) TEMP	ERATURE SEN	ISORS			
		USED W	THOUT						ST BE RATED				
	4	LEAST 8:		- COLUE	NED TO DE	, DDD (C) (ED MUSEI	NE E O D	016 000				
	4.				CLASSIFICAT		ED WOZLI	BE FOR	gas groui	Í			
	3.	ALL CON	IDUITS THREADS TO BE ASSEMBLED WITH FIVE FULL THREADS MINIMUM.										
	Λ		ITTER MUST NOT BE CONNECTED TO EQUIPMENT GENERATING										
	<u>/2\</u>	MORE TH			of BE CON	11010	7 10 100	TIVILITY	OLI 1LIO (III 1	~			
	A	WIDING	METHOD	S CLUT	ABLE FOR C	1 224 1	DIM 1 AND	VIENIO	TII				
	71.	MIKING	METHOL	J 3011	ABLE FOR C	,LAGO I,	DIV I, AN	LENG	ПΠ.				
										124028	OUTHWEST FA	KOV.	
LINLE	SS OTHERN	ISE SPECIFIED	CONTRAC	T ND.		DY	NAMIC FLU	D MEAS	UREMENT, INC	SUITE 32	D, TX 77477		
RE	REMOVE ALL BURRS AND SHARP EDGES, NACHINE		ND.	CS	IADO	TITI F	TITLE						
88	SURFACE F		DR. CHK'D	U. 3	, O	— MODEL MICROMV AND ECHART							
	.x • .1 [2.5]		APP'D.	ę Li	ALII ALI	-	EXPLOSIONPROOF INSTALLATION DRAWING, FACTORY MUTUAL						
0.000	. xxxø	10[0.25]	WLL n.	э. П	ALILAH	SIZE							
	FRACTIONS ANGLES					— A	SIZE FSCM NO DWG NO. CON			CONN-DR	NN-DRW-12		
-		ALE PRINT	APP'D. G	OVT		SCAL				N 000	-	3	





Manifold Installation Drawings

