# MicroML4/Micro100 Liquid OPERATORS MANUAL

Flow Computer Liquid Version



11104 W.Airport Blvd, Suite 108 Stafford, Texas 77477 USA (281) 565-1118 Fax (281) 565-1119

#### WARRANTY

Dynamic Flow Computers warrants to the owner of the Flow Computer that the product delivered will be free from defects in material and workmanship for one (1) year following the date of purchase.

This warranty does not cover the product if it is damaged in the process of being installed or damaged by abuse, accident, misuse, neglect, alteration, repair, disaster, or improper testing.

If the product is found otherwise defective, Dynamic Flow Computers will replace or repair the product at no charge, provided that you deliver the product along with a return material authorization (RMA) number from Dynamic Flow Computers.

Dynamic Flow Computers will not assume any shipping charge or be responsible for product damage due to improper shipping.

THE ABOVE WARRANTY IS IN LIEU OF ANY OTHER WARRANTY EXPRESS IMPLIED OR STATUTORY. BUT NOT LIMITED TO ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE, OR ANY WARRANTY ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE. LIMITATION OF LIABILITY:

DYNAMIC FLOW COMPUTERS SHALL HAVE NO LIABILITY FOR ANY INDIRECT OR SPECULATIVE DAMAGES (INCLUDING, WITHOUT LIMITING THE FOREGOING, CONSEQUENTIAL, INCIDENTAL AND SPECIAL DAMAGES) ARISING FROM THE USE OF, OR INABILITY TO USE THIS PRODUCT. WHETHER ARISING OUT OF CONTRACT, OR UNDER ANY WARRANTY, IRRESPECTIVE OF WHETHER DFM HAS ADVANCED NOTICE OF THE POSSIBILITY OF ANY SUCH DAMAGE INCLUDING, BUT NOT LIMITED TO LOSS OF USE, BUSINESS INTERRUPTION, AND LOSS OF PROFITS. NOTWITHSTANDING THE FOREGOING, DFM'S TOTAL LIABILITY FOR ALL CLAIMS UNDER THIS AGREEMENT SHALL NOT EXCEED THE PRICE PAID FOR THE PRODUCT. THESE LIMITATIONS ON POTENTIAL LIABILITY WERE AN ESSENTIAL ELEMENT IN SETTING THE PRODUCT PRICE. DFM NEITHER ASSUMES NOR AUTHORIZES ANYONE TO ASSUME FOR IT ANY OTHER LIABILITIES

| CHAPTER 1: QUICK START                                          | . 1-1 |
|-----------------------------------------------------------------|-------|
| Introduction:                                                   |       |
| Quick Start Up                                                  | . 1-2 |
| Technical Data                                                  | . 1-8 |
| Parts List                                                      |       |
| Micro MV Flow Computer: Dimensions                              |       |
| Window Software Minimum Requirements:                           |       |
| System Minimum Requirements                                     |       |
| What is a configuration file?                                   |       |
| Downloading a configuration file to the flow computer.          |       |
| What is an Image File?                                          |       |
| How to download an Image File.                                  |       |
| How to force a board into download mode                         |       |
| Website - DFC Configuration Software                            |       |
| Website – Image File (Firmware)                                 |       |
| Getting acquainted with the flow computer wiring:               |       |
| Back Terminal Wiring                                            |       |
| INPUT/OUTPUT: Assigning and Ranging Inputs                      |       |
| Input/Output Assignment                                         |       |
| How to assign a transmitter to an I/O point:                    |       |
| Ranging the Transmitter Inputs:                                 |       |
| WIRING:                                                         |       |
| Wiring of Analog Inputs: Version 2 Board                        |       |
| Wiring of Analog Inputs: Version 1 Board                        | 1-22  |
| Wiring of RTD                                                   |       |
| Rosemount RTD Connection                                        |       |
| Wiring of Analog Output:                                        |       |
| Additional Analog Inputs or Analog Outputs – Board Installation |       |
| Additional Analog Outputs                                       |       |
| Back Panel - Additional Analog Intputs                          |       |
| Turbine Input Wiring                                            |       |
| Turbine Input Wiring                                            |       |
| Turbine Input Wiring – Using Daniel 1817 Preamp                 |       |
| RS-232 Connection:                                              | 1-31  |
| RS-485 Connection                                               |       |
| Wiring of Status Inputs:                                        |       |
| Wiring of Switch/Pulse Outputs:                                 |       |
| Switch Output to Relay Wiring Diagram                           |       |
| Density input wiring:                                           |       |
| CALIBRATION                                                     |       |
| Analog Input 4-20mA or 1-5 Volt Signal                          |       |
| RTD Calibration:                                                |       |
| Calibration of Analog Output:                                   |       |
| Multi-Variable Transmitters - DP and Pressure                   |       |
| Multi-Variable Transmitters (Model 205) –RTD                    |       |
| Data Verification                                               |       |
| Verifying Digital Inputs and Outputs                            |       |
| CHAPTER 2: Data Entry                                           |       |
| Introduction to the Micro M.V. Computer Software                |       |
| Configuration File                                              |       |
| Configuration File Menu                                         |       |
| Open a File                                                     |       |
| Open a New File                                                 |       |
| Save As                                                         |       |
| Save                                                            |       |
|                                                                 |       |

| Exit                                       | 2-2  |
|--------------------------------------------|------|
| Export Configuration File as Text          |      |
| VIEW                                       |      |
| View Drawings                              |      |
| TOOLS                                      |      |
| Communication Port Settings                |      |
| Meter Configuration                        |      |
| INPUTS/OUTPUTS                             |      |
| Download Firmare/Image File                |      |
| Security Codes                             |      |
| Connect to Device                          |      |
| Go Offline                                 | 2-45 |
| Modbus Driver                              |      |
| Settings                                   |      |
| PID OPERATING                              |      |
| Flow Loop Set Point                        |      |
| Flow Loop In Service OR Out of Service     |      |
| Pressure Loop Set Point                    | 2-46 |
| Pressure Loop In Service OR Out of Service | 2-46 |
| Set Output Percentage                      | 2-46 |
| Auto/Manual Mode                           | 2-46 |
| Reset PID                                  | 2-46 |
| CALIBRATION                                | 2-47 |
| View Diagnostic Data                       | 2-47 |
| Calibrate Mode                             | 2-47 |
| CALIBRATION                                | 2-47 |
| Calibration - Slave Unit                   | 2-47 |
| Calibration - Display                      | 2-48 |
| Data Verification                          | 2-48 |
| Parameter Overrides:                       | 2-49 |
| Temperature Override                       | 2-49 |
| Pressure Override                          |      |
| Venturi C Override                         | 2-49 |
| Wedge Kd2 Override                         | 2-49 |
| BS&W Override                              |      |
| Equilibrium Pressure Override              |      |
| Alpha T E-6 Override                       |      |
| Orifice ID Override                        |      |
| Pipe ID Override                           |      |
| Multi-variables Input Override             |      |
| SG/Density Override                        |      |
| Analog Input Override                      |      |
| RTD Input Override                         |      |
| SYSTEM                                     |      |
| HISTORICAL DATA                            |      |
| CAPTURE REPORT                             |      |
| SCHEDULED AUTO POLLING                     |      |
| Viewing previously captured reports        |      |
| Printing Reports                           |      |
| Custom Report                              |      |
| HAPTER 3: Data Entry                       |      |
| MAIN MENU                                  |      |
| Security Code                              |      |
| Calibrate /1=M.Var.                        |      |
| Enable Calibrate Mode                      |      |
| Calibrate Analog Input, RTD                |      |
| Candrate Analog Input, KID                 |      |

| Calibrate Analog Output                                                          | 3-4  |
|----------------------------------------------------------------------------------|------|
| Calibrate Multivariable                                                          |      |
| Override Meter No.                                                               |      |
| Date/Time                                                                        |      |
| Configuration                                                                    | 3-9  |
| Configue Meter                                                                   | 3-9  |
| Flow Equation Type                                                               | 3-9  |
| Configure I/O                                                                    | 3-11 |
| Analog Output                                                                    | 3-12 |
| Meter I/O                                                                        | 3-13 |
| Status Input Assignment                                                          | 3-14 |
| Switch Output Assignment                                                         | 3-14 |
| Flow Computer Display Assignment                                                 |      |
| Pulse Output                                                                     |      |
| Others                                                                           |      |
| CHAPTER 4: FLOW EQUATIONS                                                        |      |
| Common Terms                                                                     |      |
| API 14.3                                                                         |      |
| Venturi                                                                          |      |
| Frequency Device                                                                 |      |
| Wedge                                                                            |      |
| DENSITY EQUATIONS                                                                |      |
| Sarasota Density(GM/CC-US Unit, KG/M3-Metric Unit)                               |      |
| UGC Density(GM/CC-US Unit, KG/M3-Metric Unit)                                    |      |
| Solartron Density (GM/CC-US Unit)                                                |      |
| Solartron Density (KG/M3-Metric Unit)                                            |      |
| CHAPTER 5: MODBUS DATA                                                           |      |
| MODBUS PROTOCOL                                                                  |      |
| TRANSMISSION MODE                                                                |      |
| ASCII FRAMING                                                                    |      |
| RTU FRAMING                                                                      |      |
| FUNCTION CODE                                                                    |      |
| ERROR CHECK                                                                      |      |
| EXCEPTION RESPONSE                                                               |      |
| BROADCAST COMMAND                                                                |      |
| MODBUS EXAMPLES                                                                  |      |
| FUNCTION CODE 03 (Read Single or Multiple Register Points)                       |      |
| Modbus Address Table – 16 Bits Integer                                           |      |
| Modbus Address Table – 10 Bits Integer  Modbus Address Table – 2x16 Bits Integer |      |
| Last Batch/Hourly/Daily/Month DATA AREA                                          |      |
|                                                                                  |      |
| Current Data Area                                                                |      |
|                                                                                  |      |
| Alarm, Audit Trail, and Calibration Data                                         |      |
| Previous Audit Data Area                                                         |      |
|                                                                                  |      |
| Previous Calibration/Verification Data Area                                      |      |
| Current Alarm Status                                                             |      |
| Data Packet                                                                      |      |
| Previous Hourly Data Packet (101-184)                                            |      |
| Previous Daily Data Packet                                                       |      |
| Previous Month Data Packet (411)                                                 |      |
| Previous Month Data Packet (412-414)                                             |      |
| Previous Month Data Packet (415)                                                 |      |
| Report by Exception:                                                             |      |
| Number of active meters/Spare I/O 1-4 Assignments                                |      |
| Hourly Data (Last Day - 24 Hours)                                                | 5-74 |

| Snapshot Report                       | 5-75 |
|---------------------------------------|------|
| CHAPTER 6: Installation Drawings      |      |
| Explosion-Proof Installation Drawings |      |
| Manifold Installation Drawings        |      |

# **CHAPTER 1: QUICK START**

#### Introduction:

The micro MV Liquid Multi-Meter Flow Computer was designed after careful listening to our customers in all sectors of the oil and gas industry. It was built to address the different needs for refineries, chemical plants, gas processing plants, offshore platforms, pipeline and transmission, remote gas wells, and storage caverns. The focus has been to bring the different needs and requirements of these specialized industries into one hardware platform and therefore reducing the spare parts requirements, the training process, calibration, and overall cost of ownership. We believe the Micro MV Liquid Flow Computer has delivered and met the design intentions.

The Micro MV Liquid Flow Computer combines the following features:

- User Friendly
- **♦** Flexible
- Easy to understand and configure
- ♦ Rugged
- ♦ Economical to install and maintain
- **♦** Accurate

We hope that your experience with the Micro MV Liquid Flow Computer will be a simple pleasant experience, not intimidating in any way.

The Micro MV Liquid Flow Computer handles up to four-meter run flow computer for the measurement of liquid products. Using orifice plate, Venturi, turbine/PD meter, or wedge devices, it can meter a wide variety of products, such as crude, refined product, LPG/NGL products. Thirty-five days of previous daily data, eight previous batch data, and thirty-five days previous hourly data are stored in the short format type reports. The previous 80 audit-trail reports and 80 alarm reports are stored. User formatted reports and user formatted ticket reports are available. Eight different product files are user-configurable. One Rosemount multi-variable digital transducers can be connected to each Micro MV flow computer for temperature, pressure (up to 3626 PSIG), and DP (up to 830 inches H<sub>2</sub>O). Other Rosemount multi variable

transmitters can be connected to the Micro MV Liquid Flow Computer via RS485 serial interface. Up to four meter runs can be stored and calculated in a single Micro MV Liquid Flow computer. The 2<sup>nd</sup> RS485 is used as a slave or a master Modbus port for data acquisition and other serial functions.

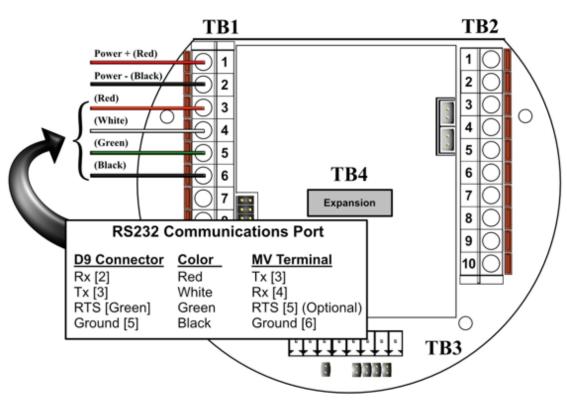
The Micro MV Liquid Flow Computer has a host of inputs and outputs beyond the built in Rosemount Multi Variable transmitter.

Three high-speed frequency inputs (Sine or Square wave), 70 mV peak to peak or sine wave 6 volts, or lighter on square wave

Four additional analog inputs, or two analog inputs and one three wire RTD inputs

The Micro MV Liquid Flow computer handles up to four-meter runs capabilities. It includes the following Four additional analog inputs, or two analog inputs and one three wire RTD inputs

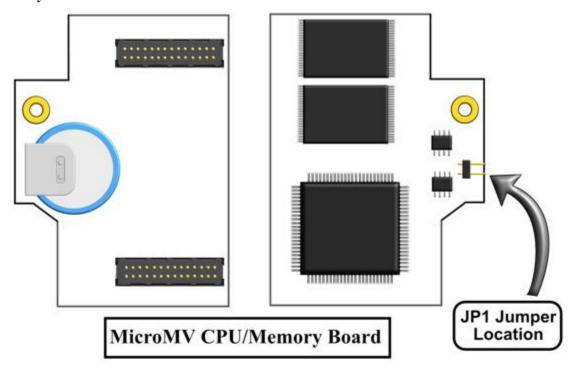
One analog output expandable to four, or five additional analog inputs, one RS232, two RS485 with Modbus protocol, and one additional serial printer output.

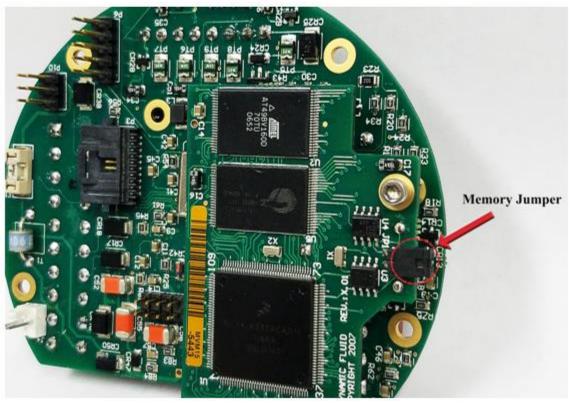

Three status inputs or digital outputs are user configurable. The fourth digital I/O is optional. Additionally, each Micro MV Liquid Flow Computer can store up to 35 days of hourly and daily data. Optional expandable memory (Virtual Hard Drive) up to 132 Megs, combined with our customized data storage allows almost any type data logging task to become possible.

Note: Flow equations used are continuously upgraded and new equations are added. Call factory for current software library.

# **Quick Start Up**

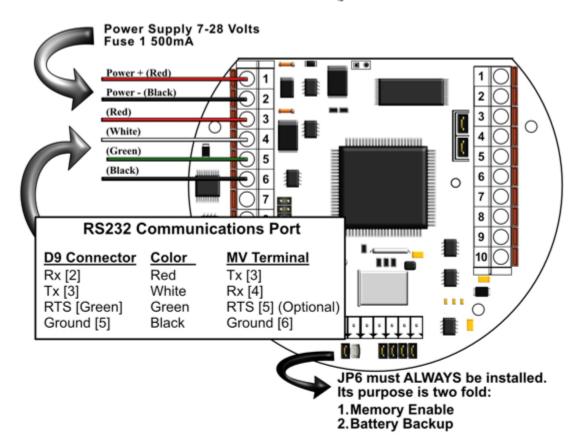
**Version 2 - MicroMV Main/Memory Boards (Micro2009 and Later Model)** 


**Main Board** 




### MV Step by Step Startup:

- 1. Connect power supply cable
- 2. Connect RS-232 Communications
- 3. Ensure jumper JP1 is installed on memory board
- 4. Energize power supply (24 Volts Recommended)
- 5. Verify display comes on
- 6. Run DFC Software
- 7. Configure the Micro MV device

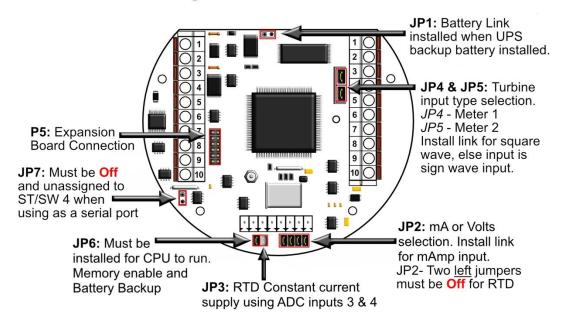

Version 2 - MicroMV Main/Memory Boards (Micro2009 and Later Model) Memory/CPU Board

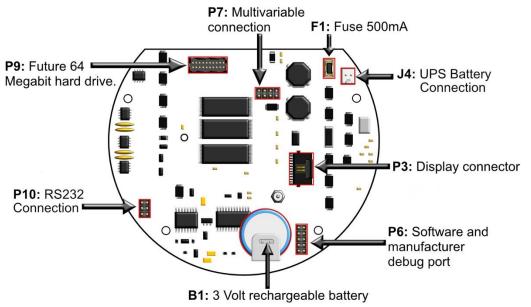




#### **Version 1 - MicroMV Board (Older MicroMV Models)**

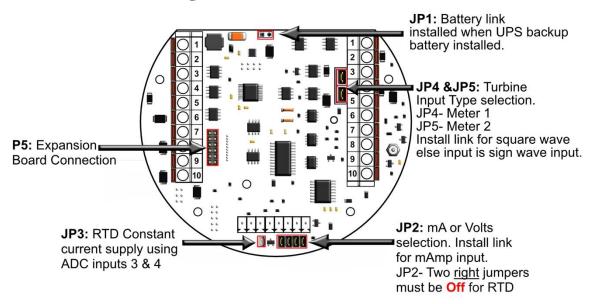
# MicroMV Quick Start

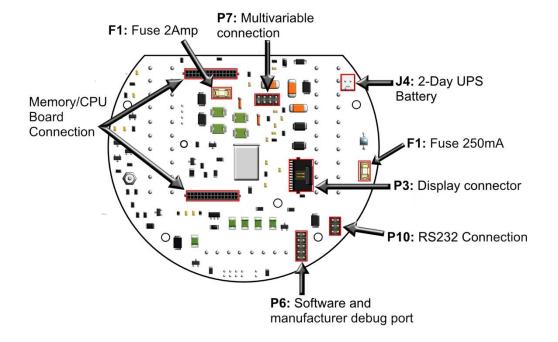




### MV Step by Step Startup:

- 1. Connect power supply cable
- 2. Connect RS-232 Communications
- 3. Ensure jumper JP6 is installed
- 4. Energize voltage (24 Volts Recommended)
- 5. Verify DynacomTM Software
- 6. Run DynacomTM Software
- 7. Configure the Micro MV unit
- 8. Consult the Faultfinding if a problem is incurred

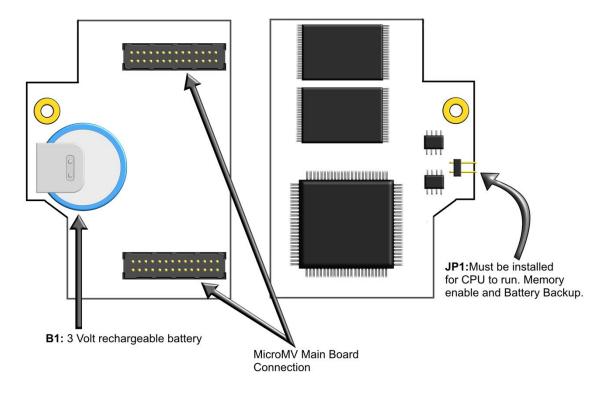
#### **Version 1 - MicroMV Board (Older MicroMV Models)**


#### Berg Links and Connections






#### Version 2 - MicroMV Main Board (Micro2009 and Later Model)


### Berg Links and Connections

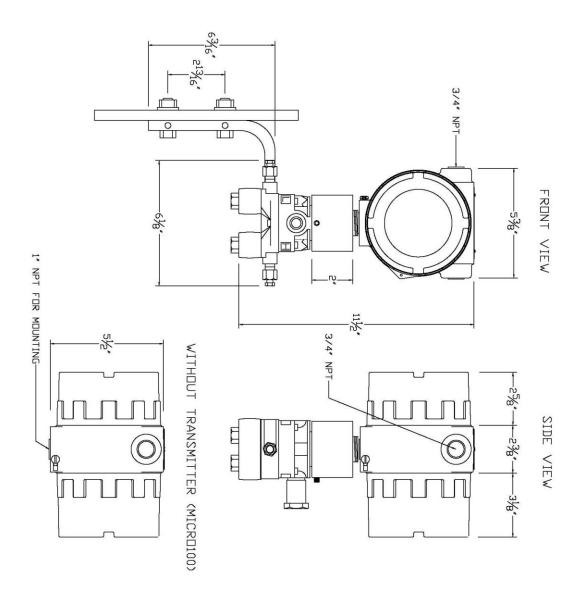




### Version 2 - MicroMV Memory/CPU Board

# Berg Links and Connections




# Technical Data

| POWER                  |                                                                    |
|------------------------|--------------------------------------------------------------------|
| VOLTAGE RANGE          | 7-28 VDC                                                           |
| POWER CONSUMPTION      | 0.5 WATT                                                           |
|                        |                                                                    |
| OPERATING CONDITIONS   |                                                                    |
| TEMPERATURE            | - 40 TO 185 °F                                                     |
| HUMIDITY               | 100%                                                               |
| HOUSING                | NEMA 4X CLASS 1 DIV. 1                                             |
|                        |                                                                    |
| FEATURES               |                                                                    |
| DISPLAY                | PLASMA 4 LINES 20 CHARACTERS BACKLIT DISPLAY                       |
|                        | WITH 4 INFRARED REFLECTIVE SENSORS                                 |
| PROCESSOR              | 32-BIT MOTOROLA 68332 @ 16.7 MHZ                                   |
| FLASH ROM              | 4 MBITS @ 70 NANO SECONDS                                          |
| RAM                    | 2 MBITS                                                            |
| FREQUENCY INPUT        | 3 CHANNELS                                                         |
|                        | CHANNELS 1 & 2 ARE SINE/SQUARE WAVE CAPABLE                        |
|                        | CHANNEL 3 IS SQUARE WAVE ONLY                                      |
|                        | SQUARE WAVE RANGE 0 - 6000 HZ                                      |
|                        | SINE WAVE RANGE 0 – 1200 HZ                                        |
|                        | SIGNAL > 40 mV FOR SINE WAVE                                       |
|                        | SIGNAL > 3 VOLTS and < 12 VOLTS FOR SQUARE                         |
| ANALOG INDUT           | WAVE (CHANNELS 1 & 2)                                              |
| ANALOG INPUT           | 4 INPUTS STANDARD EXPANDABLE UP TO 9 ANALOG                        |
|                        | INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD.                            |
| MULTIVARIABLE          | BUILT-IN ROSEMOUNT MULTIVARIABLE                                   |
|                        | TRANSMITTER WITH DIRECT SPI DIGITAL                                |
|                        | CONNECTION. MAXIMUM UPDATE SPEED ONCE                              |
|                        | EVERY 109 MILLISECONDS.                                            |
| ANALOG OUTPUT          | ONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE                      |
| DIGITAL I/O            | TO FOUR (4) 4 DIGITAL INPUTS OR OUTPUTS.                           |
| DIGITAL I/O            | DIGITAL INPUTS OR OUTPUTS.  DIGITAL OUTPUTS HAVE 0.25 AMPS RATING. |
|                        |                                                                    |
| SERIAL                 | 2 RS485 @ 9600 BAUDS VARIABLE                                      |
|                        | 1 RS232 @ 9600 BAUDS VARIABLE                                      |
|                        | 1 PRINTER OUTPUT                                                   |
| COMMUNICATION PROTOCOL | MODBUS                                                             |

# Parts List

| Spare Parts - Micro MV |                                                                              |  |  |  |
|------------------------|------------------------------------------------------------------------------|--|--|--|
| Part #                 | Description                                                                  |  |  |  |
| MVC                    | Micro MV CPU Main Board Only                                                 |  |  |  |
| MVM                    | Micro MV CPU Mempry Board Only                                               |  |  |  |
| MVD                    | Micro MV Display Board                                                       |  |  |  |
| MVI                    | Micro MV Analog In Board                                                     |  |  |  |
| MVO                    | Micro MV Analog Out Board                                                    |  |  |  |
| MVP                    | Micro MV Prover Board                                                        |  |  |  |
| MVR                    | Micro MV Rosemount Board                                                     |  |  |  |
| S6920                  | Explosion Proof Housing Unit for Micro MV Flow Computer                      |  |  |  |
| Adapter A              | Adapter for 0205 Rosemount Transmitter (Accommodates Micro MV Flow Computer) |  |  |  |
| Bracket-MVD            | Bracket for Micro MV Display                                                 |  |  |  |
| Bracket-MVC A          | Bracket for Micro MV CPU (Without Analog)                                    |  |  |  |
| Bracket-MVC B          | Bracket for Micro MV CPU (With Analog)                                       |  |  |  |
| MVD Cable              | Micro MV Display Ribbon Cable                                                |  |  |  |
| O-Ring A               | O-Ring Gasket for Micro MV Housing                                           |  |  |  |
| Fuse A                 | 250 mA Fuse                                                                  |  |  |  |
| Fuse B                 | 500 mA Fuse                                                                  |  |  |  |
| Fuse C                 | 2 Amp Fuse                                                                   |  |  |  |
| Battery A              | Replacement Battery for Micro MV Flow Computer (Board Mounted)               |  |  |  |

# Micro MV Flow Computer: Dimensions



# Window Software Minimum Requirements:

Please make sure your computer has the minimum requirements to install Dynamic's Dynacom software.

#### System Minimum Requirements

In order to install this software product the following requirements must be met:

- Windows Operating System (Win95, Win98, Win98SE, win2000, WinNT, WinXP, Vista, Windows 7, Windows 8, Windows 10)
- For Windows NT, 2000, XP or Vista: Administrator level access to create an ODBC system DNS.
- Minimum disk space available: 16 MB.
- 1 Serial Communication Port

If your computer meets these requirements, you can run the setup file downloaded from our website

## What is a configuration file?

The configuration file is an archive that contains the data used by the flow computer to determine calculation settings (Pipe ID, Flow Equation, Meter ID, etc.) and input/output assignments.

# Downloading a configuration file to the flow computer.

- Open the configuration file using the **Configuration File | Open...** option on the main menu or pressing the open button in the toolbar. Once the file is open the file name will appear on the upper left corner of the window, so you can verify that the desired file was open.
- Connect to the Flow Computer either by using the **Tools | Connect to Device** option on
  - the main menu, the button on the vertical toolbar, or by pressing the [F5] key on the keyboard. Once you are connected the application it will show an ONLINE status on the lower right corner of the main window. Failure to communicate can occur because of a communication wiring problem, wrong PC port selection, communication parameter mismatch between PC and MicroMV (Modbus type, parity, baud rate, etc.) or lack of power to the MicroMV Flow Computer. To use "Tools | Com Settings | Auto Detect Settings" option, the user must insure that only one MicroMV computer is connected to the PC. More than one MicroMV Flow Computer in the loop will cause data collisions and unintelligible responses.
- Go to the configure device option either by using the **Tools | Meter Configuration**Configure

option, the Device button on the vertical toolbar, or by pressing the **[F10]** key on the keyboard.

- Because you are connected to a device, a window will appear asking you if you want to read the configuration from the connected meter, Press NO since what we want is to write the PC file to the flow computer.
- A configuration window will now appear showing you the information in the configuration
  file, you can check these values to make sure this is the file you want to send to the flow
  computer. Once you have checked that the configuration is correct, press the
  [Download] button. A blue bar indicating the progress of the download will appear at the
  bottom of the application window, after that the information in the configuration file will be
  in the flow computer.

**Note:** In case the flow computer is a liquid application, remember to End Batch after the configuration in downloaded for the changes to take effect.

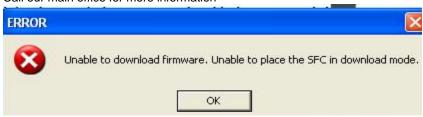
## What is an Image File?

An image file is an EPROM code for a certain purpose (liquid, gas, prover, etc.) **The image file is only done when an application upgrade is needed**.

When an image file is downloaded to the flow computer, all the information in the computer is lost (configuration and historical data), so make sure to retrieve all the important information before changing the image file.

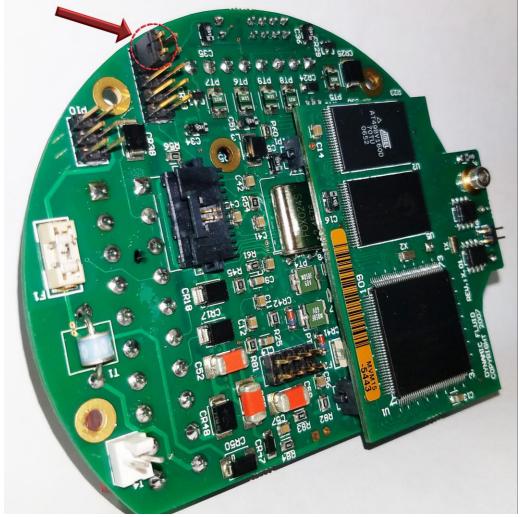
### How to download an Image File

- Download an image file through RS232 port only.
- To Download an Image File to the Flow Computer select the **Tools | Download Program** option form the main menu or press the button in the toolbar.
- A small dialog will appear asking for the file name of the image file (Image file have the extension .img). Type it in or use the **Browse** button to locate it.
- Once the file name is in place press Download.
- If a retry message of small dialog appears, try to use "Tools | Com Settings | Auto Detect Settings" option, the user must insure that only one MicroMV computer is connected to the PC. More than one MicroMV Flow Computer in the loop will cause data collisions and unintelligible responses. Failure to communicate can occur because of a communication wiring problem, wrong PC port selection, communication parameter mismatch between PC and MicroMV (Modbus type, parity, baud rate, etc.) or lack of power to the MicroMV Flow Computer. After the device is detected, then you can follow steps described above.


Warning messages will remind you that this action will erase **ALL** the information in the flow computer.

The download task will take about 7 minutes to be completed. Once the image file is in place, the flow computer is ready to be configured (enter calculation parameters and I/O assignments).

# How to force a board into download mode


First, try to recycle the power and reload the image if the error message is displayed while downloading a new image file. Download an image file only through **RS-232 port**. MicroMS4 Windows Software version 2.1 or higher is required. Contact technical support for old boards loaded with downloader v1. Forcing download mode could be required if a wrong type of application image was loaded or other issues.

Call our main office for more information



Steps to force the board into download mode.

- (1) Remove Power
- (2) Put a jumper on P6 as shown below.



- (3) Power up the board
- (4) Board is in download mode
- (5) Download image
- (6) Remove power and jumper on P6 after a new image is loaded
- (7) Board is ready

# Website - DFC Configuration Software

Step 1. Go to our website WWW.DYNAMICFLOWCOMPUTERS.COM

Step 2. Click on the "Downloads"



### Downloads

E-Chart Software

E-Plus Software

E-Lite Software

FloPro Software

SFC 332 Software

SFC 500 Software



Micro MV Software

SmartCone<sup>™</sup> Software

#### Contact Us

Find a local sales office

**Technical Support** 

# Micro MV Software

# PC Configuration Software

Downloader Version 2 (Download an Image File when an app

#### Gas

- Micro MS4 Dynacom Version 2.20
- Micro MVA Dynacom Version 1.9
- Micro MVG Version 1.30

#### Liquid

- Micro MVL Version 2.23
- Micro ML1 Version 2.13
- Micro ML4 Verson 2.2
- Micro NOC Version 1.4

#### Prover

Micro MP3 Version 2.6

#### Other

- Micro MG4 (DOS Software)
- Micro MS4 Reports Add-In (Pemex)\*

**Step 3.** Select application software based on Step 2.

**Step 4**. On the new screen presented to you click on the application that you are trying to download. Once you hit the link it will ask you if you want to run or save the file in your computer. Select **SAVE.** (See illustration 1)





- **Step 5.** The file will start to transfer to your computer. The download time depends on your Internet connection speed and the type of application that being downloaded.
- **Step 6.** When the download if finish. Press the **OPEN** button to start the setup process. (See Illustration)
- **Step 7.** Follow the steps in the application setup.

### Website - Image File (Firmware)

Check the version number of image file. The image file is only done when an application upgrade is needed.

**Step 1.** Go to our website <u>WWW.DYNAMICFLOWCOMPUTERS.COM</u>

Step 2. Click on the "Downloads"



**Step 3**. On the new screen presented to you click on the application firmware that you are trying to download. Once you hit the link it will ask you the location and file name to be saved.

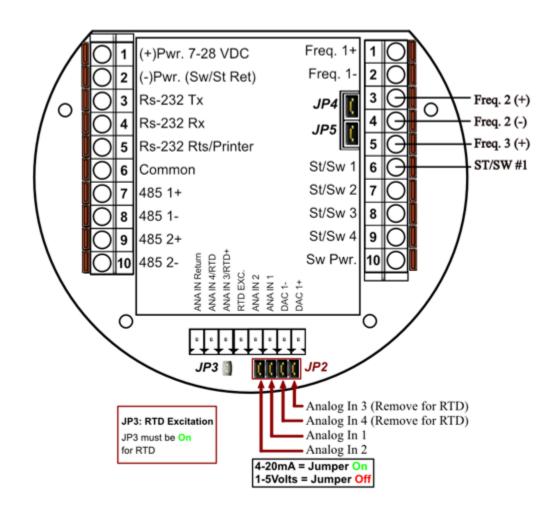
#### Downloads Micro MV Software E-Chart Software **PC Configuration Software** E-Plus Software Downloader Version 2 (Download an Image File when an application upgrade is needed) E-Lite Software Gas FloPro Software • Micro MS4 Dynacom Version 2.20 SFC 332 Software • Micro MVA Dynacom Version 1.9 SFC 500 Software • Micro MVG Version 1.30 Micro MV Software Liauid SmartCone™ Software Micro MVL Version 2.23 Micro ML1 Version 2.13 Micro ML4 Verson 2.2 Contact Us • Micro NOC Version 1.4 Find a local sales office **Firmware** Technical Support What is an Image File? How to Download an Image File. • Micro ML1 Version 6.03.14 (Windows Software 2.11 or higher is required) • Micro MVG Version 6.09.15 (Windows Software 1.27 or higher is required) • Micro MVL Version 6.11.20 (Windows Software 2.18 or higher is required) • Micro ML4 Version 6.01.09 (Windows Software 2.1 or higher is required) • Micro MS4 Version 6.04.21 (Windows Software 2.18 or higher is required) Micro MVA Version 6.04.03 Micro MP3 Version 12.11.07 • Micro NOC Version 6.00.04

**Step 4.** The file will start to transfer to your computer. The download time depends on your Internet connection speed and the type of application that being downloaded.

**Step 5.** After the download is finished, follow the steps in the image downloading setup.

# Getting acquainted with the flow computer wiring:

#### **Back Terminal Wiring**


The back terminal wiring indicates the overall positions of the terminal plugs and their functions. Though the back panel's jumpers are also shown, refer to the next drawing, "Back Panel Jumpers", for information on their settings and functions.

The MicroMV receives its power via the .top two pins on Terminal P1, on the left of the board. Also on Terminal P1 from top to bottom are inputs to the four serial connections

To the right (P4), from top to bottom, are two turbine inputs, density frequency input, and switch/status inputs and output.

Terminal P3, at the lower bottom, handles analog inputs/RTD and analog output.


#### VERSION 2 - MICROMV MAIN/MEMORY BOARDS (MICRO2009 AND LATER MODEL)



JP4: When ON Meter 1 Uses Square Wave. When OFF Meter 1 Uses Sine Wave JP5: When ON Meter 2 Uses Square Wave. When OFF Meter 2 Uses Sine Wave

#### VERSION 1 - MICROMV BOARD (OLDER MICROMV MODELS)

# **Back Panel**



JP2: Must be installed for 4-20mA inputs. When removed, the analog input is used as 1 to 2.5 Volts Input. JP2 consists of 4 links, each link corresponds to one analog input.

JP3: Is RTD Excitation and should never be installed when Analog 3 & 4 are used as Analog inputs (See RTD Connection for details).

JP4: When ON, Meter 1 Uses Square wave. When OFF, Meter 1 Uses Sine wave

JP5: When ON, Meter 2 Uses Square Wave. When OFF, Meter 2 Uses Sine Wave

JP6: Always installed. It can be removed after power is removed to clear RAM memory.

# INPUT/OUTPUT: Assigning and Ranging Inputs

#### **Input/Output Assignment**

We will now configure your MicroML4/Micro100 Flow Computer's inputs and outputs. The flow computer allows the user to configure the inputs and outputs. (I.e. Analog #1 is pressure for Meter #1). The flow computer does not use unassigned inputs.

#### How to assign a transmitter to an I/O point:

- 1 Click "Configure Device", configuration menu is prompted
- 2 On configuration menu, click "Meter Data | Input Position"
- 3 Enter assignments for DP, temperature, pressure, density and BS&W inputs.
- 4 **Assignment (1-n).** Assignments 1-4 are analog inputs attached to terminal of the back panel. These inputs accept 4-20mA or 1-5 volts are suitable for temperature, pressure, density, or spare inputs. An assignment 5 is strictly RTD (temperature) input only for the meter, densitometer or spare. Assignment 7 indicates a density frequency input; it is assigned automatically once you choose live density frequency input in the setup menu at density type Assignment 10 (module 1) is for Rosemount multi-variable module only. DP, pressure, and temperature for the meter can be assigned. When a frequency type primary element is hooked to the flow computer, the Multi Variable pressure and temperature can be used and the DP becomes a spare input that could be assigned for strainer differential.

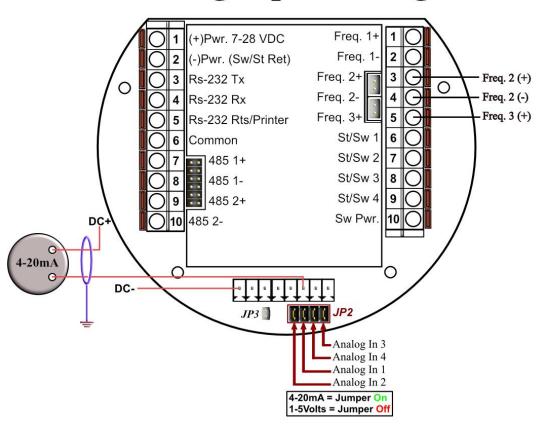
#### Ranging the Transmitter Inputs:

- 1. Enter the range values for analog inputs: after assigning the analog inputs, click "Inputs/Outputs | Analog Inputs" to scale the 4-20mA. Enter the value at @4mA and @20mA. Enter both values similar to the way the transmitter is ranged. 1-5 volts are equivalent to 4-20mA. Enter the 1 Volt value at the 4mA, and 5 Volt value at 20mA. When the Multi Variable is used the 4-20 ma scale has no effect on anything and does not need to be configured for that input. The reason is simply that the flow computer gets the data via digital communication from the transmitter in engineering units, and therefore a scale is not needed. Normal pressure range is 0-3626, temperature -40 to 1200, DP -250 to 250, or -830 to 830 inches of water.
- 2. Enter the high and low limits: high limits and low limits are simply the alarm points in which you would like the flow computer to flag as an alarm condition. Enter these values with respect to the upper and lower range conditions. Try to avoid creating alarm log when conditions are normal. For example: If the line condition for the pressure is between 0 to 500 PSIG. Then you should program less than zero for low-pressure alarm, and 500 or more for high-pressure alarm.
- 3. Set up the fail code: Maintenance and Failure Code values tell the flow computer to use a default value in the event the transmitter fails. The default value is stored in Maintenance. There are three outcomes: the transmitter value is always used, no matter what (Failure Code = 0); the Maintenance value is always used, no matter what (Failure Code = 1); and the Maintenance value is used only when the transmitter's value indicates that the transmitter has temporarily failed (Failure Code = 2).

RTD inputs will skip 4-20 mA assignment because RTD is a raw signal of  $50\Omega$  (ohms) to  $156\Omega$ . Readings beyond that range require a 4-20 mA signal to the flow computer or using the built in Rosemount Multi Variable transmitter. The Rosemount Multivariable has a range of -40-1200 degrees Fahrenheit. Density coefficients for raw frequency inputs are programmed in this menu. The menu will only show parameters relevant to the live density selected (i.e., Solartron or UGC, etc.).

#### WIRING:

Wiring to the flow computer is very straightforward and simple. But still it is very important to get familiar with the wiring diagram.


#### Wiring of Analog Inputs: Version 2 Board

#### MicroMV Main/Memory Boards (Micro2009 and Later Model)

Typical wiring for analog inputs 2 and 1 are shown in the drawing. Analog inputs 4 and 3 are to the left of analog 2 and 1 separated by the RTD excitation. Note that the analog input has only one common return that is the -Ve signal of power supply powering the transmitters.

When wiring 1-5 volts, make sure to calibrate the flow computer for the 1-5 volt signal because the flow computer calibration defaults for the 4-20 ma, which is different from the 1-5 volts. JP2 must be removed for 1-5 volt inputs. Signal line impedance provided by our flow computer is  $250\Omega$ .

# **Analog Input Wiring**

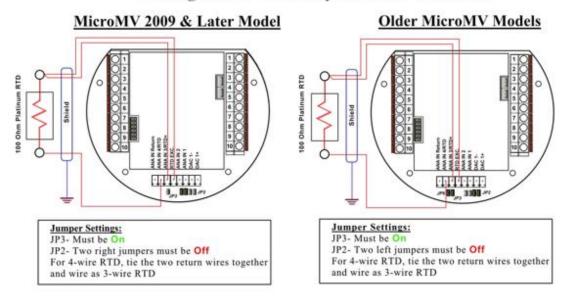


#### Wiring of Analog Inputs: Version 1 Board

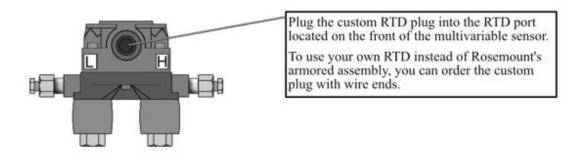
#### MicroMV Board (Older MicroMV Models)

Typical wiring for analog inputs 1 and 2 are shown in the drawing. Analog inputs 3 and 4 are to the left of analog 1 and 2 separated by the RTD excitation. Note that the analog input has only one common return that is the -Ve signal of power supply powering the transmitters.

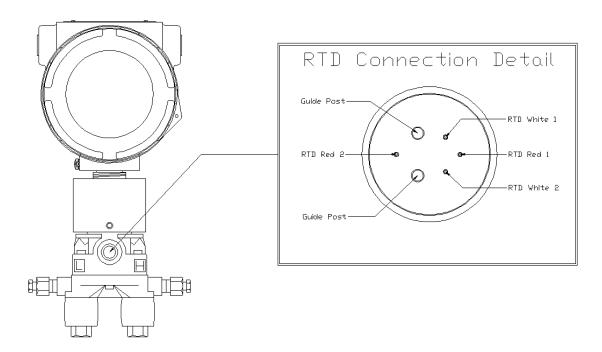
When wiring 1-5 volts, make sure to calibrate the flow computer for the 1-5 volt signal because the flow computer calibration defaults for the 4-20 ma, which is different from the 1-5 volts. JP2 must be removed for 1-.5 volt inputs. Signal line impedance provided by our flow computer is  $250\Omega$ .


# Analog Input Wiring NA IN 3/RTD+ DC+ NA IN 2 DC JP6 🚺 🗓 JP3 ((()() JP2 Analog Inputs are loop powered. They require their own power supply. The same CPU power supply can be used if it is filtered. JP2: Must be installed for 4-20mA Inputs. When removed, the analog 2222 input is used as 1 to 5 Volts Input. JP2 consists of 4 links, each link Analog I Analog I Analog I Analog I corresponds to one analog input. (See JP2 Detail) JP3: Is RTD Excitation & should never be installed when Analog 3 & 4 are used as Analog Inputs. JP2 Detail

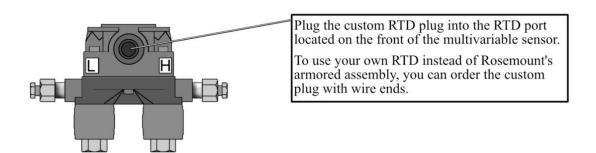
NOTE: The 4-20mA or 1-5 volt DOES NOT source power to the transmitters. You can use the DC power feeding the flow computer to power the 4-20mA loops IF that power supply is FILTERED.


#### Wiring of RTD

100Ω platinum **must** be used; a temperature range of -43°F to +300°F can be measured. RTD is to the left of analog in 1&2. The RTD excitation jumper (JP3) has to be installed for the RTD to function. In the figure below, notice that the RTD requires a three wire connections. Internal excitation current source generated is in the micro AMP range.


### Wiring RTD Directly Into CPU Board

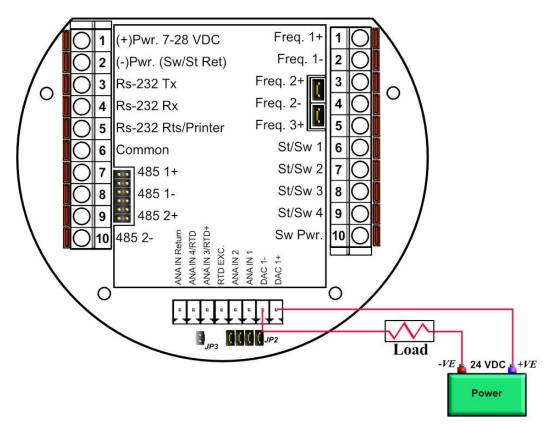



# Wiring RTD Into Rosemount Multivariable



### **Rosemount RTD Connection**



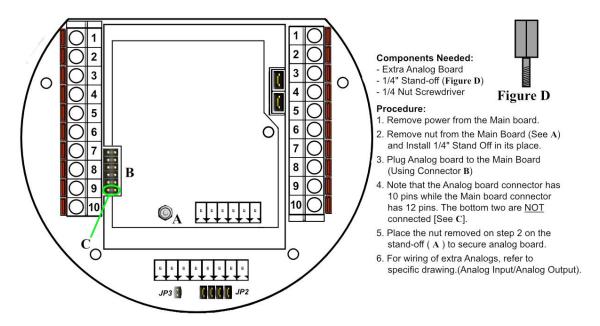

# Wiring RTD Into Rosemount Multivariable



#### Wiring of Analog Output:

Wiring diagram shows typical Analog output wiring. Notice that analog outputs will regulate 4-20 mA current loops but **DOES NOT** source the power for it. **External power is required**. Expansion board is required for addition three analog outputs.

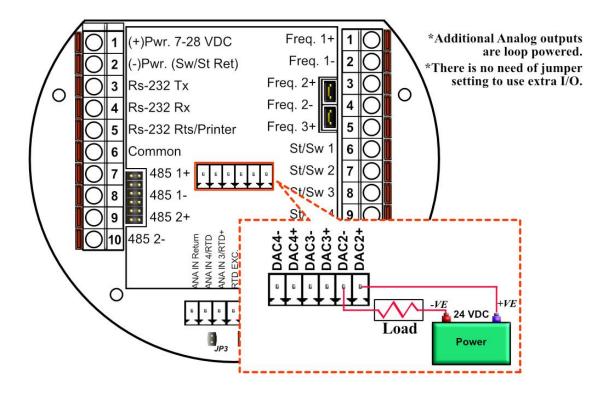
# **Analog Output Wiring**




#### Assigning/Ranging the 4-20mA Analog Outputs:

Go to the **configuration** main menu and click **Analog Output Assignment**. A selection menu is prompted. Select the analog output number, and then enter what the 4 mA output will indicate and the 20 mA. Make sure that the 20 mA assignment value exceeds the upper range limit of what you assigned the Analog output for, otherwise the analog output will not update beyond 20 mA.

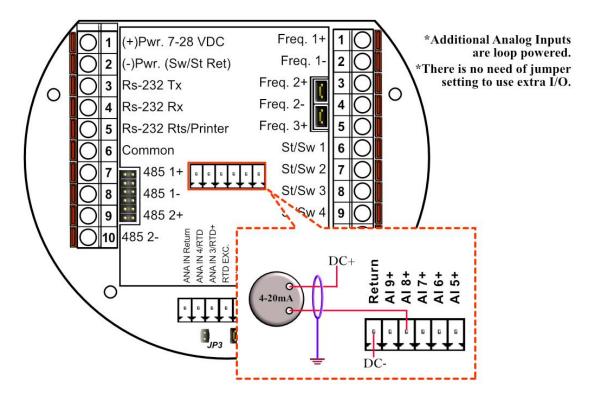
### Additional Analog Inputs or Analog Outputs - Board Installation


# Connecting Additional Analog Board



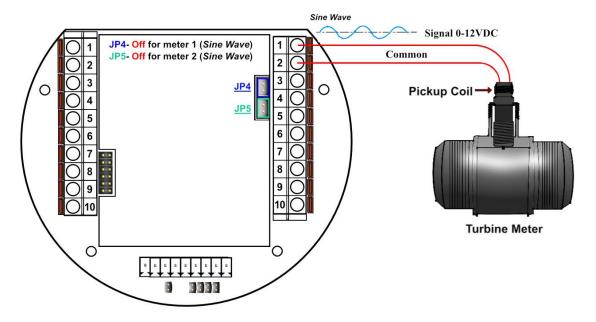
#### Additional Analog Outputs

Addition analog output board is required to have additional 3 analog outputs.


# Back Panel w/ Extra Analog Out Board



### **Back Panel - Additional Analog Intputs**


Addition analog input board is required to have additional 5 analog inputs.

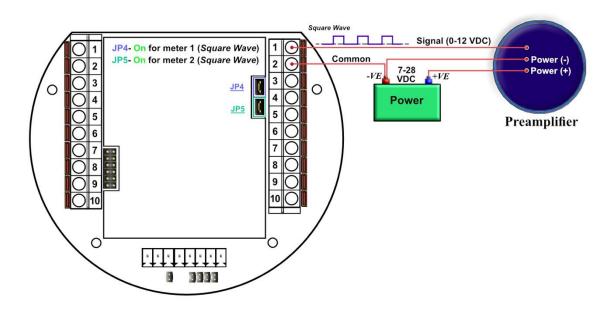
# Back Panel w/ Extra Analog Input Board



#### **Turbine Input Wiring**

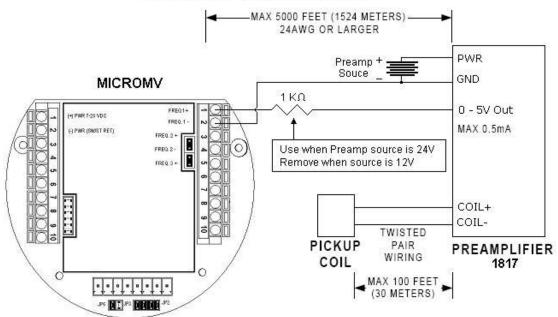
Go to **view** main menu, click **turbine** under **Wiring Drawings**. Two drawings above each other will show typical wiring for turbine meter 1 and turbine meter 2. When dual pickups from the same turbine are connected, use the inputs for turbine 1 for pickup 1 and turbine 2 for the second pickup coil. When connecting sine wave directly from the pickup coil make sure the distance from the pickup coil to the flow computer is very short—less than 50 feet with shielded cable. In the event there is presence of noise, the distance must be shortened. When connecting sine wave signal, the JP4 jumper for meter 1 must not be installed and JP5 jumper for meter 2 must not be installed. (*JP4 and JP5 must be off when using sine wave*). On the other hand, when using square wave, the square wave signal can be sinusoidal but has to be above 5 volts peak to peak with less than 0.4 volts offset in order for the flow computer to read it. The JP4 jumper for meter 1 must be installed and JP5 jumper for meter 2 must be installed.




Note: When connecting square wave input, the JP4 and JP5 connect the turbine return to the flow computer power return. Therefore, signal polarity is very important. Reverse polarity could result in some damage or power loss. When sine wave is used the signal polarity is usually of no significance.

The turbine input is on the top of terminal P3 The third pin down from the top is Turbine/PD input 2 plus and below it is Turbine 2 minus. The third frequency input (fifth pin down) has the positive input and the negative is the power input ground. If a different power supply is used to power the densitometer then the power return for that input needs to be connected to the Micro MV power ground.

#### **Turbine Input Wiring**


For square wave, the voltage is 5 to 12 VDC. Do not exceed 12 VDC (Terminal 1-Frequency#1 input+ and Terminal 3-Frequency#2 input+).

#### **Using Daniel 1818 Preamp**



#### Turbine Input Wiring - Using Daniel 1817 Preamp

#### **USING DANIEL 1817 PREAMP**

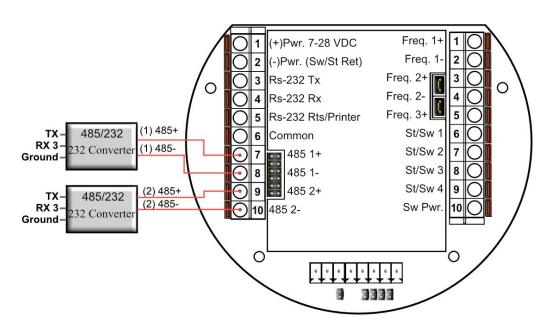


# **RS-232 Connection:**

- Disable software handshakes

The RS-232 is located on the left terminal block. The third, fourth, fifth, and sixth pins of the RS232 below the power input.

Note: Twisted shielded cable is required. **RS-232** Freq. 1 (+)Pwr. 7-28 VDC Freq. 1 2 (-)Pwr. (Sw/St Ret) Rs-232 Tx Freq. 2+ 3 Freq. 2-Rs-232 Rx Freq. 3+ Rs-232 Rts/Printer St/Sw 1 Common St/Sw 2 485 1+ PC-XT/AT DB-9 St/Sw 3 485 1-Female St/Sw 4 485 2+ Sw Pwr 10 485 2-0 О When Using Modem: - Jumper - DTR to DSR - RTS to CTS


**WARNING:** When the RS-232 terminal is used with a modem, external protection on the phone line is required. Jumper DTR to DSR, RTS to CTS, and disable software handshake on the modem RS232 connection

# **RS-485 Connection**

RS-485 wiring is shown in the wiring diagram under **RS-485**. Two Rs485 channels are available for Modbus communication. The second 485 channel is also available as a master to other slave devices. I.e. gas G.C., external Modbus slave devices and token passing ring. The maximum distance when 18-gauge wire is used is 4000 feet.

Note: Twisted shielded cable is required.

# RS-485

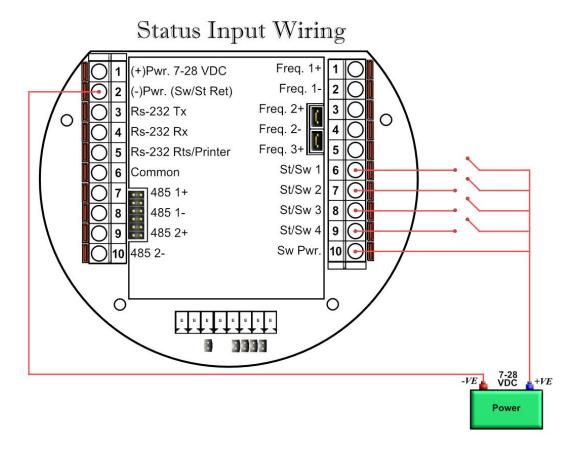


WARNING: When the RS-485 terminal is used, external transient protection and optical isolation is required, especially for long distance wiring.

#### RS485/232 Adapter

Dynamic recommends B&B Electronics. We generally use Model 485D9TB, which is a port power converter requiring only a 2-Wire connection. The 485D9TB has a terminal block which makes the wiring more convenient and provides the option of external 12V power for low power serial ports. Model 485SD9R can also be used, but it has a DB9 terminal which requires additional cables. With Model 485SD9R the pins that connect to the flow computer are pin 3 on the DB9 to TX on the flow computer and pin 8 on the DB9 goes to RX on the flow computer. For a USB to RS485 converter, we recommend Model USTL4 which is also port powered and supports half and full duplex networks.

#### \*Note


Version 1: MicroMV Board (Older MicroMV Models)

The second RS485 gets disabled if ST/SW#4 is used. They cannot be used at same time. To use ST/SW#4 as a serial port, JP7 must be OFF and no assignment for ST/SW#4, otherwise serial port#3(Second 485 Port) gets burned if voltage is applied.

**Version 2:** Main/Mem MicroMV Boards (Micro2009 and Later Model) ST/SW#4 and the second RS485 can be used be used at same time.

# Wiring of Status Inputs:

There are 4 digital inputs or outputs that are user configurable. The configuration software will configure the input to be a status input or a switch output. The standard status input has 4 volts of noise hysteresis, with on trigger point of 5 volts and an off point of 1 Volt.

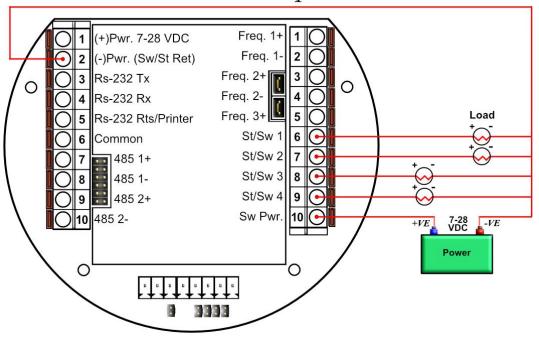


#### \*Note

Version 1: MicroMV Board (Older MicroMV Models)

The fourth digital I/O is optional and can only be use if the 2<sup>nd</sup> RS485 is not used.

The second RS485 gets disabled if ST/SW#4 is used. They cannot be used at same time.


To use Status 4 JP7 Must be ON otherwise OFF

**Version 2:** Main/Mem MicroMV Boards (Micro2009 and Later Model) ST/SW#4 and the second RS485 can be used be used at same time.

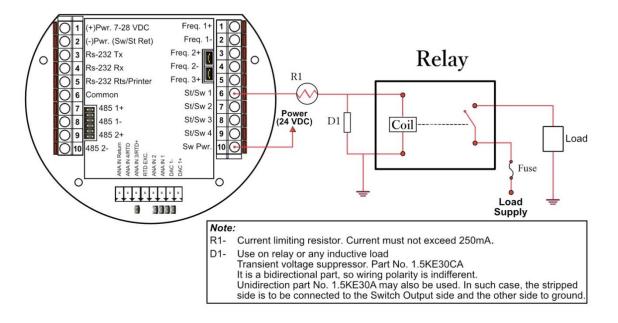
# Wiring of Switch/Pulse Outputs:

|                                                                                             | Switch one and two can be on /off or pulse type output up to 125 pulse per second. Notice that |                               |                                                                        |  |  |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------|--|--|
|                                                                                             | the switch outputs are transistor type outputs (open collector type with maximum DC rating of  |                               |                                                                        |  |  |
|                                                                                             | 350 mA continuous at 24 VDC) connections                                                       |                               |                                                                        |  |  |
|                                                                                             | 1                                                                                              | Status Input /switch output 1 |                                                                        |  |  |
|                                                                                             | 2                                                                                              | Status Input /switch output 2 | Switch - Maximum rating: 350mA @24 volts Switch Output Range: 7-28 VDC |  |  |
| 3 Status Input /switch output 3 Status Input Rating: 7-28 VDC Status Input Rating: 7-28 VDC |                                                                                                |                               |                                                                        |  |  |
|                                                                                             | 4                                                                                              | Status input /switch output 4 | Status Input Rating. 7-20 VDC                                          |  |  |

# Switch Output

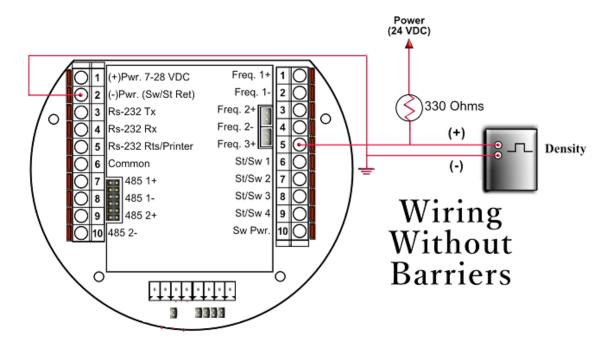


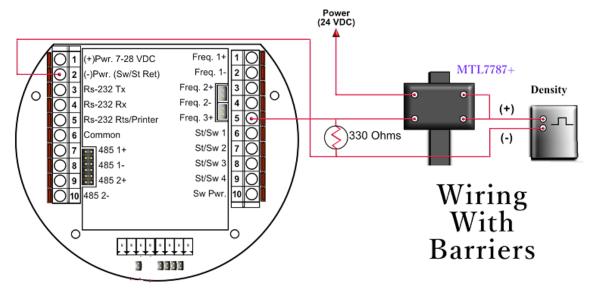
#### \*Note


**Version 1:** MicroMV Board (Older MicroMV Models)

The fourth digital I/O is optional and can only be use if the  $2^{nd}$  RS485 is not used. When using ST/SW#4, the second RS485 gets disabled. They cannot be used at same time.

**Version 2:** Main/Mem MicroMV Boards ((Micro2009 and Later Model) ST/SW#4 and the second RS485 can be used be used at same time.


# Switch Output to Relay Wiring Diagram


When wiring the Switch Outputs to an inductive load such as a relay, it is better to add transient protection to the flow computer's electronics due to the surge in voltage that inductive loads may create. This protection can be added as shown in the drawing below.



# **Density input wiring:**

When using a live densitometer input with frequency signal, the signal can be brought into the MicroMV in its raw form. The MicroMV accepts a sine wave or square with or without DC offset.





MTL7787+: Barrier for switches or digital inputs

Note: When wiring the density input polarity is of significance and reverse polarity could result in some damage or power loss. When Density input is 4-20mA it should be connected as a regular 4-20mA signal to the analog input and not the density frequency input.

# **CALIBRATION**

# Analog Input 4-20mA or 1-5 Volt Signal

Calibrations are performed under **Calibration**. Select inputs to be calibrated, and then select full, single, offset calibration method.

# OFFSET CALIBRATION:

For simple offset type calibration simply induce the signal into the analog input and make sure the MicroMV is reading it. After you verify that the MicroMV recognized the analog input, enter the correct mA reading, and then click OK. The offset type calibration is mainly used when a small offset adjustment needs to be changed in the full-scale reading. The offset will apply to the zero and span. Offset is the recommended method for calibrating the temperature input.

#### FULL CALIBRATION METHOD:

To perform full calibration be prepared to induce zero and span type signal.

- 1. Induce the low-end signal i.e. 4mA in the analog input.
- 2. Click inputs to be calibrated under calibration menu, click full calibration, enter the first point the analog input value i.e. 4mA, and then click OK button.
- 3. Now be ready to enter the full-scale value. Simply induce the analog signal and then enter the second value i.e. 20mA, and then click OK button
- 4. Induce live values to verify the calibration.

#### TO USE DEFAULT CALIBRATION

- 1. Select Analog Input
- 2. Select Reset calibration method
- 3. Now verify the live reading against the flow computer reading

# RTD Calibration:

RTD Calibration is a 2-step process. The first step is a onetime procedure to verify transducer linearity and is done at the time the meter is being setup. The second step is the routine calibration sequence.

#### Step 1 - Linearity Verification

- 1- Use a Decade box with 0-150 °F settings.
- 2- Connect RTD cable to this resistive element for verification of linearity. Verify low and high points. It must be within ½ degree.
- 3- Connect the actual RTD element and compare with a certified thermometer.
- 4- If not within ½ degree do a Full Calibration (See Full Calibration below). If problem persists verify other elements such as RTD Probe, connections, shield, conductivity of connectors, etc.

The purpose of the above procedure is to verify zero and span and make sure that the two points fall within the expected tolerance.

#### Step 2 - Routine Calibration

Once Linearity has been verified through Step 1, the routine calibration procedure is reduced to simply connecting the actual RTD and doing an offset point calibration (see offset calibration below).

Calibration after that will be simple verification for the stability of the transmitter. If it drifts abnormally then you need to verify the other parts involved.

### Calibration Procedures through Windows™ Software

At the top menu, go to Calibration and Select RTD Input.

#### RESET TO DEFAULT CALIBRATION

- 1. Select Reset calibration method
- 2. Now verify the live reading against the flow computer reading

#### **OFFSET CALIBRATION:**

- 1. Select offset calibration method.
- 2. Induce a live value and wait for 10 seconds for the reading to stabilize. Then enter the live value. The value entered must be in Ohm only.
- 3. Now verify the live reading against the flow computer reading

#### **FULL SCALE CALIBRATION:**

- 1. Prepare low range resistive input (i.e., 80 Ohm.) and High range resistive input (i.e., 120. Ohm).
- 2.Go to the calibration menu and select RTD full calibration method. Induce the low end (80 Ohm.) resistive signal and then wait 10 seconds, enter live value in Ohm, and click OK button.
- 3. Induce the High range signal (120 Ohm.) and wait 10 seconds, then enter 120 Ohm and click OK button.
- 4. Now verify the live reading against the flow computer reading.

# **Calibration of Analog Output:**

To calibrate the analog output against the end device follow the following steps:

- 1. Go to the calibration menu, select analog output, and then select method. Full calibration will cause the flow computer to output the minimum possible signal 4 mA. Enter the live output value reading in the end device i.e. 4 mA and click OK button. Now the flow computer will output full scale 20 mA. Enter the live output i.e. 20 then click OK button.
- 2. Now verify the output against the calibration device.

# Multi-Variable Transmitters - DP and Pressure

Calibrations are performed under **Calibration**. Select inputs to be calibrated, and then select full, single, offset calibration method.

#### **OFFSET CALIBRATION**

- 1. Induce live value for pressure or DP.
- 2. Select Multivariable DP or pressure.
- 3. Select offset calibration method, enter offset, and click OK button.
- 4. Now read induce live values to verify the calibration.

#### **FULL SCALE CALIBRATION**

- 1. Induce live value for pressure or DP.
- 2. Select Multivariable DP or pressure
- 3. Select full calibration method
- 4. Induce the low range signal, enter the first point, and then click OK button.
- 5. Induce the high range signal, enter the second point, and then click OK button.
- 6. Now verify the live reading against the flow computer reading.

#### TO USE DEFAULT CALIBRATION

- 1. Select Multivariable DP or pressure
- 2. Select Reset calibration method
- 3. Now verify the live reading against the flow computer reading

While doing calibration before downloading any of the calibrated values, it is a good practice to verify that the Micro MV close reading to the induced value.

The DP reading must be re-calibrated for the zero offset after applying line pressure.

# Multi-Variable Transmitters (Model 205) -RTD

RTD Calibration is a 2-step process. The first step is a onetime procedure to verify transducer linearity and is done at the time the meter is being setup. The second step is the routine calibration sequence.

#### Step 1 - Linearity Verification

- 1. Use a Decade box with 0-150 °F settings.
- 2. Connect RTD cable to this resistive element for verification of linearity. Verify low and high points. It must be within ½ degree.
- 3. Connect the actual RTD element and compare with a certified thermometer.
- 4. If not within ½ degree do a Full Calibration (See Full Calibration below). If problem persists verify other elements such as RTD Probe, connections, shield, conductivity of connectors, etc.

The purpose of the above procedure is to verify zero and span and make sure that the two points fall within the expected tolerance.

#### Step 2 - Routine Calibration

Once Linearity has been verified through Step 1, the routine calibration procedure is reduced to simply connecting the actual RTD and doing an offset point calibration (see offset calibration below).

Calibration after that will be simple verification for the stability of the transmitter. If it drifts abnormally then you need to verify the other parts involved.

#### Calibration Procedures through Windows™ Software

At the top menu, go to Calibration and Select RTD Input.

#### **RESET TO DEFAULT CALIBRATION**

- 1. Select Reset calibration method
- 2. Now verify the live reading against the flow computer reading

#### **OFFSET CALIBRATION:**

- 1. Select offset calibration method.
- 2. Induce a live value and wait for 10 seconds for the reading to stabilize. Then enter the live value. The value entered must be in Degrees only.
- 3. Now verify the live reading against the flow computer reading

#### **FULL SCALE CALIBRATION:**

- 1. Prepare low range resistive input (i.e., 80 Ohm.) and High range resistive input (i.e., 120. Ohm).
- 2. Go to the calibration menu and select RTD full calibration method. Induce the low end (80 Ohm.) resistive signal and then wait 10 seconds, enter the equivalent temperature in degrees, and click OK button.
- 3. Induce the High range signal (120 Ohm.) and wait 10 seconds, then enter the temperature degrees equivalent to 120 Ohm and click OK button.
- 4. Now verify the live reading against the flow computer reading.

# Data Verification

Data verification will not affect the calibration, but it will be documented into calibration and verification report.

# Verifying Digital Inputs and Outputs

Use the diagnostic menu. to verify all inputs and outputs. A live input and output is displayed. On the top of the screen pulse inputs and density frequency input are shown. Compare the live value against the displayed value on the screen. Failure to read turbine input could be a result of a bad preamplifier or the jumper selection for sine and square wave input are not in the correct position. Refer to wiring diagram <code>Wiring | Turbine</code> for proper turbine input wiring. Density input can be sine or square wave with or without DC offset. Minimum accepted signal has to be greater than 1.2 volt peak to peak. Status input is shown below the frequency input to the left of the screen. When the status input is on, the live diagnostic data will show <code>ON</code>. Minimum voltage to activate the status is 6 volts with negative threshold of 2 volts. To activate the switch outputs to the on and off position, click on "Enable/Disable Diagnostic" button in the diagnostic menu. After the screen freeze, click on "Toggle ON/OFF" button to toggle the switch on/off. To exit, click on "Enable/Disable Diagnostic" button again. The switch outputs are open collector and require external voltage.

# CHAPTER 2: Data Entry and Configuration Menus

# Introduction to the Micro M.V. Computer Software

The MicroML4/Micro100 software is constructed around a menu-driven organization. Click "MicroML4" icon on the desktop to run the program. It opens with "Diagnostics Data" screen.

# Configuration File

We will begin with the DYNACOM PC software menu. Create a new configuration file, and save it.

- The software opens ready for you with a default configuration file. To choose an existing file go to the Configuration File | Open... (Left top corner of the screen) and provide the configuration file name. If you want to create a new file, select Configuration File | New.
- 2. Now go back to Configuration File. Use the down arrow key to move the cursor to Save and press ENTER. You have just saved the file you just created. Notice that now the file name will appears in the left top corner of the screen. This indicates the name of the currently active file; if you change parameters and save again, the changes will be saved to your file.

# Configuration File Menu

# Open a File

Go to the **Configuration File | Open...** (Left top corner of the screen)

Use this function to open an existing configuration file. After a file is opened it becomes the currently active file; its contents can be viewed and its parameters can be edited.

When this function is chosen a list of existing configuration files is displayed (files with extension .SFC). Use the cursor arrow keys to move the cursor to your selection. This function also can be reached pressing on the toolbar.

# Open a New File

Go to the **Configuration File | New...** (Left top corner of the screen)

Create a new file to store all the programmed information for one Micro MV Liquid Flow Computer. You are prompted for the new file's name. If you enter the name of a pre-existing file, the software informs you of this and prompts you if you want to overwrite the old file. After a file is opened it becomes the currently active file; its contents can be viewed and its parameters can be edited. This option can be activated pressing  $\square$  on the toolbar.

# Save As

Go to the Configuration File | Save As... (Left top corner of the screen)

Use Save As to save the parameters in the currently active file (that is, the parameter values currently being edited) to a new file. You are prompted for the new file's name. If you enter the name of a pre-existing file, the software asks you if you want to overwrite the old file. The original file will remain in memory.

#### Save

Go to the Configuration File | Save ... (Left top corner of the screen)

When permanent modifications are performed on a file, user must save the new changes before exiting the program, or proceeding to open a different file. The system will ask you for the name you want for this file. You can also save pressing  $\blacksquare$  on the toolbar.

# Exit

Go to the Configuration File | Exit... (Left top corner of the screen)

Exit the application, if changes were made to the configuration and haven't been saved you will be asked if you want to save them.

Before the Exit option there is a list of the most recently used configuration files so you can select one of them without looking for it in the disk.

# Export Configuration File as Text

Go to the **Configuration File** | **Export as Text..** (Left top corner of the screen)

Use "Export as Text" to save configuration file in a text format. Provide a file name and location to save the configuration data report.

# **VIEW**

# **View Drawings**

To view the wiring drawings for the Flow Computer go to the **View** menu and then select **Wiring.** The drawings available for this device will be listed.

- Back Panel
- Analog Input
- RTD
- Analog Output
- Status Input
- Switch Output
- Turbine
- Densitometer
- RS 232
- RS 485

# **TOOLS**

#### **Communication Port Settings**

You can access this window either through the **Tools | Comm Settings** menu option or the Comm button on the toolbar. (the fourth icon from the left)

This window let you set the port settings in order to communicate with the Flow Computer. You have the following options available:

#### SERIAL COMMUNICATION PARAMETERS

#### **Port - Communication Port Number**

Enter the PC port used to communicate with the MicroML4/Micro100 Flow Computer.

#### **Baud Rate**

Note: this parameter must be set the same for both the PC and the MicroML4/Micro100 Flow Computer for communication to occur.

Baud rate is defined as number of bits per second. The available selections are 1200, 2400, 4800, 9600, or 19200.

#### **Parity**

Note: this parameter must be set the same for both the PC and the MicroML4/Micro100 Flow Computer for communication to occur.

RTU - NONE ASCII - EVEN or ODD

Set the parity to match the Modbus Type.

#### **Data Bits**

Options available: 5, 6, 7, or 8. Generally used: 8 for RTU mode, 7 for ASCII mode. The MicroML4/Micro100 uses 8 data bits in RTU mode and 7 data bits in ASCII mode.

#### **Stop Bits**

Options available: 1, 1.5,or28. Generally used: 1. The MicroML4 uses 1 stop bit.

#### **Modbus Type**

Note: this parameter must be set the same for both the PC and the MicroML4 Flow Computer for communication to occur.

The Modbus Communication Specification is either Binary RTU or ASCII.

#### **Auto Detect Settings**

Click this button and the configuration program will attempt to communicate with a single MicroML4 Flow Computer at different baud rates and formats.

Failure to communicate can occur because of a wiring problem, wrong PC port selection, communication parameter mismatch between PC and MicroML4 Flow Computer (Modbus type, parity, baud rate, etc.) or lack of power to the MicroML4 Flow Computer. To use this feature, the user must insure that only one MicroML4 Flow Computer is connected to the PC. More than one MicroML4 Flow Computer in the loop will cause data collisions and unintelligible responses.

#### **UNIT ID NUMBER**

The Unit ID Number is used strictly for communication purposes; it can take any value from 1 to 247. Only one master can exist in each loop.

| Note: | Do not duplicate the Unit ID number in a single communication loop! This situation will lead |
|-------|----------------------------------------------------------------------------------------------|
|       | to response collisions and inhibit communications to units with duplicate ID numbers.        |

#### TIME OUT

The amount of time in seconds the program will wait for an answer from the flow computer.

#### **RETRY TIMES**

Retry times for the program to communicate with the flow computer in case of timeout.

#### **USE INTERNET PROTOCOL**

Check the box if an Ethernet connection is configured instead of a serial connection. To be able to communicate with the flow computer, both IP Address and Port must be configured.

#### **IP Address**

Enter IP Address of the target flow computer.

The standard addressing format is xxx.xxx.xxx.xxx

#### Port

Enter the port number of Modbus/Ethernet Bridges. The default port number is 502.

#### **Protocol**

Select a Modbus TCP or TCP/IP Encapsulation protocol to be used through Ethernet connection.

#### Modbus TCP -

Also known as Modbus Ethernet consists of a Modbus message without CRC wrapped by a TCP/IP message. This protocol is generally used by industrial Modbus to Ethernet converters.

#### TCP/IP Encapsulation –

Also known as TCP/IP Pass Through Mode consists of a regular Modbus message embedded in a TCP/IP message. This protocol is generally used by a general purpose Ethernet to Serial converters.

# **Meter Configuration**

# A - METER SETTINGS

Meter Set Up Units System

| <u>Selection</u> | <b>Description</b> | <u>Temperature</u> | <u>Pressure</u>  | <u>DP</u>       |
|------------------|--------------------|--------------------|------------------|-----------------|
| 0                | US Unit            | DEG.F              | PSIG             | Inches of Water |
| 1                | Metric Unit        | DEG.C              | BAR, KG/CM2, KPA | KPA, m.Bar      |

# **Pressure Units – Metric Only**

| <b>Selection</b> | Description |  |
|------------------|-------------|--|
| 0                | BAR         |  |
| 1                | KG/CM2      |  |
| 2                | KPA         |  |

#### **Flow Units**

| Selection | Description               | Description        |
|-----------|---------------------------|--------------------|
|           | <b>Gross and Net Flow</b> | Mass Flow          |
| 0         | CF                        | MLB in US Unit     |
| 1         | M3                        | TON in Metric Unit |
| 2         | Gallon                    |                    |
| 3         | Liter                     |                    |
| 4         | Barrel                    |                    |

# **DP Units – Metric Only**

| <b>Selection</b> | <b>Description</b> |  |
|------------------|--------------------|--|
| 0                | m.BAR              |  |
| 1                | KPA                |  |

# **K Factor Units – Frequency Device Equation Only**

| <b>Selection</b> | <b>Description</b> |
|------------------|--------------------|
| 0                | CF                 |
| 1                | Barrel             |
| 2                | Gallon             |
| 3                | M3                 |
| 4                | Liter              |

#### **General Settings**

#### **Company Name**

Up to 20 characters. The company name appears in the reports.

#### **Meter Location**

Up to 20 characters. This entry appears only in the report and serves no other function.

#### Day Start Hour (0-23)

Day start hour is used for batch operation. If daily batch is selected, the batch will end at day start hour, all batch totalizers and flow-weighted values are reset.

#### Disable Alarms

Use Disable Alarms to ignore alarms. When the alarm function is disabled alarms are not logged. Alarms are also not logged if the DP is below the cut-off limit.

#### **Alarm Delay Timer**

Enter delay timer in seconds for logging the alarms.

#### **GM/CC Conversion Factor**

This factor is used to reference the density to density of water (i.e. 0.999016) to establish specific and API gravity.

$$Specific Gravity = \frac{Density GM/CC}{Density of Water(gm/cc conversion factor)}$$

$$API\ Gravity = \frac{141.5 * Density\ of\ Water(gm/cc\ conversion\ factor)}{Density\ GM/CC} - 131.5$$

#### **Number of Meters**

Enter '1', '2', '3', or '4' meters run configuration per individual flow computer.

#### **Select Flow Rate Display**

The flow rate will be based on daily basis, hourly, or minute.

# Flow Rate Average Second

The flow rate is averaged for 1-5 seconds to minimize fluctuating flow rate conditions. This number averages the current flow rate by adding it to the previous seconds' flow rate, and then displays an averaged smoothed number. Only a low-resolution pulse meter requires this function.

# **Atmospheric Pressure**

This pressure is the local pressure or contracted atmospheric pressure to be used. Typical value is 14.696 PSIA for US units.

#### **Base Pressure**

The basis reference pressure is used for all corrections. Used, for example, when seller contracts to sell to buyer at an agreed base pressure. Typical values are 14.73 PSIA for US units, 1.01325 bar in Metric units.

#### **Base Temperature**

The basis reference temperature is used for all corrections. Used, for example, when seller contracts to sell to buyer at an agreed base temperature. Typically 60.0 Deg.F is used in US units, 15 or 20 Deg.C in Metric units.

#### **Battery Voltage Reading**

Enable this feature to read battery voltage. The battery alarm low is activated, when the voltage is below 11.2 volts. Old CPU boards do not have this feature. Uncheck the box to disable battery low alarm.

#### **Common Parameters**

This feature allows the Micro MV Liquid Flow Computer to use the transmitters on meter one to substitute and compensate for meter two, three, or four.

# **Analog Input Expansion #5-#9**

Enter '1' to use analog input expansion #5-#9.

# **Slave Units Configuration**

The Micro MV can poll up to 3 other slaves, 4 MicroMS4 Slaves, or 4 E-Chart Slaves.

# Slave Type

| Selection | Description                                          |  |
|-----------|------------------------------------------------------|--|
| 0         | Others – Communication in Modbus Protocol            |  |
| 1         | MicroMS4                                             |  |
| 2         | Foxboro                                              |  |
| 3         | E-Chart                                              |  |
| 4         | MicroMV and E-Chart Combination –                    |  |
|           | Slave Type – 0 - E-Chart, 1 – MicroMVL, 2 – MicroMS4 |  |

#### Slave Unit ID

The Slave Unit ID Number is used strictly for communication purposes; it can take any value from 1 to 247.

# VT – Variable Type for Slave Type 0 Only

Variable type describes the position of high, low words of slave device. When 32 bits (two words) register is polled, it is essential to define where the highest significant word.

| Code | Description                     | Sequence in words |
|------|---------------------------------|-------------------|
| 0    | 2 registers of 16 bits integers | High, Low         |
| 1    | 1 register of 32 bits floating  | Low, High         |
| 2    | 2 registers of 16 bits floating | Low, High         |
| 3    | 1 register of 32 bits integer   | High, Low         |
| 4    | 2 registers of 16 bits integers | Low, High         |
| 5    | 1 register of 32 bits floating  | High, Low         |
| 6    | 2 registers of 16 bits floating | High, Low         |
| 7    | 1 register of 32 bits integer   | Low, High         |

#### DEST - Destination Address for Slave Type 0 Only

Destination defines where the polled variables are used in the flow computer. Variable statements and other pre-defined locations are accepted. Pre-defined locations are temperature, pressure, and density. Variables can be accessed through the display and reports.

|   | <u> </u>           |
|---|--------------------|
| 0 | Floating #1 (7061) |
| 1 | Floating #2 (7062) |
| 2 | Floating #3 (7063) |
| 3 | Floating #4 (7064) |
| 4 | Floating #5 (7065) |
| 5 | Floating #6 (7066) |
| 6 | Floating #7 (7067) |
| 7 | Floating #8 (7068) |
| 8 | Floating #9 (7069) |
| 9 | Floating 10 (7070) |

| 10 | Integer #1(5071) |
|----|------------------|
| 11 | Integer #2(5073) |
| 12 | Integer #3(5075) |
| 13 | Integer #4(5077) |
| 14 | Integer #5(5079) |
| 15 | Integer #6(5081) |
| 16 | Integer #7(5083) |
| 17 | Integer #8(5085) |
| 18 | Integer #9(5087) |
| 19 | Integer 10(5089) |

| 20 | M#1 TF  | 30 | M#3 TF  |
|----|---------|----|---------|
| 21 | M#1 PF  | 31 | M#3 PF  |
| 22 | M#1 DF  | 32 | M#3 DF  |
| 23 | M#1 DB* | 33 | M#3 DB* |
| 24 | M#1 DP  | 34 | M#3 DP  |
| 25 | M#2 TF  | 35 | M#4 TF  |
| 26 | M#2 PF  | 36 | M#4 PF  |
| 27 | M#2 DF  | 37 | M#4 DF  |
| 28 | M#2 DB* | 38 | M#4 DB* |
| 29 | M#2 DP  | 39 | M#4 DP  |

# ADDR - Source Address

Source defines the actual registers being polled from the slave device. Source address is considered to be continuous without zero address in between.

Example: Meter #1 density uses micro motion density.

Slave ID = Micro Motion ID VT = 2, DEST=22, ADDR=248

\*Note: DB – Density at Base Condition.

# **Slave Units Configuration - Example**

#### Slave Type 0 – Other Slaves (up to 3 slaves)

**Example**: Read Meter #1 Density of MicroMS4 from the Micro Motion.

Four entries are required.

| Slave ID                          | ID  | Micro Motion ID                                         |
|-----------------------------------|-----|---------------------------------------------------------|
| <b>VT</b> – Variable Type         | 2   | 2 registers of 16 bits floating (Words Order–Low, High) |
| <b>DEST</b> - Destination Address | 22  | Meter #1 Density                                        |
| ADDR – Slave Modbus Address       | 248 | Modbus Address of Micro Motion Density                  |

# Slave Type 1- MicroMS4 (up to 4 slaves)

The MicroMS4 will poll variables are used in the slave. Variables are 4 analog inputs and multi-variables – DP, Pressure, and Temperature. The slave calibrations can be done through the master unit.

# Slave Type 2- Foxboro (up to 4 slaves)

| Slave <b>ID</b> | ID | FOXBORO Unit ID |
|-----------------|----|-----------------|
|                 |    |                 |

The MicroMS4 will poll variables are used in the slave. Variables are mass flow rate, mass cumulative totals, and density,

#### Slave Type 3– E-Chart (up to 4 slaves)

| Slave <b>ID</b> | ID | E-Chart Unit ID |
|-----------------|----|-----------------|

The MicroMS4 will poll variables are used in the slave. Variables are multi-variables – DP, Pressure, and Temperature.

#### Slave Type 4— MicroMS4, E-Chart, or MicroMVL Combination (up to 4 slaves)

| Slave <b>ID</b> | ID | E-Chart Unit ID |
|-----------------|----|-----------------|

The MicroMS4 will poll variables are used in the slave. Variables are multi-variables – DP, Pressure, and Temperature.

#### B - METER DATA

#### **Meter ID**

Up to 8 characters. This function will serve as meter tag.

# Flow Equation Type (0-4)

- 0 = API 14.3 (NEW AGA3)
- 1 = Venturi
- 2 = Frequency Device
- 3 = Wedge
- 4 = FOXBORO (Assume: US unit Mass in LB/HR, Density LB/CF, Metric Unit- Mass in M3, Density in KG/M3)

Select the desired calculation mode. API 14.3 is the latest orifice calculations introduced in 1994 All new installations are recommended to use API 14.3 for orifice calculations.

On the right hand side of the selection box is a property button that when pressed pops up a window with the flow equation settings.

# API 14.3 Data (new AGA3)

# Flow Equation Type = 0

### Pipe I.D.

#### Orifice ID

Pipe ID in inches (us unit), or in millimeter (metric unit) is the measured inside pipe diameter at reference conditions. Orifice ID is the measured diameter of the orifice at reference conditions.

#### **DP Cutoff**

The Micro MV Flow Computer suspends flow rate calculations whenever the DP, in inches of water column (us unit), in mbar, or in KPA (metric unit), is less than this value. This function is vital for suppressing extraneous data when the DP transmitter drifts around the zero mark under no-flow conditions.

#### Y Factor (0=None, 1=Upstream, 2=Downstream)

Y factor is the expansion factor through the orifice. The user must enter the position of the pressure and temperature sensors. Select y=1 if the sensors are installed upstream of the orifice plate. Select y=2 if the sensors are downstream of the orifice plate. When multi-variable is used, the pressure sensor is always upstream and set Y to 1.

### <u>Isentropic Exponent (Specific Heat)</u>

Ratio of specific heat is a constant associated with each product. Even though it varies slightly with temperature and pressure, in all cases it is assumed as a constant.

#### Viscosity in Centipoise

Even though viscosity will shift with temperature and pressure changes, the effect on the calculations is negligent. Therefore using a single value is appropriate in most cases. Enter viscosity in centipoise at typical flowing conditions. Natural gas has a typical viscosity of 0.01.

#### Reference Temperature of Orifice

#### Reference Temperature of Pipe

These parameters give temperature at which the bore internal diameter was measured on the orifice and pipe respectively. Commonly 68 °F (us unit) or 20 °C (metric unit) is used.

# Thermal Expansion Coefficient of Orifice E-6

## Thermal Expansion Coefficient of Pipe E-6

These parameters give the linear expansion coefficients of the orifice and pipe materials respectively.

|                            | US Unit  | Metric Unit |
|----------------------------|----------|-------------|
| Type 304 and 316 Stainless | 9.25 E 6 | 16.7 E-6    |
| Monel                      | 7.95 E 6 | 14.3 E-6    |
| Carbon Steel               | 6.20 E 6 | 11.2 E-6    |

#### Venturi

# Flow Equation Type = 1

### Pipe I.D.

#### Orifice ID

Pipe ID in inches (us unit), or in millimeter (metric unit) is the measured inside pipe diameter at reference conditions. Orifice ID is the measured diameter of the orifice at reference conditions.

#### **DP Cutoff**

The Micro MV Flow Computer suspends flow rate calculations whenever the DP, in inches of water column (us unit), in mbar, or in KPA (metric unit), is less than this value. This function is vital for suppressing extraneous data when the DP transmitter drifts around the zero mark under no-flow conditions.

#### Y Factor (0=None, 1=Upstream, 2=Downstream)

Y factor is the expansion factor through the orifice. The user must enter the position of the pressure and temperature sensors. Select y=1 if the sensors are installed upstream of the orifice plate. Select y=2 if the sensors are downstream of the orifice plate. When multi-variable is used, the pressure sensor is always upstream and set Y to 1.

#### Isentropic Exponent (Specific Heat)

Ratio of specific heat is a constant associated with each product. Even though it varies slightly with temperature and pressure, in all cases it is assumed as a constant.

#### Reference Temperature of Orifice

These parameters give temperature at which the bore internal diameter was measured on the orifice and pipe respectively. Commonly 68 °F (us unit) or 20 °C (metric unit) is used.

#### Thermal Expansion Coefficient Of Orifice E-6

#### Thermal Expansion Coefficient Of Pipe E-6

These parameters give the linear expansion coefficients of the orifice and pipe materials respectively.

|                            | Us Unit  | Metric Unit |
|----------------------------|----------|-------------|
| Type 304 and 316 Stainless | 9.25 E-6 | 16.7 E-6    |
| Monel                      | 7.95 E-6 | 14.3 E-6    |
| Carbon Steel               | 6.20 E-6 | 11.2 E-6    |

# Discharge Coefficient C

This value is the discharge coefficient for Venturi flow equations. The default value is 0.9950.

# **Frequency Device**

#### Flow Equation Type = 2

#### K Factor

K Factor is the number of pulses per unit volume, i.e. 1000 pulses/CF (us unit), M3 (metric unit). The meter's tag would normally indicate the K Factor.

#### Meter Factor

Meter Factor is a correction to the K Factor for this individual meter, applied multiplicatively to the K factor.

#### Retroactive Meter Factor

If zero is selected, the meter factor will not apply to the entire batch. It will only apply from the time the new meter factor is entered. Retroactive meter factor, on the other hand, will apply to the entire batch and the entire batch is re-calculated, using the new meter factor.

# Flow Cutoff Frequency

The Micro MV Flow Computer will quit totalizing when the turbine frequency (or other frequency input) is below this set limit. This feature is to reduce extraneous noise appearing as volume data when the meter is down for period of time.

This value is entered as pulses per second.

#### Flow Rate Threshold/Linear Factor

Enter the different correction factors for the meter at different flow rates. The Micro MV Flow Computer will perform linear interpolation each second. Notice that even though using this feature enhances the measurement accuracy and range, performing audit trail on a linearized meter factor is very difficult.

# Wedge

# Flow Equation Type = 3

# **DP** Cutoff

The Micro MV Flow Computer suspends all calculations whenever the DP, in inches of water column, is less than this value. This function is vital for suppressing extraneous data when the DP transmitter drifts around the zero mark under no-flow conditions.

# Flow Coeff Kd2 and Expansion Factor FA

## **US** unit

```
Flow Rate (Gallon/Minute) = (5.668 \times FA \times Kd2) \times SQRT (DP / SG)
```

DP = different pressure, inches of water

SG = Liquid specific gravity at flow conditions

FA = Expansion Coefficient of Wedge

Kd2 = Discharge Coefficient of Wedge

#### **Metric Unit**

Flow Rate (Liter/Hour) =  $(1.287343 \times Fa \times Kd2) \times SQRT (DP / SG)$ 

DP = different pressure, m.Bar

SG = Liquid specific gravity at flow conditions

FA = Expansion Coefficient of Wedge

Kd2 = Discharge Coefficient of Wedge

#### **Foxboro**

#### Flow Equation Type = 4

(Assume: US unit – Mass in LB/HR, Density LB/CF, Metric Unit- Mass in M3, Density in KG/M3)

# **Net Flow Rate Low/High Limit**

The high/low flow rate alarm is activated, when net flow rate exceeds or is below the set limit. The alarm will be documented with time, date, and totalizer.

# **Input Position**

This section allows the user to assign analog inputs to the process variables. The available options are displayed in the selection box. The configuration of the analog inputs is done in the I/O section (explained later on).

## Input Position Assignment - Temperature, Pressure, BS&W, DP

- 1: Analog Input#1
- 2: Analog Input#2
- 3: Analog Input#3
- 4: Analog Input#4
- 5: RTD Input
- 7. Frequency Input (Not Selectable)
- 10. Multi-Variable Module (Master)
- 11. Multi-Variable Module Slave #1
- 12. Multi-Variable Module Slave #2
- 13. Multi-Variable Module Slave #3
- 21. Analog Input #5
- 22. Analog Input #6
- 23. Analog Input #7
- 24. Analog Input #8
- 25. Analog Input #9

#### **Use Stack DP**

The Micro MV Flow Computer allows the user to select dual DP transmitters on each meter for better accuracy and low range flow. Use in conjunction with the DP Switch High % parameter setting.

#### **DP Switch High %**

The Micro MV Flow Computer will begin using the high DP when the low DP reaches the percent limit assigned in this entry. Example: DP low was ranged from 0-25 inches and switch % was set at 95%. When low DP reaches 23.75 in (= 0.95 \* 25) the Micro MV Liquid Flow Computer will begin using the high DP provided the high DP did not fail. When the high DP cell drops below 23.75, the Flow Computer will start using the Low DP for measurement.

# **Density Type**

If live density is connected to the flow computer, user must enter the density type. Raw density frequency or 4-20mA input can be selected. This density will be used to calculate mass flow and net flow.

| Density<br>Type | Densitometer |              |                                                                     |
|-----------------|--------------|--------------|---------------------------------------------------------------------|
| Type 0          | None         |              |                                                                     |
|                 |              | Density 4–20 | mA Type*                                                            |
| Type 1          | 4–20 mA      | Type 0       | Density Signal 4-20mA in LB/FT3 (US unit) or in KG/M3 (Metric unit) |
|                 |              | Type 1       | SG Signal 4-20mA                                                    |
| Type 2          | UGC          |              |                                                                     |
| Type 3          | Sarasota     |              |                                                                     |
| Type 4          | Solartron    |              |                                                                     |

Density 4-20mA Type

Note that this type of input requires the user to choose a subtype.

| Density 4–20 mA Type*                                                     |                  |  |  |
|---------------------------------------------------------------------------|------------------|--|--|
| Type 0 Density Signal 4-20mA in LB/FT3(US unit) or in KG/M3 (Metric unit) |                  |  |  |
| Type 1                                                                    | SG Signal 4-20mA |  |  |

# C - BATCH

# **Batch Type**

If daily batch selected, the batch will end at the day start hour. On demand type will end the batch, when the Micro MV Liquid Flow Computer is requested to end the batch manually.

#### **Batch Ticket Number**

This number will increment by one at the end of batch.

#### **Next Batch Product Number**

Enter the product number for the next batch.

# **D** - **PRODUCTS**

End the current batch is required to use the new product data settings.

#### **Product Number**

Up to 8 products.

#### **Product Name**

Up to 16 characters.

# **Table Selection**

| Sel.                                      | Table                                                     | Description                                  | Conditions                                           |  |
|-------------------------------------------|-----------------------------------------------------------|----------------------------------------------|------------------------------------------------------|--|
| 0                                         | 23A/24A                                                   | Crude oil, natural gasoline, drip gasoline   | Live densitometer used                               |  |
|                                           | Crude SG                                                  | Base Temperature@60°F                        |                                                      |  |
|                                           | (API2004)                                                 |                                              |                                                      |  |
| 1                                         | 24A                                                       | Crude oil, natural gasoline, drip gasoline   | Density is known, Parameter - Specific               |  |
|                                           | Crude SG                                                  | Base Temperature@60°F                        | Gravity @ 60°F is required                           |  |
|                                           | (API2004)                                                 |                                              |                                                      |  |
| 2                                         | 23B/24B                                                   | Gasoline, naphthalene, jet fuel, aviation    | Live densitometer used                               |  |
|                                           | Refined SG                                                | fuel, kerosene, diesel, heating oil, furnace |                                                      |  |
|                                           | (API2004)                                                 | oil. Base Temperature@60°F                   |                                                      |  |
| 3                                         | 24B                                                       | Gasoline, naphthalene, jet fuel, aviation    | Density is known, Parameter - Specific               |  |
|                                           | Refined SG                                                | fuel, kerosene, diesel, heating oil, furnace | Gravity @ 60°F is required                           |  |
|                                           | (API2004)                                                 | oil. Base Temperature@60°F                   |                                                      |  |
| 4                                         | New 23/24                                                 | LPG                                          | Live densitometer used                               |  |
| 5                                         | New 24                                                    | LPG                                          | Density is known, Parameter - Specific               |  |
|                                           |                                                           |                                              | Gravity@ 60°F is required                            |  |
| 6                                         | 24C                                                       | Benzene, toluene, styrene, ortho-xylene,     | Density is known, Parameter - Specific               |  |
| Special Prod <i>meta</i> -xylene, acetone |                                                           |                                              | Gravity @ 60°F is required, Alpha T, the             |  |
| (API 2004) Base Temperature@60°F          |                                                           |                                              | number entered will be divided by 10 <sup>-6</sup> . |  |
| 7                                         | 7 53A/54A Crude oil, natural gasoline, drip gasoline      |                                              | Live densitometer used                               |  |
| Crude Base Temperature@15°C               |                                                           | Base Temperature@15°C                        |                                                      |  |
|                                           | (API2004)                                                 |                                              |                                                      |  |
| 8                                         | 54A                                                       | Crude oil, natural gasoline, drip gasoline   | Density is known, Parameter -                        |  |
|                                           | Crude                                                     | Base Temperature@15°C                        | Density@15°C is required                             |  |
|                                           | (API2004)                                                 |                                              |                                                      |  |
| 9                                         | 53B/54B                                                   | Gasoline, naphthalene, jet fuel, aviation    | Live densitometer used                               |  |
|                                           | Refined Prod                                              | fuel, kerosene, diesel, heating oil, furnace |                                                      |  |
|                                           | (API2004)                                                 | oil. Base Temperature@15°C                   |                                                      |  |
| 10                                        | 54B                                                       | Gasoline, naphthalene, jet fuel, aviation    | Density is known, Parameter -                        |  |
|                                           | Refined Prod fuel, kerosene, diesel, heating oil, furnace |                                              | Density@15°C is required                             |  |
|                                           | (API2004)                                                 | oil. Base Temperature@15°C                   |                                                      |  |
| 11                                        | OLD 53/54                                                 | LPG                                          | Live densitometer used                               |  |

| 12 | OLD 54                                                      | LPG                                          | Density is known, Parameter -      |  |
|----|-------------------------------------------------------------|----------------------------------------------|------------------------------------|--|
|    |                                                             |                                              | Density@15°C is required           |  |
| 13 | 54C                                                         | Benzene, toluene, styrene, ortho-xylene,     | All conditions                     |  |
|    | Special Prod                                                | meta-xylene, acetone                         |                                    |  |
|    | (API 2004)                                                  | Base Temperature@15°C or @20°C               |                                    |  |
| 14 | 59A/60A                                                     | Crude oil, natural gasoline, drip gasoline   | Live densitometer used             |  |
|    | Crude                                                       | Base Temperature@20°C                        |                                    |  |
|    | (API2004)                                                   | -                                            |                                    |  |
| 15 | 60A                                                         | Crude oil, natural gasoline, drip gasoline   | Density is known, Parameter -      |  |
|    | Crude                                                       | Base Temperature@20°C                        | Density@20°C is required           |  |
|    | (API2004)                                                   | _                                            |                                    |  |
| 16 | <b>16</b> 59B/60B Gasoline, naphthalene, jet fuel, aviation |                                              | Live densitometer used             |  |
|    | Refined Prod                                                | fuel, kerosene, diesel, heating oil, furnace |                                    |  |
|    | (API2004)                                                   | oil. Base Temperature@20°C                   |                                    |  |
| 17 | 60B                                                         | Gasoline, naphthalene, jet fuel, aviation    | Density is known, Parameter -      |  |
|    | Refined Prod                                                | fuel, kerosene, diesel, heating oil, furnace | Density@20°C is required           |  |
|    | (API2004)                                                   | oil. Base Temperature@20°C                   |                                    |  |
| 18 | 59D/60D                                                     | Lub Oil                                      | Live densitometer used             |  |
|    | Lubricating                                                 | Base Temperature@20°C                        |                                    |  |
|    | Prod                                                        | •                                            |                                    |  |
| 19 | 60D                                                         | Lub Oil                                      | Density@20°C is known,             |  |
|    | Lubricating                                                 | Base Temperature@20°C                        |                                    |  |
|    | Prod                                                        | -                                            |                                    |  |
| 20 | Water                                                       | Water                                        | Density and Base Density are known |  |

Table A is for Crude, the Table B is for refined products, the Table C is for special products - butadiene, toluene. OLD/NEW Tables are used for LPG and NGLs. 6.01.05 or newer firmware version is required for API2004 table

# Crude/Refined/Lubricating Prod/Special Product: use API 2004, D1250-04.

(Refer to API Manual of Petroleum Measurement Standards:

Chapter11-Physical Properties Data/Section 1-Temperature and Pressure Volume Correction "Factors for Generalized Crude Oils, Refined Products, and Lubricating Oils/May2004, and Addendum 1/September 2007)

Temperature, Pressure and Density Limits for Crude Oil, Refined Products, Lubricating Oils

|                                   | Crude Oil                                         | Refined Products                    | Lubricating Oils  |
|-----------------------------------|---------------------------------------------------|-------------------------------------|-------------------|
| Density, kg/m <sup>3</sup> @ 60°F | 610.6                                             | 800.9 to 1163.5                     |                   |
| Relative Density @ 60°F           | 0.61120                                           | to 1.16464                          | 0.80168 to 1.1646 |
| API Gravity @ 60°F                | 100.0                                             | to -10.0                            | 45.0 to -10.0     |
| Kg/m <sup>3</sup> @ 15°C          | 611.16 to 1163.79                                 | 611.16 to 1163.86                   | 801.25 to 1163.85 |
| Kg/m <sup>3</sup> @20°C           | 606.12 to 1161.15                                 | 606.12 to 1160.62                   | 798.11 to 1160.71 |
| Temperature, •C                   | -50.00 to 150.00                                  |                                     |                   |
| °F                                | -58.0 to 302.0                                    |                                     |                   |
| Pressure, psig                    | 0 to 1,500                                        |                                     |                   |
| kPa (gauge)                       |                                                   | $0 \text{ to } 1.034 \text{x} 10^4$ |                   |
| Bar (gauge)                       | 0 to 103.4                                        |                                     |                   |
| a60,per ⁴F                        | 230.0x10 <sup>-6</sup> to 930.0x10 <sup>-6</sup>  |                                     |                   |
| per °C                            | 414.0x10 <sup>-6</sup> to 1674.0x10 <sup>-6</sup> |                                     |                   |

# SG and Temperature limits for New Table 23/24

| SG          | .21 to .74       |
|-------------|------------------|
| Temperature | -50 °F to 100 °F |

# SG@60 and Temperature Limits for New Table 24

| SG@60       | .35 to .688      |
|-------------|------------------|
| Temperature | -50 °F to 100 °F |

# **Density and Temperature limits for New Table 53/54**

| Density     | 425 to 1200      |
|-------------|------------------|
| Temperature | -20 °C to 125 °C |

# Density@15 and Temperature Limits for New Table 54

| Density@15  | 427 to 1200      |  |
|-------------|------------------|--|
| Temperature | -20 °C to 125 °C |  |

#### E - COMMUNICATION PORTS

#### **Unit ID Number**

The Unit ID Number is used strictly for communication purposes; it can take any value from 1 to 247.

Note: Do not duplicate the Unit ID number in a single communication loop!
This situation will lead to response collisions and inhibit communications to units with duplicate ID numbers.

Only one master can exist in each loop.

#### Flow Computer Ports

#### **Modbus Type**

Note: this parameter must be set the same for both the PC and the MicroML4 Flow Computer for communication to occur.

The Modbus Communication Specification is either Binary RTU or ASCII.

#### **Parity**

Note: this parameter must be set the same for both the PC and the MicroML4 Flow Computer for communication to occur.

RTU - NONE

ASCII - EVEN or ODD

Set the parity to match the **Modbus Type**.

#### **Baud Rate**

Note: this parameter must be set the same for both the PC and the MicroML4 Flow Computer for communication to occur.

Baud rate is defined as number of bits per second. The available selections are 1200, 2400, 4800, 9600, or 19200.

#### **RTS Delay**

This function allows modem delay time before transmission. The MicroML4 Flow Computer will turn the RTS line high before transmission for the entered time delay period.

**RTU - NONE** 

ASCII - EVEN or ODD

#### Select 0=RTS, 1=Printer (N/A)

RTS line has dual function selection: either RTS for driving request to send or transmit to serial printer. To use serial printer interface for printing reports, i.e. batch, daily, and interval Connect the serial printer to RTS and common return, and select 1 for printer. Serial printer function is not available.

#### Printer Baud Rate (N/A)

Baud rate is defined as number of bits per second. The available selections are 1200, 2400, 4800, 9600, or 19200.

#### Printer Number of Nulls (N/A)

This function is used because no hand shaking with the printer is available and data can become garbled as the printer's buffer is filled. The MicroML4 Flow Computer will send nulls at the end of each line to allow time for the carriage to return. Printers with large buffers do not require additional nulls. If data is still being garbled, try reducing the baud rate to 1200.

# INPUTS/OUTPUTS

# F - ANALOG/RTD INPUTS

In order for the Flow Computer to use the live input, the input must be properly assigned and properly wired

# TAG No

Select the following tag no to use default tag, or select '0' to enter tag id.

| 11 | TubingP1 | 21 | TubingP2 | 31 | TubingP3 | 41 | TubingP4 |
|----|----------|----|----------|----|----------|----|----------|
| 12 | CasingP1 | 22 | CasingP2 | 32 | CasingP3 | 42 | CasingP4 |
| 13 | OilTank1 | 23 | OilTank2 | 33 | OilTank3 | 43 | OilTank4 |
| 14 | WatTank1 | 24 | WatTank2 | 34 | WatTank3 | 44 | WatTank4 |
| 15 | Suction1 | 25 | Suction2 | 35 | Suction3 | 45 | Suction4 |
| 16 | Dischag1 | 26 | Dischag2 | 36 | Dischag3 | 46 | Dischag4 |
| 17 | CompreT1 | 27 | CompreT2 | 37 | CompreT3 | 47 | CompreT4 |

#### TAG ID

Up to 8 alphanumeric ID number. The transmitters are referred to according to the TAG ID. All alarms are labeled according to TAG ID

#### 4mA – Analog Input

Enter the 4mA value for the transmitter.

#### 20mA - Analog Input

Enter the 20mA value for the transmitter.

# Low/High Limit

Enter the low and high limits. When live value exceeds high limit or less than low limit, an alarm log will be generated.

#### **Maintenance Value**

The value is to be used when the transmitter fails, or while calibrating. Set fail code to 1 while calibrating.

#### **Fail Code**

Fail Code 0: always use the live value even if the transmitter failed.

Fail Code 1: always use the maintenance value

Fail Code 2: use maintenance value if transmitter failed. (i.e. Analog Input - 4-20mA is above

21.75 or below 3.25, RTD Input - OHMs is above 156 or below 50)

# G - Analog Output Assignment

4-20mA selection must be proportional and within the range of the selected parameter.

# **Analog Output Tag ID**

Up to 8 alphanumeric ID number. The transmitters are referred to according to the TAG ID. All alarms are labeled according to TAG ID.

# **Assignments:**

|                 | Meter 1 | Meter 2 | Meter 3 | Meter 4 |
|-----------------|---------|---------|---------|---------|
| Gross Flow Rate | 111     | 211     | 311     | 411     |
| Net Flow Rate   | 112     | 212     | 312     | 412     |
| Mass Flow Rate  | 113     | 213     | 313     | 413     |
| DP              | 121     | 221     | 321     | 421     |
| Temperature     | 122     | 222     | 322     | 422     |
| Pressure        | 123     | 223     | 323     | 423     |
| Density         | 124     | 224     | 324     | 424     |
| Base Density    | 125     | 225     | 325     | 425     |
| SG              | 126     | 226     | 326     | 426     |
| Base SG         | 127     | 227     | 327     | 427     |
| DP Low          | 128     | 228     | 328     | 428     |
| DP High         | 129     | 229     | 329     | 429     |

| Station Gross Flow Rate | 511 |
|-------------------------|-----|
| Station Net Flow Rate   | 512 |
| Station Mass Flow Rate  | 513 |

|                 | Assi |
|-----------------|------|
| Analog Input #1 | 1    |
| Analog Input #2 | 2    |
| Analog Input #3 | 3    |
| Analog Input #4 | 4    |
| RTD Input       | 5    |
| Remote Control  | 6    |
| Meter #1 PID    | 7    |
| Meter #2 PID    | 8    |
| Meter #3 PID    | 9    |
| Meter #4 PID    | 10   |

| ignment |                    |    |  |
|---------|--------------------|----|--|
|         | Spare Auxiliary#1  | 11 |  |
|         | Spare Auxiliary#2  | 12 |  |
|         | Spare Auxiliary#3  | 13 |  |
|         | Spare Auxiliary#4  | 14 |  |
|         | Spare Auxiliary#5  | 15 |  |
|         | Spare Auxiliary#6  | 16 |  |
|         | Spare Auxiliary#7  | 17 |  |
|         | Spare Auxiliary#8  | 18 |  |
|         | Spare Auxiliary#9  | 19 |  |
|         | Spare Auxiliary#10 | 20 |  |
| _       | Spare Auxiliary#11 | 21 |  |
|         | Spare Auxiliary#12 | 22 |  |
|         | Densitometer Temp  | 23 |  |
|         | Densitometer Press | 24 |  |

# Analog Output 4mA/20mA

4-20mA selection must be proportional and within the range of the selected parameter. The 4-20mA output signal is 12 bits.

#### H - DENSITOMETER SETTINGS

# **Densitometer Tag ID**

Up to 8 alphanumeric ID number. The transmitters are referred to according to the TAG ID. All alarms are labeled according to TAG ID.

# **Densitometer Temperature IO Position**

| Selection | Description                    |
|-----------|--------------------------------|
| 1         | Analog Input #1                |
| 2         | Analog Input #2                |
| 3         | Analog Input #3                |
| 4         | Analog Input #4                |
| 5         | RTD Input                      |
| 10.       | Multi-Variable Module (Master) |
| 11.       | Multi-Variable Module Slave #1 |
| 12.       | Multi-Variable Module Slave #2 |
| 13.       | Multi-Variable Module Slave #3 |
| 21.       | Analog Input #5                |
| 22.       | Analog Input #6                |
| 23.       | Analog Input #7                |
| 24.       | Analog Input #8                |
| 25.       | Analog Input #9                |
|           |                                |

#### **Densitometer Pressure IO Position**

| Selection | Description                    |
|-----------|--------------------------------|
| 1.        | Analog Input #1                |
| 2.        | Analog Input #2                |
| 3.        | Analog Input #3                |
| 4.        | Analog Input #4                |
| 10.       | Multi-Variable Module (Master) |
| 11.       | Multi-Variable Module Slave #1 |
| 12.       | Multi-Variable Module Slave #2 |
| 13.       | Multi-Variable Module Slave #3 |
| 21.       | Analog Input #5                |
| 22.       | Analog Input #6                |
| 23.       | Analog Input #7                |
| 24.       | Analog Input #8                |
| 25.       | Analog Input #9                |

# **Density Fail Code**

Fail Code 0: always use the live value even if the densitometer failed.

Fail Code 1: always use the maintenance value

Fail Code 2: use maintenance value if densitometer failed. (i.e. densitometer period is above

density high period or is below densitometer period.)

# Densitometer Settings - Sarasota, UGC, or Solartron

Enter the densitometer constants accordingly with the type selection.

#### **Density Correction Factor**

Enter the correction factor for the densitometer

#### **Density Period Low/High Limits**

Density Period is the time period in microsecond. The densitometer fails if the density period exceeds the density period low or high limits. If the densitometer fails and density fail code is set to 2, the maintenance value will be used. (Density Period = 1000000/Density Frequency)

# **Density Maintenance**

The value is to be used when the transmitter fails, or while calibrating. Set fail code to 1 while calibrating.

# **Density Low/High Limits**

Enter the low and high limits. When live value exceeds high limit or less than low limit, an alarm log will be generated.

# I - SPARE AUXILIARY I/O

The Flow Computer can be configured to be master unit through the second RS485 (port#3). The master unit can connect up to three "MicroMV Flow Computer" slave units. Each slave unit has four analog inputs. In order to use spare auxiliary inputs, the input must be properly assigned. Enter spare auxiliary 1-4 input data entries are for slave#1, 5-8 input data entries for slave#2, and 9-12 input data entries for slave#3.

#### TAG No

Select the following tag no to use default tag, or select '0' to enter tag id.

| 11 | TubingP1 | 21 | TubingP2 | 31 | TubingP3 | 41 | TubingP4 |
|----|----------|----|----------|----|----------|----|----------|
| 12 | CasingP1 | 22 | CasingP2 | 32 | CasingP3 | 42 | CasingP4 |
| 13 | OilTank1 | 23 | OilTank2 | 33 | OilTank3 | 43 | OilTank4 |
| 14 | WatTank1 | 24 | WatTank2 | 34 | WatTank3 | 44 | WatTank4 |
| 15 | Suction1 | 25 | Suction2 | 35 | Suction3 | 45 | Suction4 |
| 16 | Dischag1 | 26 | Dischag2 | 36 | Dischag3 | 46 | Dischag4 |
| 17 | CompreT1 | 27 | CompreT2 | 37 | CompreT3 | 47 | CompreT4 |

#### TAG ID

Up to 8 alphanumeric ID number. The transmitters are referred to according to the TAG ID. All alarms are labeled according to TAG ID

#### 4mA

Enter the 4mA value for the transmitter.

#### 20mA

Enter the 20mA value for the transmitter.

# Low/High Limit

Enter the low and high limits. When live value exceeds high limit or less than low limit, an alarm log will be generated.

# **Maintenance Value**

The value is to be used when the transmitter fails, or while calibrating. Set fail code to 1 while calibrating.

#### Fail Code

Fail Code 0: always use the live value even if the transmitter failed.

Fail Code 1: always use the maintenance value

Fail Code 2: use maintenance value if transmitter failed. (i.e. 4-20mA is above 21.75 or below

3.25)

# J - MULTI. VARIABLE SETTINGS

In order for the Flow Computer to use the live input, the input must be properly assigned and properly wired The Flow Computer can be configured to be master unit through the second RS485 (port#3). The master unit can connect up to three "MicroMV Flow Computer" slave units. Each slave unit has multivariable - DP, pressure, and temperature.

#### TAG ID

Up to 8 alphanumeric ID number. The multi-variables are referred to according to the TAG ID. All alarms are labeled according to TAG ID.

#### Low/High Limit

Enter the low and high limits. When live value exceeds high limit or less than low limit, an alarm log will be generated.

#### **Maintenance Value**

The value is to be used when the transmitter fails, or while calibrating. Set fail code to 1 while calibrating.

#### Fail Code

Fail Code 0: always use the live value even if the multivariable failed.

Fail Code 1: always use the maintenance value

Fail Code 2: use maintenance value if multivariable failed

#### K - STATUS INPUT /SWITCH OUTPUT ASSIGNMENT

#### I/O|Status Input/Switch Output Assignment

|   | Assignment        | Comments                                                                                                                          |
|---|-------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 1 | End Batch         | End batch and reset batch totalizer for all the meters                                                                            |
| 2 | Product Bit 0     | Before ending the batch, the user can use status input bit to select                                                              |
| 3 | Product Bit 1     | next product. These bits are read once when batch is ended.                                                                       |
| 4 | Product Bit 2     |                                                                                                                                   |
| 5 | Alarm Acknowledge | Reset the previous occurred alarms output bit                                                                                     |
| 6 | Calibration Mode  | Calibration mode will set the flow computer to continue totalizing at same rate while all values are still showing live readings. |

#### **Switch Output Assignment**

User can assign an output to each of the Micro MV Liquid Flow Computer's output switches from this list. The Micro MV Liquid Flow Computer switch outputs are open collector type, requiring external D.C power applied to the SW power.

Outputs in the top list, "Pulse Outputs", require a definition of pulse output per unit volume and "Pulse Output Width". Those data entry are in the other parameter's menu. These outputs are available through switches 1 or 2 only.

Outputs in the bottom list, "Contact Type Outputs", are ON/OFF type outputs. They can be assigned to any of the four switch outputs.

Switches 1 and 2 can be pulse or contact type output; switches 3, 4 are contact-type output only.

#### **Assignments - Pulse Outputs**

|       | Meter 1 | Meter 2 | Meter 3 | Meter 4 |
|-------|---------|---------|---------|---------|
| Gross | 101     | 104     | 107     | 110     |
| Net   | 102     | 105     | 108     | 111     |
| Mass  | 103     | 106     | 109     | 112     |

| <b>Station Gross</b> | 113 |
|----------------------|-----|
| Station Net          | 114 |
| Station Mass         | 115 |

#### Pulse Output and Pulse Output Width

Pulse Output is used to activate a sampler or external totalizer. The number selected will be pulses per unit volume or per unit mass. If 0.1 pulse is selected, the one pulse will be given every 10 unit volumes has passed through the meter.

Pulse Output Width is the duration, in milliseconds, of one complete pulse cycle (where each cycle is the pulse plus a wait period, in a 50/50 ratio). For example: if POW = 500 msec, the Micro MV Liquid Flow Computer at most can produce one pulse each second regardless of the pulse per unit volume selected (500 msec pulse + 500 msec wait). If POW = 10 msec the Micro MV Liquid Flow Computer can produce up to 50 pulses per second.

The Micro MV Liquid Flow Computer's maximum pulse output is 125 pulses/sec. The Pulse Output in combination with the Pulse Output Width should be set so that this number is not exceeded.

# Assignments - Contact Type Outputs

|                       | Meter 1 | Meter 2 | Meter 3 | Meter 4 |
|-----------------------|---------|---------|---------|---------|
| Batch Ended           | 116     | 121     | 126     | 131     |
| Temperature Out Range | 117     | 122     | 127     | 132     |
| Gravity Out of Range  | 118     | 123     | 128     | 133     |
| Flow Rate High        | 119     | 124     | 129     | 134     |
| Flow Rate Low         | 120     | 125     | 130     | 135     |
| Meter Down            | 138     | 225     | 226     | 227     |

| Day Ended                                   | 136 |
|---------------------------------------------|-----|
| Month Ended                                 | 130 |
| Analog Input #1 High                        | 139 |
| Analog Input #1 Low                         | 140 |
| Analog Input #1 Low<br>Analog Input #2 High | 141 |
| Analog Input #2 Low                         | 142 |
| Analog Input #3 High                        | 143 |
| Analog Input #3 Low                         | 144 |
| Analog Input #4 High                        | 145 |
| Analog Input #4 Low                         | 146 |
| RTD Input High                              | 147 |
| RTD Input Low                               | 148 |
| Densitometer Failed                         | 149 |
| Density High                                | 150 |
| Density Low                                 | 151 |
| Multi-Variable DP HI                        | 152 |
| Multi-Variable DP LO                        | 153 |
| Multi-Variable PF HI                        | 154 |
| Multi-Variable PF Low                       | 155 |
| Multi-Variable TF HI                        | 156 |
| Multi-Variable TF Low                       | 157 |
| Active Alarms                               | 158 |
| Occurred Alarms                             | 159 |
| Watchdog                                    | 160 |
| Remote Control                              | 161 |
| Analog Input #5 High                        | 162 |
| Analog Input #5 Low                         | 163 |
| Analog Input #6 High                        | 164 |
| Analog Input #6 Low                         | 165 |
| Analog Input #7 High                        | 166 |

| Analog Input #7 Low       | 167 |
|---------------------------|-----|
| Analog Input #8 High      | 168 |
| Analog Input #8 Low       | 169 |
| Analog Input #9 High      | 170 |
| Analog Input #9 Low       | 171 |
| Spare Auxiliary I/O#1 Hi  | 172 |
| Spare Auxiliary I/O#1 LO  | 173 |
| Spare Auxiliary I/O#2 Hi  | 174 |
| Spare Auxiliary I/O#2 LO  | 175 |
| Spare Auxiliary I/O#3 Hi  | 176 |
| Spare Auxiliary I/O#3 LO  | 177 |
| Spare Auxiliary I/O#4 Hi  | 178 |
| Spare Auxiliary I/O#4 LO  | 179 |
| Spare Auxiliary I/O#5 HI  | 180 |
| Spare Auxiliary I/O#5 LO  | 181 |
| Spare Auxiliary I/O#6 HI  | 182 |
| Spare Auxiliary I/O#6 LO  | 183 |
| Spare Auxiliary I/O#7 HI  | 184 |
| Spare Auxiliary I/O#7 LO  | 185 |
| Spare Auxiliary I/O#8 HI  | 186 |
| Spare Auxiliary I/O#8 LO  | 187 |
| Spare Auxiliary I/O#9 HI  | 188 |
| Spare Auxiliary I/O#9 LO  | 189 |
| Spare Auxiliary I/O#10 HI | 190 |
| Spare Auxiliary I/O10 LO  | 191 |
| Spare Auxiliary I/O#11 HI | 192 |
| Spare Auxiliary I/O11 LO  | 193 |
| Spare Auxiliary I/O#12 HI | 194 |
| Spare Auxiliary I/O12 LO  | 195 |
| Slave#1 DP HI             | 197 |
|                           |     |

| Slave#1 DP LO | 198 |
|---------------|-----|
| Slave#1 P HI  | 199 |
| Slave#1 P LO  | 200 |
| Slave#1 T HI  | 201 |
| Slave#1 T LO  | 202 |
| Slave#2 DP HI | 203 |
| Slave#2 DP LO | 204 |
| Slave#2 P HI  | 205 |
| Slave#2 P LO  | 206 |
| Slave#2 T HI  | 207 |
| Slave#2 T LO  | 208 |
| Slave#3 DP HI | 209 |
| Slave#3 DP LO | 210 |
| Slave#3 P HI  | 211 |
| Slave#3 P LO  | 212 |
| Slave#3 T HI  | 213 |
| Slave#3 T LO  | 214 |
| Analog#1 Fail | 215 |
| Analog#2 Fail | 216 |
| Analog#3 Fail | 217 |
| Analog#4 Fail | 218 |
| RTD Fail      | 219 |
| Analog#5 Fail | 220 |
| Analog#6 Fail | 221 |
| Analog#7 Fail | 222 |
| Analog#8 Fail | 223 |
| Analog#9 Fail | 224 |
|               |     |

<u>L - FLOW COMPUTER DISPLAY ASSIGNMENT</u>
Display assignment selections are up to **12** assignments. Each screen has **two selections**. The Micro MV Liquid Flow Computer will scroll through them at the assigned delay time.

# Assignment

|                            | Meter 1 | Meter 2 | Meter 3 | Meter 4 |
|----------------------------|---------|---------|---------|---------|
| Gross Flow Rate            | 101     | 201     | 301     | 401     |
| Net Flow Rate              | 102     | 202     | 302     | 402     |
| Mass Flow Rate             | 103     | 203     | 303     | 403     |
| Gross Batch Total          | 104     | 204     | 304     | 404     |
| Net Batch Total            | 105     | 205     | 305     | 405     |
| Mass Batch Total           | 106     | 206     | 306     | 406     |
| Gross Daily Total          | 107     | 207     | 307     | 407     |
| Net Daily Total            | 108     | 208     | 308     | 408     |
| Mass Daily Total           | 109     | 209     | 309     | 409     |
| Gross Month Total          | 110     | 210     | 310     | 410     |
| Net Month Total            | 111     | 211     | 311     | 411     |
| Mass Month Total           | 112     | 212     | 312     | 412     |
| Gross Cumulative Total     | 113     | 213     | 313     | 413     |
| Net Cumulative Total       | 114     | 214     | 314     | 414     |
| Mass Cumulative Total      | 115     | 215     | 315     | 415     |
| Previous Gross Batch Total | 116     | 216     | 316     | 416     |
| Previous Net Batch Total   | 117     | 217     | 317     | 417     |
| Previous Mass Batch Total  | 118     | 218     | 318     | 418     |
| Previous Gross Daily Total | 119     | 219     | 319     | 419     |
| Previous Net Daily Total   | 120     | 220     | 320     | 420     |
| Previous Mass Daily Total  | 121     | 221     | 321     | 421     |

| Station Gross Flow Rate | 501 |
|-------------------------|-----|
| Station Net Flow Rate   | 502 |
| Station Mass Flow Rate  | 503 |

|                            | Meter 1 | Meter 2 | Meter 3 | Meter 4 |
|----------------------------|---------|---------|---------|---------|
| Temperature                | 122     | 222     | 322     | 422     |
| Pressure                   | 123     | 223     | 323     | 423     |
| Density                    | 124     | 224     | 324     | 424     |
| DP                         | 125     | 225     | 325     | 425     |
| DP Low                     | 126     | 226     | 326     | 426     |
| DP High                    | 127     | 227     | 327     | 427     |
| Alarms                     | 128     | 228     | 328     | 428     |
| Orifice ID                 | 129     | 229     | 329     | 429     |
| Pipe ID                    | 130     | 230     | 330     | 430     |
| PID – Flow                 | 131     | 231     | 331     | 431     |
| PID - Pressure             | 132     | 232     | 332     | 432     |
| PID – Output               | 133     | 233     | 333     | 433     |
| Base Density               | 134     | 234     | 334     | 434     |
| SG                         | 135     | 235     | 335     | 435     |
| Base SG                    | 136     | 236     | 336     | 436     |
| FWA DP                     | 137     | 237     | 337     | 437     |
| FWA Temperature            | 138     | 238     | 338     | 438     |
| FWA Pressure               | 139     | 239     | 339     | 439     |
| FWA Density                | 140     | 240     | 340     | 440     |
| FWA Base Density           | 141     | 241     | 341     | 441     |
| FWA SG                     | 142     | 242     | 342     | 442     |
| FWA Base SG                | 143     | 243     | 343     | 443     |
| Last Batch FWA Temperature | 144     | 244     | 344     | 444     |
| Last Batch FWA Pressure    | 145     | 245     | 345     | 445     |
| Last Batch FWA Density     | 146     | 246     | 346     | 446     |
| Densitometer Period        | 147     | 247     | 347     | 447     |
| Un-Corrected Density       | 148     | 248     | 348     | 448     |

| Selection | Description                     |
|-----------|---------------------------------|
| 701       | Date/Time                       |
| 702       | Battery Voltage/Spare Variabe#1 |
| 703       | Spare Variable #2/#3            |
| 704       | Spare Variable #4/#5            |
| 705       | Spare Variable #6/#7            |
| 706       | Spare Variable #8/#9            |
| 707       | Spare Auxiliary Variable#1/#2   |
| 708       | Spare Auxiliary Variable#3/#4   |

| Selection | Description                  |  |  |
|-----------|------------------------------|--|--|
| 709       | Spare Auxiliary Var.#5/#6    |  |  |
| 710       | Spare Auxiliary Var.#7/#8    |  |  |
| 711       | Spare Auxiliary Var.#9 /#10  |  |  |
| 712       | Spare Auxiliary Var.#11 /#12 |  |  |
| 713       | Program Variable #1/#2       |  |  |
| 714       | Program Variable #3/#4       |  |  |
| 715       | Program Variable #5/#6       |  |  |
| 716       | Program Variable #7/#8       |  |  |

#### M - MODBUS SHIFT- 2 OR 4 BYTES

Reassigns Modbus address registers on the Micro MV Liquid Flow Computer to predefined Modbus registers for easy polling and convenience. Use Modbus Shift to collect values in scattered Modbus registers into a consecutive order. The Micro MV Liquid Flow Computer will repeat the assigned variables into the selected locations.

Note: some Modbus registers are 2 byte/16 bit, and some are 4 byte/32 bit. Register size incompatibility could cause rejection to certain address assignments. Refer to the Modbus Address Table Registers in Chapter 5.

Example: you want to read the current status of switches #1 and #2 (addresses 2751 and 2752) and the Daily Gross Total for Meter #1 (address 3131). Make assignments such as:

3082=2751 (2 bytes) 3083=2752 (2 bytes) 3819=3131 (4 bytes)

# N - MODBUS SHIFT - FLOATING POINT

Use Modbus Shift to collect values in scattered Modbus floating point registers into a consecutive order. The Micro MV Liquid Flow Computer will repeat the assigned variables (Refer to the Modbus Address Table Registers in Chapter 5) into the selected locations (7501-7600)

\*Note: Modbus shift registers are READ ONLY registers.

# O - BOOLEAN STATEMENTS

From the MicroMV Flow Computer Configuration Software, Point cursor to 'I/O', scroll down to 'Boolean Statements' and a window will pop up allowing you to enter the statements.

Boolean Points - 4 digits (0001-0800, 7831-7899)

Enter the Boolean statements (**no space allowed**, up to 30 statements). Each statement contains up to two Boolean variables (optionally preceded by '/') and one of the Boolean function (&, +, \*). <u>4 digits are required</u> for referencing programmable variables or Boolean points. (Example: 0001)

Example:

The statement is true if either temperature or pressure override is in use. 0070=0112+0113

#### **BOOLEAN Statements and Functions**

Each programmable Boolean statement consists of two Boolean variables optionally preceded a Boolean 'NOT' function (/) and separated by one of the Boolean functions (&, +, \*). Each statement is evaluated every 100 milliseconds. Boolean variables have only two states 0 (False, OFF) or 1 (True, ON). Any variable (integer or floating point) can be used in the Boolean statements. The value of Integer or floating point can be either positive (TRUE) or negative (FALSE).

| Boolean Functions   | Symbol |  |
|---------------------|--------|--|
| NOT                 | /      |  |
| AND                 | &      |  |
| OR                  | +      |  |
| <b>EXCLUSIVE OR</b> | *      |  |

#### Boolean points are numbered as follows:

Digital I/O Points 1 through 50 0001 through 0050

0001 - Status Input/Digital Output #1

0002 - Status Input/Digital Output #2

0003 - Status Input/Digital Output #3

0004 - Status Input/Digital Output #4

0005 - 0050 - Spare

0070 through 0099 **Programmable Boolean Points** 

# **Boolean Points**

0100 through 0199 Meter #1 Boolean Points
0200 through 0299 Meter #2 Boolean Points
0300 through 0399 Meter #3 Boolean Points
0400 through 0499 Meter #4 Boolean Points

# 1st digit-always 0, 2nd digit-meter number, 3rd and 4th digit-Selection

 0n01
 Spare

 0n02
 Spare

 0n03
 Spare

 0n04
 Spare

 0n05
 Meter Active

 0n06
 Spare

0n07 Any Active Alarms

0n08-0n10 Spare

0n11 DP Override in Use

0n12 Temperature Override in Use 0n13 Pressure Override in Use 0n14 Density Override in Use 0n15 BS&W Override in Use

0n17-0n20 Spare

0n21 Gravity Out of Range 0n22 Flow Rate High Alarm 0n23 Flow Rate Low Alarm

0n24 Table Temperature Out of Range

0n25 Alpha T Out of Range

0n26 0n27

# 0601 through 0800

| 0601 | Analog Input #1 High |
|------|----------------------|
| 0602 | Analog Input #1 Low  |
| 0603 | Analog Input #2 High |
| 0604 | Analog Input #2 Low  |
| 0605 | Analog Input #3 High |
| 0606 | Analog Input #3 Low  |
| 0607 | Analog Input #4 High |
| 0608 | Analog Input #4 Low  |
|      |                      |
| 0609 | RTD Input High       |
| 0610 | RTD Input Low        |
| 0611 | Calibration Mode     |

0612 Battery Alarm
0613 Analog Output #1 Out of Range
0614 Analog Output #2 Out of Range
0615 Analog Output #3 Out of Range
0616 Analog Output #4 Out of Range

| 0617<br>0618<br>0619<br>0620<br>0621<br>0622<br>0623<br>0624 | Analog Input #1 Failed Analog Input #2 Failed Analog Input #3 Failed Analog Input #4 Failed RTD Input Failed Densitometer Failed Densitometer High Alarm Densitometer Low Alarm                                                                                         |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0625<br>0626<br>0627<br>0628<br>0629<br>0630<br>0631<br>0632 | Multi-Variable DP High Multi-Variable DP Low Multi-Variable Pressure High Multi-Variable Pressure Low Multi-Variable Temperature High Multi-Variable Temperature Low Spare Spare                                                                                        |
| 0633<br>0634<br>0635<br>0636<br>0637<br>0638<br>0639<br>0640 | Analog Input#1 Override in Use Analog Input#2 Override in Use Analog Input#3 Override in Use Analog Input#4 Override in Use RTD Input Override in Use Density Override in Use Densitometer Temperature Override in Use Densitometer Pressure Override in Use            |
| 0641<br>0642<br>0643<br>0644<br>0645<br>0646<br>0647<br>0648 | Multi-Variable DP Override in Use<br>Multi-Variable Pressure Override in Use<br>Multi-Variable Temperature Override in Use<br>Spare<br>Spare#1 Input Override in Use<br>Spare#2 Input Override in Use<br>Spare#3 Input Override in Use<br>Spare#4 Input Override in Use |
| 0649<br>0650<br>0651<br>0652<br>0653<br>0654<br>0655<br>0656 | G.C. Communication Failed Slave ID #1 Communication Failed Slave ID #2 Communication Failed Slave ID #3 Communication Failed MPU1200 Alarm Spare Spare Spare Spare                                                                                                      |

| 0657                                                         | Analog Input #5 High                                                                                                                                                                                                           |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0658                                                         | Analog Input #5 Low                                                                                                                                                                                                            |
| 0659                                                         | Analog Input #6 High                                                                                                                                                                                                           |
| 0660                                                         | Analog Input #6 Low                                                                                                                                                                                                            |
| 0661                                                         | Analog Input #7 High                                                                                                                                                                                                           |
| 0662                                                         | Analog Input #7 Low                                                                                                                                                                                                            |
| 0663                                                         | Analog Input #8 High                                                                                                                                                                                                           |
| 0664                                                         | Analog Input #8 Low                                                                                                                                                                                                            |
| 0665<br>0666<br>0667<br>0668<br>0669<br>0670<br>0671         | Analog Input #9 High<br>Analog Input #9 Low<br>Spare<br>Spare Input #5 Override in Use<br>Spare Input #6 Override in Use<br>Spare Input #7 Override in Use<br>Spare Input #8 Override in Use<br>Spare Input #9 Override in Use |
| 0673                                                         | Analog Input #5 Override in Use                                                                                                                                                                                                |
| 0674                                                         | Analog Input #6 Override in Use                                                                                                                                                                                                |
| 0675                                                         | Analog Input #7 Override in Use                                                                                                                                                                                                |
| 0676                                                         | Analog Input #8 Override in Use                                                                                                                                                                                                |
| 0677                                                         | Analog Input #9 Override in Use                                                                                                                                                                                                |
| 0678                                                         | Spare                                                                                                                                                                                                                          |
| 0679                                                         | Spare                                                                                                                                                                                                                          |
| 0680                                                         | Spare                                                                                                                                                                                                                          |
| 0681<br>0682<br>0683<br>0684<br>0685<br>0686<br>0687<br>0688 | Auxiliary Variable #1 High<br>Auxiliary Variable #1 Low<br>Auxiliary Variable #2 High<br>Auxiliary Variable #2 Low<br>Auxiliary Variable #3 High<br>Auxiliary Variable #4 Low<br>Auxiliary Variable #4 Low                     |
| 0689                                                         | Auxiliary Variable #5 High                                                                                                                                                                                                     |
| 0690                                                         | Auxiliary Variable #5 Low                                                                                                                                                                                                      |
| 0691                                                         | Auxiliary Variable #6 High                                                                                                                                                                                                     |
| 0692                                                         | Auxiliary Variable #6 Low                                                                                                                                                                                                      |
| 0693                                                         | Auxiliary Variable #7 High                                                                                                                                                                                                     |
| 0694                                                         | Auxiliary Variable #7 Low                                                                                                                                                                                                      |
| 0695                                                         | Auxiliary Variable #8 High                                                                                                                                                                                                     |
| 0696                                                         | Auxiliary Variable #8 Low                                                                                                                                                                                                      |
| 0697<br>0698<br>0699<br>0700<br>0701<br>0702<br>0703<br>0704 | Auxiliary Variable #9 High<br>Auxiliary Variable #9 Low<br>Auxiliary Variable #10 High<br>Auxiliary Variable #10 Low<br>Auxiliary Variable #11 High<br>Auxiliary Variable #12 High<br>Auxiliary Variable #12 Low               |

| 0705<br>0706<br>0707<br>0708<br>0709<br>0710<br>0711         | Day Ended Flag (Last 5 Seconds) Month Ended Flag (Last 5 Seconds) Spare Spare Spare Spare Spare Run Switch Spare                                                                                                                                                                 |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0713<br>0714<br>0715<br>0716<br>0717<br>0718<br>0719         | Slave#1 DP High Alarm Slave#1 DP Low Alarm Slave#1 Pressure High Alarm Slave#1 Pressure Low Alarm Slave#1 Temperature High Alarm Slave#1 Temperature Low Alarm Spare Spare                                                                                                       |
| 0721<br>0722<br>0723<br>0724<br>0725<br>0726<br>0727<br>0728 | Slave#2 DP High Alarm<br>Slave#2 DP Low Alarm<br>Slave#2 Pressure High Alarm<br>Slave#2 Pressure Low Alarm<br>Slave#2 Temperature High Alarm<br>Slave#2 Temperature Low Alarm<br>Spare<br>Spare                                                                                  |
| 0729<br>0730<br>0731<br>0732<br>0733<br>0734<br>0735<br>0736 | Slave#3 DP High Alarm Slave#3 DP Low Alarm Slave#3 Pressure High Alarm Slave#3 Pressure Low Alarm Slave#3 Temperature High Alarm Slave#3 Temperature Low Alarm Spare Spare                                                                                                       |
| 0737<br>0738<br>0739<br>0740<br>0741<br>0742<br>0743         | Slave#1 DP Override in Use<br>Slave#1 Pressure Override in Use<br>Slave#1 Temperature Override in Use<br>Slave#2 DP Override in Use<br>Slave#2 Pressure Override in Use<br>Slave#2 Temperature Override in Use<br>Slave#3 DP Override in Use<br>Slave#3 Pressure Override in Use |
| 0745 <b>0801 through 0899</b>                                | Slave#3 Temperature Override in Use  Command Boolean Points                                                                                                                                                                                                                      |
| 0801                                                         | Alarm Acknowledge                                                                                                                                                                                                                                                                |

# P - PROGRAM VARIABLE STATEMENTS

From the MicroMV Flow Computer Configuration Software, Point cursor to 'I/O', scroll down to 'Program Variable Statements' and a window will pop up allowing you to enter the statements.

Enter the user programmable statements (**no space allowed**, up to 69 statements). Each statement contains up to three variables and separated by one of the mathematical functions. **4 digits are required** for referencing programmable variables or Boolean points. (Example: 0001+7801)

# Example:

7832 is equal to total of variable#1(Modbus addr.7801) and variable#2 (Modbus addr.7802) 32=7801+7802

#### **Variable Statements and Mathematical Functions**

Each statement can contain up to 3 variables or constants.

<u>Function</u> <u>Symbol</u>

**ADD** + Add the two variables or constant

**SUBTRACT** - Subtract the variable or constant

**MULTIPLY** \* Multiply the two variables or constant

**DIVIDE** Divide the two variables or constants

**CONSTANT** # The number following is interpreted as a constant

**POWER** 4 1st variable to the power of 2nd variable

**ABSOLUTE** \$ unsigned value of variable

**EQUAL** = Move result to another variable

Variable within the range of 7801-7899 (floating points) Variable within the range of 5031-5069 (long integer)

**IF STATEMENT** ) Compares the variable to another

Example: 7801)T7835 (if variable is greater to or is equal to 1 then go to 7835)

7801)7802=#0 (if variable is greater to or is equal to 1 then set variable 7802 to 0)

**GOTO STATEMENT** T Go to a different statement (**forward only**)

Example: 7801%#60**T**7836 (if variable is equal to 60 then go to statement 7836)

COMPARE % Compare a value (EQUAL TO)

**GREATER/EQUAL** > Compare a value (**GREATER OR EQUAL TO**)

Example: 7801>7802**T**7836

(If variable 1 is greater to or equal to variable 2 then go to 7836)

Natural Log of variable

Order of precedence – absolute, power, multiply, divide, add and subtract.

Same precedence – left to right

Variables stored on the hourly report - 7071- 7075 will be reset at the end of hour.

Variables stored on the daily report - 7076 - 7080 will be reset at the end of day.

Variables stored on the month report - 7081- 7085 will be reset at the end of month.

Scratch Pad Variables - Floating Point - 7801-7830 (Read or Write)

- Long Integer - 5031 - 5069 (Read or Write)

7262-7266 – Last Hour Program Variables (Read Only)

7434-7438 - Yesterday Program Variables (Read Only)

7466-7470 - Last Month Program Variables (Read Only)

#### Q - VARIABLE STATEMENT TAGS

These tags are provided to add a meaningful description for the program variables.

#### R - SPARE ASSIGNMENT

Spare inputs are not used in the calculation and just for indication, display and alarm purpose only.

#### S - PID CONTROL

#### **PID Configuration**

(PID) Proportional Integral Derivative control—We call this function PID, however the flow computer performs Proportional Integral control. And does not apply the Derivative. The Derivative is not normally used in flow and pressure control operations and complicates the tuning operation

#### Use Flow Loop

(Valid entries are 0 or 1)

Enter 1 if the computer performs flow control.

Enter 0 if the flow computer does not perform flow control.

#### Flow Loop Maximum Flow rate

Enter the maximum flow rate for this meter. This rate will be basis for maximum flow rate to control at.

#### Flow Set Point

Enter the set point. The set point is the flow rate that the flow computer will try to control at.

#### Flow Acting – forward or reverse

Enter 0 if the control is direct acting, Enter 1 if the control is reverse acting.

Direct acting is when the output of the controller causes the flow rate to follow in the same direction. The output goes up and the flow rate increases. A fail Close valve located in line with the meter will typically be direct acting. If the Controller output signal increases, the control valve will open more causing the flow rate to increase.

Reverse acting is when the output of the controller causes the opposite action in the flow rate. A fail open valve in line with the meter will typically be reverse acting. If the Controller output increases the control valve will close some causing the flow rate to decrease.

Care must be taken to study where the valves are located in relation to the meter and whether the valves are fail open or fail close to understand if the controller should be direct or reverse acting. Some control valves can be fail in position (especially Electrically actuated control valves). This valve should be studied to understand if the actuators themselves are direct or reverse acting.

#### PID Flow Base

PID flow rate base can be gross, net, or mass flow rate.

# Use Pressure Loop

(Valid entries are 0 or 1)

Enter 1 if the computer performs pressure control.

Enter 0 if the flow computer does not perform pressure control.

#### Pressure Maximum

Enter the Maximum pressure for this meter. This pressure will be basis for Maximum pressure to control at.

#### Pressure Set Point

Enter the set point. The set point is the pressure that the flow computer will try to control at.

# Pressure Acting – forward or reverse

Enter 0 if the control is direct acting, Enter 1 if the control is reverse acting.

Direct acting is when the output of the controller causes the pressure to follow in the same direction. The output goes up and the pressure increases. A fail open valve located in the line downstream of the meter will typically be direct acting to maintain the pressure at the meter. An Increase in the output from the controller will cause the control valve to close thus causing the pressure to increase.

Reverse acting is when the output of the controller causes the opposite action in the flow rate. A fail close valve in the line downstream of the meter will typically be reverse acting to maintain the pressure at the meter. An increase in the output signal will cause the valve to open, which will cause the pressure to be released thus causing the pressure to decrease.

Care must be taken to study where the valves are located in relation to the meter and whether the valves are fail open or fail close to understand if the controller should be direct or reverse acting. Some control valves can be fail in position (especially Electrically actuated control valves). These valves should be studied to understand if the actuators themselves are direct or reverse acting.

#### PID Pressure Base

PID pressure base can be meter pressure or spare#1-#9.

#### System Data Minimum Output

Enter the minimum output percent (default to 0)

#### System Data Maximum Output

Enter the maximum output percent (default to 100.0)

#### Signal Selection

If flow and pressure loops are both configured in the PID control loop, select high or low signal to be the output.

#### **PID Tuning**

#### Flow Controller Gain

(Allowable Entries 0.0 - 9.99)

The gain is effectively 1/Proportional Band.

The basis of theory for proportional band is the relationship of the percentage of the output of the controller to the percentage of the change of the process. In this case, if the control output changes 5% the flow rate should change 5%, the proportional band would be 1.0 and the gain would be 1.0.

If the percentage of the output is 5% and the flow rate would change by 10%, the proportional band would be 2 and the Gain would be 0.5

However since you do not know until you are flowing the effect of the output on the flow rate, you have to start somewhere. A good starting point is to use a proportional band of 0.5 if the valve is properly sized.

#### Flow Controller Reset

(Allowable Range 0.0 - 9.99)

Reset is the number of minutes per repeat is the time interval controller adjusts the output to the final control element. If the reset is set at 2, the flow computer will adjust the signal to the flow control valve every 2 minutes. If the Reset is set at 0.3, the output signal will be adjusted approximately every 20 seconds, until the process and set point are the same.

The rule of thumb is the reset per minute should be set slightly slower that the amount of time it takes for the control valve and the flow rate to react to the flow computer output signal changing.

This can only be determined when there is actual flow under normal conditions. It is best to start the reset at 0.3 or reset the signal every 3 minutes, if the control valve is properly sized.

#### Pressure Controller Gain

(Allowable Entries 0.0 - 9.99)

The gain is effectively 1/Proportional Band.

The basis of theory for proportional band is the relationship of the percentage of the output of the controller to the percentage of the change of the process. In this case, if the control output changes 5% the pressure should change 5%, the proportional band would be 1.0 and the gain would be 1.0.

If the percentage change of the output is 5% and the pressure would change by 10%, the proportional band would be 2 and the Gain would be 0.5.

However since you do not know until you are flowing the effect of the output on the pressure, you have to start somewhere. A good starting point is to use a proportional band of 0.5 if the control element is properly sized.

#### Pressure Controller Reset

(Allowable Range 0.0 - 9.99)

Reset is the number of times per minute the controller adjusts the output to the control valve. If the reset is set at 2, the flow computer will adjust the signal to the final control element every 2 minutes. If the Reset is set at 0.3, the output signal will be adjusted approximately every 20 seconds, until the process and the set point are the same.

The rule of thumb is the reset per minute should be set slightly slower that the amount of time it takes for the control valve and the pressure to react to the flow computer changing the output.

This can only be determined when there is actually flow under normal conditions. It is best to start the reset at 0.3 or reset the signal every 3 minutes, if the control element is properly sized.

# **Download Firmare/Image File**

To Download an Image File to the Flow Computer select the Tools option form the menu, and then Download Program.

A small dialog will appear asking for the file name of the image file. Type it in or use the Browse option to locate it. Once the file name is in place press Download. This task will take about 5 minutes to be completed.

# **Security Codes**

The desktop application provides 5 security areas to prevent users from entering data into certain areas. The 5 areas are:

Master Access: Once the master access is granted, the user can access to all four areas.

**Configuration**: Allow user to modify device configuration settings.

Override: Allow user to change values directly on the device.

**Calibration**: Let the user to calibrate the device inputs.

**Image File Download**: Let user download an image file to the device. This procedure will erase all the information and configuration stored in the device.

Use the **Tools**|**Security Codes** option to modify the access code; a form will appear showing the five different security areas and the actual access status (at bottom of the form). To put a new access code log in to the desired security area and press Change security Code, type in the code and retype it on the confirm space to avoid mistyped codes. Then click [OK].

The system will update the security access every time the application connects to the device and every time data is written to the device it will check for security access before writing.

**NOTE**: In case the access code is forgotten contact our offices for a reset code.

# Connect to Device

Click to Device to establish the communication. If the communication is failed, check information in the "Communication Port Settings".

# Go Offline



to disconnect the communication.

# **Modbus Driver**

DFM provides this tool to read and write Modbus registers from and to the MicroMV flow computers. It will display transmitting and receiving message in HEX format. It should be used for testing purpose only.

# <u>Settings</u>

Each report has its own default template. The user can edit, modify and save as a new personal report. Specify the new location if you want to use the formatted report.

# PID OPERATING

Click PID Loops icon to display PID output percentage, flow, and pressure data. To change setup, select entries under PID menu.

# Flow Loop Set Point

Enter the set point. The set point is the flow rate that the flow computer will try to control at.

# Flow Loop In Service OR Out of Service

The device can perform either flow control or pressure control, or both flow and pressure control. Check if the flow loop is in service or not.

# Pressure Loop Set Point

Enter the set point. The set point is the pressure that the flow computer will try to control at.

# Pressure Loop In Service OR Out of Service

The device can perform either flow control or pressure control, or both flow and pressure control. Check if the flow loop is in service or not.

# Set Output Percentage

If PID output mode is in automatic mode, then enter the output percentage to control PID loop.

# Auto/Manual Mode

PID mode can be configured as manual or automatic mode.

# Reset PID

Reset PID data if PID configuration parameters are changed.

# **CALIBRATION**

Calibrations are performed under **Calibration**. Select inputs to be calibrated, and then select full, single, offset calibration method.

# View Diagnostic Data

Diagnostic data will show live data changing real time. To control the switch outputs manually, check "Enable Switch Output Diagnostic Mode".

# Calibrate Mode

To calibrate Flow Computer, totalizers will continue at same rate where live parameters will show actual value, i.e. flow rate, DP, pressure etc. Enter '1' to enable this feature.

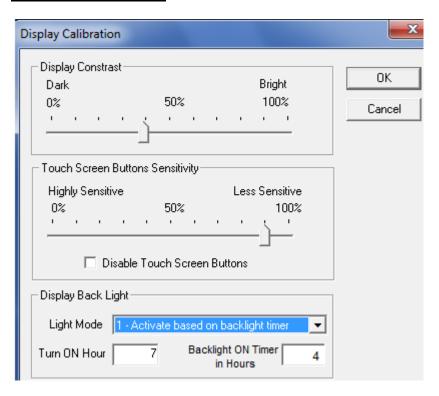
# **SET CALIBRATION METER**

Set the meter to be calibrated.

#### SET TIME (1-9 HOUR)

This entry is the duration for the calibrate mode. After time expires, the Micro MV Flow Computer will resume its normal operation.

# **CALIBRATION**


See details in chapter 1.

# .

# **Calibration - Slave Unit**

This feature is only available if master and slave units are configured. (Slave type = 1) See detailed information in the "Slave Units Configuration" section.

# Calibration - Display



# Display backlight mode

| Display Backlight Mode | Description                                            |  |
|------------------------|--------------------------------------------------------|--|
| 0                      | 60 seconds ON after a touch screen sensor is activated |  |
| 1                      | Activate based on backlight timer                      |  |
|                        | Turn ON Hour and Backlight ON Timer in Hours           |  |
| 2                      | Backlight always OFF                                   |  |

# **Data Verification**

Data verification will not affect the calibration, but will be documented into data verification report.

# Parameter Overrides:

# **Temperature Override**

This value is entered when no live temperature is available, or when a different value from the live value should be used.

# **Pressure Override**

Pressure override can be used when no live pressure transmitter is connected to the MicroML4 Flow Computer.

# **Venturi C Override**

The value is the discharge coefficient for Venturi flow equations. The default value is .9950

# Wedge Kd2 Override

The value is the discharge coefficient for Wedge flow equations.

#### **BS&W Override**

BS&W override can be used when no live BS&W input is connected to the MicroML4 Flow Computer.

# **Equilibrium Pressure Override**

Enter equilibrium pressure override to the current batch.

# Alpha T E-6 Override

Enter Alpha T Override to the batch. It will not affect the Alpha T value in the product file. Alpha T is the thermal expansion coefficient for the selected product. The flow computer divides by 1000000.

Example: 0.000355 = 355 / 1000000 (value entered is 335 for an Alpha T of 0.000355)

#### Orifice ID Override

Orifice ID in inches is the measured diameter of the orifice at reference conditions.

#### Pipe ID Override

Pipe ID in inches is the measured diameter of the pipe at reference conditions.

#### Multi-variables Input Override

The value can be used when the transmitter fails.

# SG/Density Override

Enter Gravity Override to replace current gravity. The gravity override is a non-retroactive gravity and will not override the product file gravity. It only applies to the current running batch.

#### Analog Input Override

The value can be used when the transmitter fails, or while calibrating.

#### RTD Input Override

The value can be used when the transmitter fails, or while calibrating.

# **SYSTEM**

# **DATE AND TIME**

Change the date and time for the flow computer.

#### END BATCH ON ALL METERS

The batch will end if requested through this menu. The current batch totalizer and flow weighted data will reset to zero. Non-resettable totalizers are not affected by the batch resetting.

# RESET CUMULATIVE TOTALIZER

Enter reset code to reset cumulative totalizer.

Non-resettable accumulated volume will roll over at 999999999.

# **CLEAR SYSTEM**

Enter reset system code to reset all data.

NOTE: Contact our offices for a reset code.

# HISTORICAL DATA

# **CAPTURE REPORT**

To retrieve historical data, go to **Historical Data** menu. It retrieves the information, shows it on the screen and stores in one report. Use the different names to save new reports. The data will be overwritten by the same file name. Select reports, enter the file name, click button to save all data in one report.

Templates are created for each report. The user can edit, modify the report template, and save as a new formatted report. Go to "Tools | Settings...", then click button to specify the location or directory for the new report, and the location of the reports to be saved. Check "DFM File" box to generate the

The available types of reports are:

additional binary format of reports.

| Hi                                                                                 | istorical Data                       |                        |           |                         | X                        |
|------------------------------------------------------------------------------------|--------------------------------------|------------------------|-----------|-------------------------|--------------------------|
| [                                                                                  | Reports to Retrieve                  |                        |           |                         |                          |
|                                                                                    | Rep                                  | Starting<br>ports From | Meter     |                         | Starting<br>Reports From |
|                                                                                    | Hourly Short(1-840)                  | 1 1                    | Meter 1 🔽 | Batch (1-8)             | 1 1                      |
|                                                                                    | Hourly Detail (1-8)                  | 1 1                    |           | Last Month (Totals)     |                          |
|                                                                                    | Audit (1-80)                         | 1 1                    |           | Last Month (Daily Detai | Meter 1 🔽                |
|                                                                                    | Alarm (1-80)                         | 1 1                    |           | Calibration (1-20)      | 1                        |
|                                                                                    | ☐ Daily (1-8)                        | 1 1                    |           | Snapshot                |                          |
|                                                                                    | Get data that has not been collected |                        |           |                         |                          |
|                                                                                    |                                      |                        |           |                         |                          |
| Report name: C:\Program Files\Dynamic Fluid\MicroML4\Reports\NewReport.html Browse |                                      |                        |           |                         |                          |
|                                                                                    | Use meter ID as report name          |                        |           |                         |                          |

#### PREVIOUS HOURLY DATA

Up to 840 previous hourly data are stored in the Flow Computer. Enter starting (1=Latest, 840=Oldest) report and the Flow Computer will go backward from that selected report. Current hour can not be retrieved.

#### PREVIOUS DETAIL HOURLY DATA

Up to 8 previous details hourly data are stored in the Flow Computer. Enter starting (1=Latest, 8=Oldest) report and the Flow Computer will go backward from that selected report. Current hour can not be retrieved.

#### AUDIT REPORT

The audit trail report shows configuration parameters that have changed which could influence the calculated numbers. The Flow Computer provides up to 80 event logs. One purpose for audit trail is to back track calculation errors that result from mistakes by the operator of the flow computer operator.

#### ALARM REPORT

Up to 80 previous alarm data can be retrieved. The data are starting from the most recent to the oldest.

# PREVIOUS DAILY DATA

Up to 8 previous daily reports can be retrieved.

#### PREVIOUS BATCH DATA

Up to 8 previous batch reports can be retrieved.

# LAST MONTH DATA

One month of detail data is stored in the Flow Computer. Select meter number to display, print, or capture. Current month data cannot be retrieved.

# LAST MONTH DATA - DAY BY DAY

Month of daily data is stored in the Flow Computer. Select meter number to display, print, or capture. Current month data cannot be retrieved.

# SCHEDULED AUTO POLLING

#### **Automatic Data Polling**

Use the **Historical Data**|**Scheduled Auto Polling** to retrieve report information from devices in a periodic basis automatically.

These are the following settings:

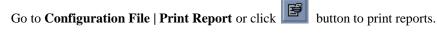
**Enable Automatic Data Retrieval:** Check this option to enable the automatic polling. If the automatic polling function is enabled an "AUTOPOLL" message will appear on the application's status bar (bottom-right corner of the application window).

**Reports to Retrieve:** check the reports you want to get from the devices, you can select as many as you want, just make sure the polling interval is long enough to allow the PC to retrieve the archive. For example, if the computer is programmed to poll 100 reports every 10 seconds, there will not be enough time to get the report before the next poll starts and data will be overlapped.

**Report Name:** provide a name to the reports captured so they will be available for viewing, printing and exporting.

**Starting Day:** Type the date where the poll is going to start. Select "Every Day" is the date doesn't matter.

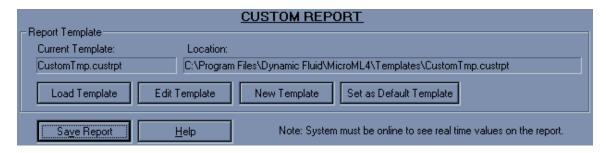
**Polling Time:** select the time you want the automatic polling to start, then select "Poll One Time" if you want to execute these poll only once or select "Poll Every..." and type the polling interval for periodic polls. For example, to poll every hour and a half select "Poll Every..." and type 90 in the Minutes field. **IMPORTANT:** Do not use straight hours as starting time (i.e. 7:00, 8:00). The flow computer calculates and updates its information at the beginning of the hour so if data is retrieved at this time it might be erroneous. Allow about 5 minutes for the flow computer to update the data.

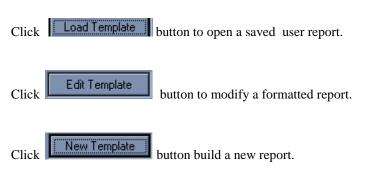

**Polling List:** Add all the units you want to get data from on every poll. You can add up to 100 units. To add a unit just click "Add" and then type the unit's **Modbus** ID number.

**NOTE:** The file C:\AutoPoll.log will contain all the logs for the automatic poll, it will tell if there was a problem or if the data was retrieved successfully.

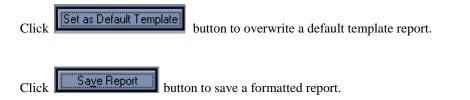
# Viewing previously captured reports

Once a report is saved using the **Historical Data** | **Open Saved Report** option to view the report. When the option is selected, a dialog will appear asking for the name and location of the report you want to see. The browse button can be used to specify the location or directory of the reports.


# **Printing Reports**




• The **Print** Button (shown o the picture) lets you print the report to any printer installed in your computer. The printed version will look just like it is shown on the screen.


# **Custom Report**

Go to **Historical Data** | **Custom Report** to view the user report. Dynacom software allows the user to make personal report. The user can build its own formatted report and monitor the report on line. (real time data).





Any text can be used. Modbus register must follow the "^" sign in order for the program to retrieve the address location. Modbus Registers are listed in the Chapter 5.



# CHAPTER 3: Data Entry Through Front Panel Display

The Data entry is a menu driven type construction.

#### Four Keys - ESC/Mode, Enter/Select, Down Arrow/Right Arrow key

These keys can be operated with a reflective object. The reflective object must be placed in front of the key to get a response.

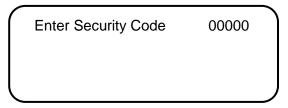
#### **Function**

#### ESC/Mode Key

This key serves dual functions. In order to access the data entry, the mode key has to be activated. The mode key is on/off type key. This key will get the security code prompt, and then using select, enter key with the arrow keys to access the program. Place the reflective object on and then off for each step. Once the data menu function access is completed, exit by using the escape key.

#### Select/Enter Key

It is used to stop screen from scrolling, to select data entry, and accept the data configurations. It is on/off type key. Place the reflective object in front of key, and then move away before the next step.


#### Down Arrow Key, Right Arrow Key

Scrolling keys, the **Right Arrow Key** function is to scroll **Right** way for selecting the number to be changed, and then changing the number by using **Down Arrow Key** 

# **MAIN MENU**

It consists primarily of series of topics. Your valid choices are the two Arrow Keys (**Down**, **Right**) and select/enter key. Use the Down or Right Arrow keys to make your selection and then use the select/enter key. Use Esc/Mode key to go back to previous mode.

# **Security Code**



Enter the right security code to be able to change data.

# Calibrate /1=M.Var

Enter 0 to calibrate analog input 1-4, RTD, analog output 1-4, or enter '1' to calibrate multi-variable

Calibrate/1=M.Var
Override Meter No.
Date Time
Configuration

You must first select this menu and the number will begin to blink. Use arrow key to change between 0 and 1, then use select key.

Enable Calib. Mode

Analog Input (1-9)

RTD Input

Analog Output (1-4)

# **Enable Calibrate Mode**

Enter '1' to enable calibrate mode. Calibration mode will set the flow computer to continue totalizing at same rate while all values are still showing live readings.

# Calibrate Analog Input, RTD

**0=Offset** is a single point calibration that will offset zero and span.

1=Full – zero and span must be calibrated.

**2=Reset** to factory calibration.

0=Offset,1=Full 2=Reset

# OFFSET (SINGLE POINT)

Induce the signal into the analog input, wait for 10 seconds for the reading to stabilize, then enter the offset.

Enter Correct Value 8.000

Current Value

7.9000

#### FULL (ZERO AND SPAN CALIBRATION)

1. Calibrate Low Point (4mA or 75  $\Omega$ ,), induce the known live value for the low set point, and wait for 10 seconds for the reading to stabilize. Now enter in that value.

First Point 0.000

Current Value
0.900

**2.** Calibrate High Point (20mA or 120  $\Omega$ ), induces the known live value for the high set point, and then wait for 10 seconds for the reading to stabilize. Now enter in that value.

Second Point 20.000

Current Value 19.900

#### RESET (USE DEFAULT)

Enter '2' to use manufacture default.

# Calibrate Analog Output

**0=Offset** is a single point calibration that will offset zero and span.

1=Full – zero and span must be calibrated.

**2=Reset** to factory calibration.

0=Offset,1=Full 2=Reset

#### FULL (ZERO AND SPAN CALIBRATION)

**1.**The screen will show the minimum possible signal 4mA. Enter the live output value reading in the end device i.e. 4mA.

Enter 4mA 4.000

Reading mA
4.000

2. Now the flow computer will output full scale 20mA. Enter the live output i.e. 20mA

Enter 20mA 20.000

Reading mA 20.000

# RESET (USE DEFAULT)

Enter '2' to use manufacture default.

# Calibrate Multivariable

Select DP, Pressure, or Temperature to be calibrated.

Calibrate Muli.Var.

DP

Pressure

Temperature

Enter the calibrate method (0=Offset, 1=Full, 2=Reset).

0=Offset,1=Full

2=Reset

#### OFFSET (SINGLE POINT)

Induce the live value, and then enter the offset.

**Enter Offset** 10.0000 **Current Value** 10.9000

#### FULL (ZERO AND SPAN CALIBRATION)

1. Calibrate Low Point - induce the low range signal, and enter in that value.

First Point 0.0000 **Current Value** 0.9000

2. Calibrate High Point - induces the high range signal, and enters in that value.

Second Point 250.0000 **Current Value** 250.0000

#### RESET (USE DEFAULT)

Enter '2' to use manufacture default.

## Override Meter No.

Enter the meter number 1 or 2 to change meter override value

TF/PF/MF

BS&W/Venturi C/Equilibrium/Alpha T SG/Density/DCF Orifice/Pipe ID

#### TF/PF/MF

#### **TF** - Temperature

This value is entered when no live temperature is available, or when a different value from the live value should be used.

#### PF – Pressure

This value is entered when no live temperature is available, or when a different value from the live value should be used.

#### MF - Meter Factor

Enter the value to change current meter factor (Frequency Device Method)

#### BS&W/Venturi C/Equilibrium Pressure/Alpha T

BS&W Override: used to enter a value to override the BS&W factor.

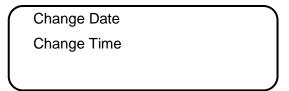
Venturi C Override: used to enter a value to override the flow coefficient C factor.

**Equilibrium Pressure Override**: used to enter a value to override the equilibrium pressure.

Alpha T Override: used to enter a value to override the Alpha T value.

#### SG /DCF/DENSITY

**SG Override** is used to override the specific gravity.


**DCF- Density Correction Factor** 

**Density Override** is used to override the density.

#### **ORIFICE/PIPE ID**

**Orifice ID** in inches is the measured inside pipe diameter to 5 decimals at reference conditions **Pipe ID** in inches is the measured diameter of the orifice at reference conditions.

## Date/Time



#### CHANGE DATE

| Month             | 09 |
|-------------------|----|
| Day               | 08 |
| Year              | 00 |
| Change Date 1=Yes |    |

Enter Month (1-12), Day (1-31), Year (0-99) and then enter '1' to change date.

#### **CHANGE TIME**

|   | Hour              | 09 | ) |
|---|-------------------|----|---|
|   | Minute            | 08 |   |
| l | Second            | 00 |   |
|   | Change Time 1=Yes |    | J |

Enter Hour (0-23), Minute (0-59), Second (0-59) and then enter '1' to change time.

## **Configuration**

Configuration

Configure Meter No

Configure I/O

Pulse Output Others

## **Configue Meter**

Flow Equation 0-4

1

0=New AGA3,1=Venturi

2=Freq,3=Wedge,4=Foxboro

## Flow Equation Type

- 0 = API 14.3 (NEW AGA3, 1992 Orifice Equations)
- 1 = Venturi
- 2 = Frequency Device
- 3 = Wedge
- 4 = FOXBORO (Assume: US unit Mass in LB/HR, Density LB/CF, Metric Unit- Mass in M3, Density in KG/M3)

#### **NEW AGA3**

| Orifice ID | 10.00000 |
|------------|----------|
| Pipe ID,   | 5.00000  |
| DP Cut Off | 1.0000   |
| Viscosity  | .024500  |

#### Pipe I.D.

#### **Orifice ID**

Pipe ID is the measured inside pipe diameter to 5 decimals at reference conditions. Orifice ID is the measured diameter of the orifice at reference conditions.

#### **DP Cutoff**

The Micro MV Liquid Flow Computer suspends all calculations whenever the DP, in inches of water column, is less than this value. This function is vital for suppressing extraneous data when the DP transmitter drifts around the zero mark under no-flow conditions.

#### **Viscosity in Centipoise**

Even though viscosity will shift with temperature and pressure changes, the effect on the calculations is negligent. Therefore using a single value is appropriate in most cases. Enter viscosity in centipoise.

#### <u>VENTURI</u>

|               | $\overline{}$ |
|---------------|---------------|
| Orifice ID    | 10.00000      |
| Throat ID     | 5.00000       |
| DP Cut Off    | 1.0000        |
| C Coefficient | .024500       |

#### Pipe I.D.

#### Throat ID

Pipe ID is the measured inside pipe diameter to 5 decimals at reference conditions. Throat ID is the measured diameter of the orifice at reference conditions.

#### **DP** Cutoff

The Micro MV Liquid Flow Computer suspends all calculations whenever the DP is less than this value. This function is vital for suppressing extraneous data when the DP transmitter drifts around the zero mark under no-flow conditions.

#### **Discharge Coefficient C**

This value is the discharge coefficient for Venturi flow equations. The default value is 0.9950.

#### FREQUENCY DEVICE

| K Factor           | 1000.000 |
|--------------------|----------|
| Meter Factor       | 1.00000  |
| Flow Cut Off Freq. | 1        |
|                    | )        |

#### **K** Factor

K Factor is the number of pulses per unit volume, i.e. 1000 pulses/unit. The tag on the meter would normally indicate the K Factor.

#### **Meter Factor**

Meter Factor is a correction to the K Factor for this individual meter, applied multiply to the K factor.

#### **Flow Cutoff Frequency**

The Flow Computer will quit totalizing, when frequency is below the set limit. This feature is to reduce noise effect when the meter is down for period of time. The totalizer will stop totalizing when the frequency is below the cut off limit.

#### Configure I/O

**Analog Output** 

Meter I/O

Status/Switch

Flow Computer Display

## **Analog Output**

| Ana.Out#1 Assign | 1 |
|------------------|---|
| Ana.Out#2 Assign | 0 |
| Ana.Out#3 Assign | 0 |
| Ana.Out#4 Assign | 0 |
|                  | , |

## **Assignments: 3 Digits**

|                 | Meter 1 | Meter 2 | Meter 3 | Meter 4 |
|-----------------|---------|---------|---------|---------|
| Gross Flow Rate | 111     | 211     | 311     | 411     |
| Net Flow Rate   | 112     | 212     | 312     | 412     |
| Mass Flow Rate  | 113     | 213     | 313     | 413     |
| DP              | 121     | 221     | 321     | 421     |
| Temperature     | 122     | 222     | 322     | 422     |
| Pressure        | 123     | 223     | 323     | 423     |
| Density         | 124     | 224     | 324     | 424     |
| Base Density    | 125     | 225     | 325     | 425     |
| SG              | 126     | 226     | 326     | 426     |
| Base SG         | 127     | 227     | 327     | 427     |
| DP Low          | 128     | 228     | 328     | 428     |
| DP High         | 129     | 229     | 329     | 429     |

| Station Gross Flow Rate | 511 |
|-------------------------|-----|
| Station Net Flow Rate   | 512 |
| Station Mass Flow Rate  | 513 |

|                 | Assi | gnm |
|-----------------|------|-----|
| Analog Input #1 | 1    |     |
| Analog Input #2 | 2    |     |
| Analog Input #3 | 3    |     |
| Analog Input #4 | 4    |     |
| RTD Input       | 5    |     |
| Remote Control  | 6    |     |
| Meter #1 PID    | 7    |     |
| Meter #2 PID    | 8    |     |
| Meter #3 PID    | 9    |     |
| Meter #4 PID    | 10   |     |

| nent               |    |
|--------------------|----|
| Spare Auxiliary#1  | 11 |
| Spare Auxiliary#2  | 12 |
| Spare Auxiliary#3  | 13 |
| Spare Auxiliary#4  | 14 |
| Spare Auxiliary#5  | 15 |
| Spare Auxiliary#6  | 16 |
| Spare Auxiliary#7  | 17 |
| Spare Auxiliary#8  | 18 |
| Spare Auxiliary#9  | 19 |
| Spare Auxiliary#10 | 20 |
| Spare Auxiliary#11 | 21 |
| Spare Auxiliary#12 | 22 |
| Densitometer Temp  | 23 |
| Densitometer Press | 24 |

## Meter I/O

Temperature

Pressure

DP

Densitometer

#### **ASSIGNMENTS**

| 0= | Not Used       |  |
|----|----------------|--|
| 1= | Analog Input#1 |  |
| 2= | Analog Input#2 |  |
|    | Analog Input#3 |  |

| 4=  | Analog Input#4 |
|-----|----------------|
| 5=  | RTD            |
| 21= | Analog Input#5 |
| 22= | Analog Input#6 |

| 7 = Dens.Freq (Not Selectable) |                        |
|--------------------------------|------------------------|
| 10 =                           | Multi. Variable Module |
| 23=                            | Analog Input#7         |
| 24=                            | Analog Input#8         |
| 25=                            | Analog Input#9         |
|                                |                        |

#### <u>4MA</u>

Enter the 4mA value for the transducer.

#### <u> 20мА</u>

Enter the 20mA value for the transducer.

## Status Input Assignment

| Status/Switch#1 | 000 |
|-----------------|-----|
| Status/Switch#2 | 001 |
| Status/Switch#3 | 000 |
| Status/Switch#4 | 000 |

|   | Assignment        | Comments                                                                                                                          |
|---|-------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 1 | End Batch         | End batch and reset batch totalizer for all the meters                                                                            |
| 2 | Product Bit 0     | Before ending the batch, the user can use status input bit to select                                                              |
| 3 | Product Bit 1     | next product. These bits are read once when batch is ended.                                                                       |
| 4 | Product Bit 2     |                                                                                                                                   |
| 5 | Alarm Acknowledge | Reset the previous occurred alarms output bit                                                                                     |
| 6 | Calibration Mode  | Calibration mode will set the flow computer to continue totalizing at same rate while all values are still showing live readings. |

## **Switch Output Assignment**

User can assign an output to each of the Micro MV Liquid Flow Computer's output switches from this list. The Micro MV Liquid Flow Computer switch outputs are sourcing through switch power input power. Outputs in the top list, "Pulse Outputs", require a definition of pulse output per unit volume. Therefore a Pulse Output Width must be defined when one of these switch types are chosen. These outputs are available through switch 1 or 2 only.

Outputs in the bottom list, "Contact Type Outputs", are ON/OFF type outputs. They can be assigned to any of the four switch outputs.

Switches 1 and 2 can be pulse or contact type output; switches 3, 4 are contact-type output only.

#### ASSIGNMENTS - PULSE OUTPUTS

|       | Meter 1 | Meter 2 | Meter 3 | Meter 4 |
|-------|---------|---------|---------|---------|
| Gross | 101     | 104     | 107     | 110     |
| Net   | 102     | 105     | 108     | 111     |
| Mass  | 103     | 106     | 109     | 112     |

| Station Gross | 113 |
|---------------|-----|
| Station Net   | 114 |
| Station Mass  | 115 |

#### ASSIGNMENTS - CONTACT TYPE OUTPUTS

|                       | Meter 1 | Meter 2 | Meter 3 | Meter 4 |
|-----------------------|---------|---------|---------|---------|
| Batch Ended           | 116     | 121     | 126     | 131     |
| Temperature Out Range | 117     | 122     | 127     | 132     |
| Gravity Out of Range  | 118     | 123     | 128     | 133     |
| Flow Rate High        | 119     | 124     | 129     | 134     |
| Flow Rate Low         | 120     | 125     | 130     | 135     |
| Meter Down            | 138     | 225     | 226     | 227     |

## Flow Computer Display Assignment

| FC.Display#1 | 000 |
|--------------|-----|
| FC.Display#2 | 001 |
| FC.Display#3 | 000 |
| FC.Display#4 | 000 |

Display assignment can be selected up to 16 assignments. The Micro MV Liquid Flow Computer will scroll through them at the assigned delay time.

#### Assignment

|                            | Meter 1 | Meter 2 | Meter 3 | Meter 4 |
|----------------------------|---------|---------|---------|---------|
| Gross Flow Rate            | 101     | 201     | 301     | 401     |
| Net Flow Rate              | 102     | 202     | 302     | 402     |
| Mass Flow Rate             | 103     | 203     | 303     | 403     |
| Gross Batch Total          | 104     | 204     | 304     | 404     |
| Net Batch Total            | 105     | 205     | 305     | 405     |
| Mass Batch Total           | 106     | 206     | 306     | 406     |
| Gross Daily Total          | 107     | 207     | 307     | 407     |
| Net Daily Total            | 108     | 208     | 308     | 408     |
| Mass Daily Total           | 109     | 209     | 309     | 409     |
| Gross Month Total          | 110     | 210     | 310     | 410     |
| Net Month Total            | 111     | 211     | 311     | 411     |
| Mass Month Total           | 112     | 212     | 312     | 412     |
| Gross Cumulative Total     | 113     | 213     | 313     | 413     |
| Net Cumulative Total       | 114     | 214     | 314     | 414     |
| Mass Cumulative Total      | 115     | 215     | 315     | 415     |
| Previous Gross Batch Total | 116     | 216     | 316     | 416     |
| Previous Net Batch Total   | 117     | 217     | 317     | 417     |
| Previous Mass Batch Total  | 118     | 218     | 318     | 418     |
| Previous Gross Daily Total | 119     | 219     | 319     | 419     |
| Previous Net Daily Total   | 120     | 220     | 320     | 420     |
| Previous Mass Daily Total  | 121     | 221     | 321     | 421     |

| Station Gross Flow Rate | 501 |
|-------------------------|-----|
| Station Net Flow Rate   | 502 |
| Station Mass Flow Rate  | 503 |

|                  | Meter 1 | Meter 2 | Meter 3 | Meter 4 |
|------------------|---------|---------|---------|---------|
| Temperature      | 122     | 222     | 322     | 422     |
| Pressure         | 123     | 223     | 323     | 423     |
| Density          | 124     | 224     | 324     | 424     |
| DP               | 125     | 225     | 325     | 425     |
| DP Low           | 126     | 226     | 326     | 426     |
| DP High          | 127     | 227     | 327     | 427     |
| Alarms           | 128     | 228     | 328     | 428     |
| Orifice ID       | 129     | 229     | 329     | 429     |
| Pipe ID          | 130     | 230     | 330     | 430     |
| PID – Flow       | 131     | 231     | 331     | 431     |
| PID - Pressure   | 132     | 232     | 332     | 432     |
| PID – Output     | 133     | 233     | 333     | 433     |
| Base Density     | 134     | 234     | 334     | 434     |
| SG               | 135     | 235     | 335     | 435     |
| Base SG          | 136     | 236     | 336     | 436     |
| FWA DP           | 137     | 237     | 337     | 437     |
| FWA Temperature  | 138     | 238     | 338     | 438     |
| FWA Pressure     | 139     | 239     | 339     | 439     |
| FWA Density      | 140     | 240     | 340     | 440     |
| FWA Base Density | 141     | 241     | 341     | 441     |
| FWA SG           | 142     | 242     | 342     | 442     |

| FWA Base SG                | 143 | 243 | 343 | 443 |
|----------------------------|-----|-----|-----|-----|
| Last Batch FWA Temperature | 144 | 244 | 344 | 444 |
| Last Batch FWA Pressure    | 145 | 245 | 345 | 445 |
| Last Batch FWA Density     | 146 | 246 | 346 | 446 |
| Density Period             | 147 | 247 | 347 | 447 |
| Un-Corrected Density       | 148 | 248 | 348 | 448 |

| Selection | Description                       | Selection | Description                 |
|-----------|-----------------------------------|-----------|-----------------------------|
| 701       | Date/Time                         | 709       | Spare Auxiliary Var.#5/#6   |
| 702       | Battery Voltage/Spare Variable #1 | 710       | Spare Auxiliary Var.#7/#8   |
| 703       | Spare Variable #2/#3              | 711       | Spare Auxiliary Var.#9/#10  |
| 704       | Spare Variable #4/#5              | 712       | Spare Auxiliary Var.#11/#12 |
| 705       | Spare Variable #6/#7              | 713       | Program Variable #1/#2      |
| 706       | Spare Variable #8/#9              | 714       | Program Variable #3/#4      |
| 707       | Spare Auxiliary Variable#1/#2     | 715       | Program Variable #5/#6      |
| 708       | Spare Auxiliary Variable#3/#4     | 716       | Program Variable #7/#8      |

#### Pulse Output

| Pulse Output |       |
|--------------|-------|
| #1 P/Unit#1  | 1.000 |
| #2 P/Unit#2  | 1.000 |
| Pulse Width  | 50    |

#### PULSE OUTPUT AND PULSE OUTPUT WIDTH

Pulse Output is used to activate a sampler or external totalizer. The number selected will be pulses per unit volume or per unit mass. If 0.1 pulse is selected, the one pulse will be given every 10 unit volumes has passed through the meter.

Pulse Output Width is the duration, in milliseconds, of one complete pulse cycle (where each cycle is the pulse plus a wait period, in a 50/50 ratio). For example: if POW = 500 msec, the Micro MV Liquid Flow Computer at most can produce one pulse each second regardless of the pulse per unit volume selected (500 msec pulse + 500 msec wait). If POW = 10 msec the Micro MV Liquid Flow Computer can produce up to 50 pulses per second.

The Micro MV Liquid Flow Computer's maximum pulse output is 125 pulses/sec. The Pulse Output in combination with the Pulse Output Width should be set appropriately.

#### **Others**

|   | Day Start Hour     | 7 |
|---|--------------------|---|
|   | 0=Hour,1=Day,2=Min | 0 |
|   | Disable Alarms     | 0 |
| _ |                    |   |

#### DAY START HOUR (0-23)

Day start hour is used for daily totalizer reset operation.

#### FLOW RATE SELECTION

The flow rate will be based on hourly basis, daily, or minute.

#### DISABLE ALARMS

Use Disable Alarms to ignore alarms. When the alarm function is disabled alarms are not logged. Alarms are also not logged if the DP is below the cut-off limit.

# **CHAPTER 4: FLOW EQUATIONS**

## **Common Terms**

The following terms are used throughout this chapter.

| Term | Definition                                                   | US Units                | Metric Unit       | Examples                                    |
|------|--------------------------------------------------------------|-------------------------|-------------------|---------------------------------------------|
| q    | Flow rate: volume or mass displaced per unit time            | See equations           | See equations     | q <sub>mass</sub> , q <sub>energy</sub>     |
| T    | Temperature                                                  | °F unless noted         | °C unless noted   |                                             |
| DP   | Differential Pressure across measuring device                | Inches H <sub>2</sub> O | m.Bar             |                                             |
| d    | Orifice Diameter                                             | Inches                  | Millimeter        | $d, d_r, d_m$                               |
| D    | Pipe Diameter                                                | Inches                  | Millimeter        | $D$ , $D_r$ , $D_m$                         |
| β    | $= \frac{d}{D} = \frac{Orifice \ diameter}{Pipe \ diameter}$ |                         |                   | $eta$ , $eta_r$                             |
| ρ    | Density (usually of the fluid)                               | Lb/ft <sup>3</sup>      | Kg/M <sup>3</sup> | $ ho_{	extit{flowing}}$ , $ ho_{	extit{m}}$ |
| μ    | Viscosity                                                    | centipoise              | centipoise        |                                             |
| HN   | Heating Value                                                | BTU/ ft <sup>3</sup>    | $MJ/M^3$          |                                             |
| Y    | Expansion factor                                             |                         |                   |                                             |

## Subscripts: Conventions Used

| This Subscript | Means                   | Examples                                         |
|----------------|-------------------------|--------------------------------------------------|
| r              | At reference conditions | $T_{r,p}$ = reference temperature of the pipe    |
| O (letter o)   | Refers to the orifice   | $T_{r,O}$ = reference temperature of the orifice |
| P              | Refers to the pipe      |                                                  |
| flowing        | At flow conditions      | $\rho_{flowing}$ = density at flow conditions    |
| cal            | Calibration conditions  | $T_{cal}$ , $P_{cal}$                            |
| m              | At measured conditions  | $D_m$ = pipe diameter at measured temp.          |

## API 14.3

For more information, please see *Orifice Metering of Natural Gas*, 3<sup>rd</sup> edition.

Mass Flow Rate = 
$$\frac{\pi}{4} \times N_c \times C_d \times E_v \times d^2 \times Y \times \sqrt{2DP \times Density} \times .001$$

Net Flow Rate = 
$$\frac{Mass Flow}{Base Density}$$

**Gross Flow Rate** = 
$$\frac{Mass Flow}{Flowing Density}$$

Where:

 $N_c = Units Conversion Constant$ 

 $C_d = Orifice \ Plate \ Coefficient \ of \ Discharge$ 

 $E_v = \frac{1}{\sqrt{1-\beta^4}} = Velocity of Approach Factor$ 

 $d = Orifice \ plate \ bore \ diameter$ 

Y = Expansion Factor

 $DP = Orifice \ Differential \ Pressure$ 

|                    | US unit   | Metric Unit |
|--------------------|-----------|-------------|
| $N_c$              | 323.279   | .036        |
| Density            | $lb/ft^3$ | $kg/m^3$    |
| Gross Flow Rate/HR | MCF       | KM3         |
| Net Flow Rate/HR   | MSCF      | KSM3        |
| Mass Flow Rate/HR  | MLB       | TON         |

## Venturi

$$\textit{Mass Flow Rate} = \frac{\textit{N} \times 3.6 \times \textit{C} \times \textit{Y} \times \textit{Fa} \times \textit{d}^2 \sqrt{\textit{Density} \times \textit{DP}}}{\sqrt{1 - \textit{Beta}^4}}$$

$$Net \ Flow \ Rate = \frac{Mass \ Flow \ Rate}{Reference \ Density}$$

$$Gross \ Flow \ Rate = \frac{Mass \ Flow \ Rate}{Flowing \ Density}$$

#### Where

**DP** = Differential Pressure

**C** = Discharge Coefficient C (Manual Entry)

**Y** = Expansion Factor

**Fa** = Manual Entry

**d** = Venturi Bore Diameter at Reference

(Refer to Miller Measurement Engineering Handbook)

## Frequency Device

Please see *Common Terms* at the beginning of this chapter.

$$Gross Flow Per Hour = \frac{Pulse}{K Factor} \times 3600$$

$$Net \, Standard \, Flow \, Per \, Hour = \, Gross \, Flow \, \times \frac{Flowing \, Density}{Base \, Density} \times (1 - BSW)\% \times LMF \times 3600$$

Mass Flow Per Hour = Gross Flow  $\times$  Flowing Density  $\times$  3600

#### **Mass Pulse**

$$Mass\ Flow\ Per\ Hour = \frac{Mass\ Pulse}{K\ Factor} \times 3600$$

Net Standard Flow Per Hour = 
$$\frac{\textit{Mass Flow}}{\textit{Density at Base}} \times (1 - \textit{BSW})\% \times \textit{LMF} \times 3600$$

$$\textit{Gross Flow Per Hour} = \frac{\textit{Mass Flow}}{\textit{Flowing Density}} \times 3600$$

## Wedge

#### US unit

Flow Rate (Gallon/Minute) =5.668 × 
$$Fa \times Kd^2 \times \sqrt{\frac{DP}{SG}}$$

Where:

DP = different pressure, inches of water

SG = Liquid specific gravity at flow conditions

Fa = Expansion Coefficient of Wedge Kd2 = Discharge Coefficient of Wedge

#### Metric Unit

Flow Rate (Liter/Hour) = 
$$1.287343 \times Fa \times Kd^2 \times \sqrt{\frac{DP}{SG}}$$

Where:

DP = different pressure

SG = Liquid specific gravity at flow conditions

Fa = Expansion Coefficient of Wedge Kd2 = Discharge Coefficient of Wedge

## **DENSITY EQUATIONS**

#### Sarasota Density(GM/CC-US Unit, KG/M3-Metric Unit)

Sarasota density is calculated using the frequency signal produced by a Sarasota densitometer, and applying temperature and pressure corrections as shown below.

Corrected Density = 
$$DCF \times \frac{2D_0(t-T_{0p})}{T_{0p} \times \frac{1+K(t-T_{0p})}{2T_{0p}}}$$

Where:

$$T_{0p} = T_{coef} \times (T - T_{cal}) + P_{coef} \times (P - P_{cal}) + T_0$$

DCF = Density Correction Factor

 $D_0 = Calibration constant, mass/volume, gm/cm<sup>3</sup>$ 

t = Densitometer oscillation p eriod in microseconds.

 $t_0 = A \ calibration \ constant \ in \ microseconds$ 

 $T_{coef} = Temperature \ coefficient \ in \ microseconds/°F(USUnit)or°C(MetricUnit)$ 

 $P = Flowing\ pressure\ in\ PSIG(USUnit),\ BAR,\ orKG/CM(MetricUnit)$ 

 $P_{coef} = \textit{Pressure coefficien t in microseconds/PSIG (US Unit)}, \textit{BAR, or KG/CM(Metric Unit)}$ 

 $P_{cal} = Calibration \ pressure \ in \ PSIG(USUnit), BAR, or KG/CM(MetricUnit)$ 

## UGC Density(GM/CC-US Unit, KG/M3-Metric Unit)

UGC density is calculated using the frequency signal produced by a UGC densitometer, and applying temperature and pressure corrections as shown below

 $Corrected Density = DCF \times P_{flowing} \{ [K(P_{off} + d) \times 10^{-6}] + [K_T(T_{flowing} - T_{cal})] + d \}$ 

Where:

 $d = K_0 + K_1 t + K_2 t^2$ 

 $K_0$ ,  $K_1$ ,  $K_2$  = Calibration Constants

t = Densitometer oscillation period in microseconds

DCF = Density Correction Factor

K = Pressure Constant

 $P_{off} = Pressure Offset$ 

 $K_T = Temperature Coefficient$ 

 $T_{cal} = Temperature \ coefficien \ t \ in \ microseconds/°F(USUnit), or °C(MetricUnit)$ 

## Solartron Density (GM/CC-US Unit)

Solartron density is calculated using the frequency signal produced by a Solartron densitometer, and applying temperature and pressure corrections as shown below.

## Density at 68°F and 0 PSIG

$$D = K_0 + K_1 t + K_2 t^2$$
Where  $t = Densitometer\ Oscillation\ Period\ in\ microseconds$ 

$$K_0, K_1, K_2 = Calibration\ Constants\ Supplied\ by\ Solartron$$

#### **Temperature Corrected Density**

$$DT = D[1+K_{18}(T-68)] + K_{19}(T-68)$$
  
Where  $T = Temperature in °F$ 

#### Temperature and Pressure Corrected Density

$$\begin{aligned} DP &= DL(1+K_{20}P) + K_{21}P \\ Where: \\ P &= Pressure in PSIG \\ K_{20} &= K_{20A} + K_{20B}P \\ K_{21} &= K_{21A} + K_{21B}P \\ K_{20A}, K_{20B}, K_{21A}, K_{21B} &= Calibration Constants Supplied by Solarton \end{aligned}$$

#### Additional Equation for Velocity of Sound Effects

The following equation can provide more accurate measurement for LPG products in the density range of  $0.300 \le D \le 0.550$  (D is in gm/cc). *Contact Solarton to get information about KR and KJ constants*.

$$D_{vos} = DP + K_r (DP - K_j)^3$$
  
Let  $K_r = 0.0$  outside this range.

## Solartron Density (KG/M3-Metric Unit)

Density at 20°C and 0 KPA

$$D = K_0 + K_1 t + K_2 t^2$$
  
Where  $t = Densitometer Oscillation Period in microseconds$   
 $K_0, K_1, K_2 = Calibration Constants Supplied by Solartron$ 

**Temperature Corrected Density** 

$$DT = D[1 + K_{18}(T-20)] + K_{19}(T-20)$$
  
Where  $T = Temperature in °C$ 

**Temperature and Pressure Corrected Density** 

$$DP = DL(1+K_{20}P) + K_{21}P$$
Where:
$$P = Pressure in KPA$$

$$K_{20} = K_{20A} + K_{20B}P$$

$$K_{21} = K_{21A} + K_{21B}P$$

$$K_{21} = Calibration Constants Supplied by Solarton$$

 $K_{20A}$ ,  $K_{20B}$ ,  $K_{21A}$ ,  $K_{21B}$  = Calibration Constants Supplied by Solarton

#### **Additional Equation for Velocity of Sound Effects**

The following equation can provide more accurate measurement for LPG products in the density range of  $0.300 \le D \le 0.550$  (D is in kg/m3).

$$D_{vos} = DP + K_r (DP - K_j)^3$$
  
Let  $K_r = 0.0$  outside this range.

## **CHAPTER 5: MODBUS DATA**

## **MODBUS PROTOCOL**

## **TRANSMISSION MODE**

|                | ASCII     | RTU       |
|----------------|-----------|-----------|
| DATA BITS      | 7         | 8         |
| START BITS     | 1         | 1         |
| PARITY         | EVEN, ODD | NONE      |
| STOP BITS      | 1         | 1         |
| ERROR CHECKING | LRC       | CRC       |
| BAUD RATE      | 1200-9600 | 1200-9600 |

## **ASCII FRAMING**

Framing is accomplished by using colon (:) character indicating the beginning of frame and carriage (CR), line feed (LF) for the end of frame

## ASCII MESSAGE FORMAT

| -      | ADDRESS | FUNCTION | DATA      | ERR\CHECK |        | _      |
|--------|---------|----------|-----------|-----------|--------|--------|
| :      | 2 CHAR  | 2 CHAR   | Nx2 CHAR  | 2 CHAR    | CR     | LF     |
| 8 BITS | 16 BITS | 16 BITS  | Nx16 BITS | 16 BITS   | 8 BITS | 8 BITS |

## **RTU FRAMING**

Frame synchronization is done by time basis only. The Flow Computer allows 3.5 characters time without new characters coming in before proceeding to process the message and resetting the buffer.

#### RTU MESSAGE FORMAT

| ADDRESS | FUNCTION | DATA     | CRC     |
|---------|----------|----------|---------|
| 8 BITS  | 8 BITS   | Nx8 BITS | 16 BITS |

## **FUNCTION CODE**

To inform the slave device of what function to perform

| FUNCTION<br>CODE | ACTION                            |
|------------------|-----------------------------------|
| 01               |                                   |
| 03               | Read Strings or Multiple 16 Bits  |
| 16               | Write Strings or Multiple 16 Bits |

#### **ERROR CHECK**

#### LRC MODE

The LRC check is transmitted as two ASCII hexadecimal characters. First, the message has to be stripped of the: LF, CR, and then converted the HEX ASCII to Binary. Add the Binary bits and then two's complement the result.

#### **CRC MODE**

The entire message is considered in the CRC mode. Most significant bit is transmitted first. The message is pre-multiplied by 16. The integer quotient digits are ignored and the 16-bit remainder is appended to the message as the two CRC check bytes. The resulting message including the CRC, when divided by the same polynomial (X16+X15+X2+1) at the receiver, which will give zero remainder if no error, has occurred.

#### **EXCEPTION RESPONSE**

Exception response comes from the slave if it finds errors in communication. The slave responds to the master echoing the slave address, function code (with high bit set), exception code and error check. To indicate that the response is notification of an error, the high order bit of the function code is set to 1.

| EXCEPTION CODE | DESCRIPTION          |
|----------------|----------------------|
| 01             | Illegal Function     |
| 02             | Illegal Data Address |
| 03             | Illegal Data Value   |

#### **BROADCAST COMMAND**

All units listen to Unit ID Zero, and no one will respond when the write function is broadcasted.

## **MODBUS EXAMPLES**

#### FUNCTION CODE 03 (Read Single or Multiple Register Points)

Each Modbus System has a different Modbus address range. For example, 40000 or 90000 is the high level message generated through the host Modbus system. The set up and offset are different for each host Modbus system.

#### READ A SHORT (SINGLE) WORD NUMERIC VARIABLE

The short word numeric variable is a 16-bit integer

Data: 16 bits (short word: two 8-bit bytes- high byte, low byte),

Short Integer Variable Modbus Address: from 1801 to 3030

#### RTU MODE

#### Read Address 3001

| ADDR | FUNC | STARTING POINT |    | # OF POINTS |    | CRC   |    |
|------|------|----------------|----|-------------|----|-------|----|
|      | CODE | HI             | LO | HI          | LO | CHECK |    |
| 01   | 03   | 0B             | В9 | 00          | 01 | 57    | CB |

#### Response - Data - 02 63 (Hex), 611 (Decimal)

| 4555 | FUNC | BYTE DATA |       | CRC |       |    |
|------|------|-----------|-------|-----|-------|----|
| ADDR | CODE | COUNTS    | HI LO |     | CHECK |    |
| 01   | 03   | 02        | 02    | 63  | F9    | 0D |

#### ASCII MODE - Read Address 3076

|   | ADD  | R  | FUI |    | ST | ARTIN | IG POI | NT           | #  | OF P | OINTS | 1   |    | RC |    |    |
|---|------|----|-----|----|----|-------|--------|--------------|----|------|-------|-----|----|----|----|----|
|   | CODE |    | H   | 11 | L  | 0     | H      | <del> </del> | L  | )    | CHE   | ECK |    |    |    |    |
| : | 30   | 31 | 30  | 33 | 30 | 43    | 30     | 43           | 30 | 30   | 30    | 31  | 45 | 42 | CR | LF |

#### Response

|   | _    |    |    |    |     |     |    |    |    |    |     |     |    |    |
|---|------|----|----|----|-----|-----|----|----|----|----|-----|-----|----|----|
|   | ADDR |    | FU |    | BY  | . – |    | DA | TA |    | LF  |     |    |    |
|   |      |    | CO | DE | COL | JNT | H  | 11 | L  | 0  | CHE | ECK |    |    |
| : | 30   | 31 | 30 | 33 | 30  | 32  | 30 | 30 | 30 | 31 | 46  | 39  | CR | LF |

#### READ A LONG WORD NUMERIC VARIABLE

The long word numeric variable is a two 16-bit integers with decimal inferred

Data: two 16-bit (32 bits, two words: high word, low word).

Sign bit - first bit of high word (0:positive, 1:negative) Long Integer Variable Modbus Address: from 3131 to 9645

#### Read Address 3131

| ADDR | FUNC | STARTIN | G Address | # OF R | egisters | CF  |    |
|------|------|---------|-----------|--------|----------|-----|----|
|      | CODE | HI      | LO        | HI     | LO       | CHE | CK |
| 01   | 03   | 0C      | 3B        | 00     | 02       | В6  | 96 |

#### Response - Data - 4 Bytes - 00 05 6A 29 (Hex), 611 (Decimal)

|      | FUNC | BYTE   |         | DA | TA      |    | CF    | RC |
|------|------|--------|---------|----|---------|----|-------|----|
| ADDR | CODE | COUNTS | HI Word |    | LO Word |    | CHECK |    |
| 01   | 03   | 04     | 00      | 05 | 6A      | 29 | 05    | 4C |

Data Bytes - 00 05 6A 29 (Hex) = 354857 (decimal) Data with 2 decimal places inferred = 3548.57

For Example:

Honeywell Modbus system - read address 93131

Delta-V Modbus system - read address 43131

Data Calculation

Value = High Word x 65536 + Low Word

High Word = 00 05 (Hex), 5 (Decimal)

Low Word = 6A 29 (Hex), 27177 (Decimal)

 $= 5 \times 65536 + 27177$ 

= 354857

Two decimal places inferred

= 3548.57

## READ A FLOATING POINT VARIABLE

The floating point variable is a single precision floating point value One register with 4 data bytes (high word and low word)

## **IEEE Floating Point Format**

| Sign  | Exponent | Mantissa |  |  |
|-------|----------|----------|--|--|
| 1 bit | 8 bits   | 23 bits  |  |  |

| Byte 3  | Byte 2   | Byte 1  | Byte 0  |
|---------|----------|---------|---------|
| SEEEEEE | EMMMMMMM | MMMMMMM | MMMMMMM |

Modbus Address: From 7001 to 7999

Sample Floating Point Value

Read Register 7047

| ADDR | FUNC | STARTING | G Address | # OF R | egisters | CRC<br>CHECK |     |
|------|------|----------|-----------|--------|----------|--------------|-----|
|      | CODE | HI       | LO        | HI     | LO       | CHE          | :CK |
| 01   | 03   | 1B       | 87        | 00     | 01       | 32           | C7  |

Response - Four Data Bytes - 47 6C 4A 00 (HEX) = 60490.0

|      | FUNC | BYTE   |         | DA | TA      |    | CF    | RC |
|------|------|--------|---------|----|---------|----|-------|----|
| ADDR | CODE | COUNTS | HI Word |    | LO Word |    | CHECK |    |
| 01   | 03   | 04     | 47      | 6C | 4A      | 00 | 19    | FA |

| ADDRESS   | DESCRIPTION                       | DECIMAL    | READ/WRITE  |
|-----------|-----------------------------------|------------|-------------|
| 1001 1010 |                                   |            |             |
| 1801-1848 | Spare                             |            |             |
| 1849      | Reserved                          | 0 latamad  | Dan JAMaita |
| 1850      | Slave#4 Unit ID                   | 0 Inferred | Read/Write  |
| 1851      | Slave#1 Unit ID                   | 0 Inferred | Read/Write  |
| 1852      | Slave#1 Variable#1 Type           | 0 Inferred | Read/Write  |
| 1853      | Slave#1 Variable#2 Type           | 0 Inferred | Read/Write  |
| 1854      | Slave#1 Variable#3 Type           | 0 Inferred | Read/Write  |
| 1855      | Slave#1 Variable#4 Type           | 0 Inferred | Read/Write  |
| 1856      | Slave#1 Variable#5 Type           | 0 Inferred | Read/Write  |
| 1857      | Slave#1 Variable#1 Desitination   | 0 Inferred | Read/Write  |
| 1858      | Slave#1 Variable#2 Desitination   | 0 Inferred | Read/Write  |
| 1859      | Slave#1 Variable#3 Desitination   | 0 Inferred | Read/Write  |
| 1860      | Slave#1 Variable#4 Desitination   | 0 Inferred | Read/Write  |
| 1861      | Slave#1 Variable#5 Desitination   | 0 Inferred | Read/Write  |
| 1862      | Slave#1 Variable#1 Source Address | 0 Inferred | Read/Write  |
| 1863      | Slave#1 Variable#2 Source Address | 0 Inferred | Read/Write  |
| 1864      | Slave#1 Variable#3 Source Address | 0 Inferred | Read/Write  |
| 1865      | Slave#1 Variable#4 Source Address | 0 Inferred | Read/Write  |
| 1866      | Slave#1 Variable#5 Source Address | 0 Inferred | Read/Write  |
| 1867      | Slave#2 Unit ID                   | 0 Inferred | Read/Write  |
| 1868      | Slave#2 Variable#1 Type           | 0 Inferred | Read/Write  |
| 1869      | Slave#2 Variable#2 Type           | 0 Inferred | Read/Write  |
| 1870      | Slave#2 Variable#3 Type           | 0 Inferred | Read/Write  |
| 1871      | Slave#2 Variable#4 Type           | 0 Inferred | Read/Write  |
| 1872      | Slave#2 Variable#5 Type           | 0 Inferred | Read/Write  |
| 1873      | Slave#2 Variable#1 Desitination   | 0 Inferred | Read/Write  |
| 1874      | Slave#2 Variable#2 Desitination   | 0 Inferred | Read/Write  |
| 1875      | Slave#2 Variable#3 Desitination   | 0 Inferred | Read/Write  |
| 1876      | Slave#2 Variable#4 Desitination   | 0 Inferred | Read/Write  |
| 1877      | Slave#2 Variable#5 Desitination   | 0 Inferred | Read/Write  |
| 1878      | Slave#2 Variable#1 Source Address | 0 Inferred | Read/Write  |
| 1879      | Slave#2 Variable#2 Source Address | 0 Inferred | Read/Write  |
| 1880      | Slave#2 Variable#3 Source Address | 0 Inferred | Read/Write  |
| 1881      | Slave#2 Variable#4 Source Address | 0 Inferred | Read/Write  |
| 1882      | Slave#2 Variable#5 Source Address | 0 Inferred | Read/Write  |
| 1883      | Slave#3 Unit ID                   | 0 Inferred | Read/Write  |
| 1884      | Slave#3 Variable#1 Type           | 0 Inferred | Read/Write  |
| 1885      | Slave#3 Variable#2 Type           | 0 Inferred | Read/Write  |
| 1886      | Slave#3 Variable#3 Type           | 0 Inferred | Read/Write  |
| 1887      | Slave#3 Variable#4 Type           | 0 Inferred | Read/Write  |
| 1888      | Slave#3 Variable#5 Type           | 0 Inferred | Read/Write  |
| 1889      | Slave#3 Variable#1 Desitination   | 0 Inferred | Read/Write  |
| 1890      | Slave#3 Variable#2 Desitination   | 0 Inferred | Read/Write  |
| 1891      | Slave#3 Variable#3 Desitination   | 0 Inferred | Read/Write  |
| 1892      | Slave#3 Variable#4 Desitination   | 0 Inferred | Read/Write  |
| 1893      | Slave#3 Variable#5 Desitination   | 0 Inferred | Read/Write  |
| 1894      | Slave#3 Variable#1 Source Address | 0 Inferred | Read/Write  |

| ADDRESS      | DESCRIPTION                                                   | DECIMAL                  | READ/WRITE               |
|--------------|---------------------------------------------------------------|--------------------------|--------------------------|
| 1895         | Slave#3 Variable#2 Source Address                             | 0 Inferred               | Read/Write               |
| 1896         | Slave#3 Variable#3 Source Address                             | 0 Inferred               | Read/Write               |
| 1897         | Slave#3 Variable#4 Source Address                             | 0 Inferred               | Read/Write               |
| 1898         | Slave#3 Variable#5 Source Address                             | 0 Inferred               | Read/Write               |
| 1899         | Slave Unit Update Flag (1=Slave,2=G.C,3=MPU)                  | 0 Inferred               | Read/Write               |
| 1900         | Slave#1 Type                                                  | 0 Inferred               | Read/Write               |
| 1901         | Slave#2 Type                                                  | 0 Inferred               | Read/Write               |
| 1902         | Slave#3 Type                                                  | 0 Inferred               | Read/Write               |
| 1903         | Slave#4 Type                                                  | 0 Inferred               | Read/Write               |
| 1904-1920    | Spare                                                         |                          |                          |
| 1921         | DFM Display Screen#9 Assignment #1                            | 0 Inferred               | Read/Write               |
| 1922         | DFM Display Screen#9 Assignment #2                            | 0 Inferred               | Read/Write               |
| 1923         | DFM Display Screen#10 Assignment #1                           | 0 Inferred               | Read/Write               |
| 1924         | DFM Display Screen#10 Assignment #2                           | 0 Inferred               | Read/Write               |
| 1925         | DFM Display Screen#11 Assignment #1                           | 0 Inferred               | Read/Write               |
| 1926         | DFM Display Screen#11 Assignment #2                           | 0 Inferred               | Read/Write               |
| 1927         | DFM Display Screen#12 Assignment #1                           | 0 Inferred               | Read/Write               |
| 1928         | DFM Display Screen#12 Assignment #2                           | 0 Inferred               | Read/Write               |
| 1929         | Analog Input#1 Tag Number                                     | 0 Inferred               | Read/Write               |
| 1930         | Analog Input#2 Tag Number                                     | 0 Inferred               | Read/Write               |
| 1931         | Analog Input#3 Tag Number                                     | 0 Inferred               | Read/Write               |
| 1932         | Analog Input#4 Tag Number                                     | 0 Inferred               | Read/Write               |
| 1933         | Analog Input#5 Tag Number                                     | 0 Inferred               | Read/Write               |
| 1934         | Analog Input#6 Tag Number                                     | 0 Inferred               | Read/Write               |
| 1935         | Analog Input#7 Tag Number                                     | 0 Inferred               | Read/Write               |
| 1936         | Analog Input#8 Tag Number                                     | 0 Inferred               | Read/Write               |
| 1937         | Analog Input#9 Tag Number                                     | 0 Inferred               | Read/Write               |
| 1938         | Auxiliary I/O #1 Tag Number                                   | 0 Inferred               | Read/Write               |
| 1939         | Auxiliary I/O #2 Tag Number                                   | 0 Inferred               | Read/Write               |
| 1940         | Auxiliary I/O #3 Tag Number                                   | 0 Inferred               | Read/Write               |
| 1941         | Auxiliary I/O #4 Tag Number                                   | 0 Inferred               | Read/Write               |
| 1942         | Auxiliary I/O #5 Tag Number                                   | 0 Inferred               | Read/Write               |
| 1943         | Auxiliary I/O #6 Tag Number                                   | 0 Inferred               | Read/Write               |
| 1944         | Auxiliary I/O #7 Tag Number                                   | 0 Inferred               | Read/Write               |
| 1945         | Auxiliary I/O #8 Tag Number                                   | 0 Inferred               | Read/Write               |
| 1946         | Auxiliary I/O #9 Tag Number<br>Auxiliary I/O #10 Tag Number   | 0 Inferred<br>0 Inferred | Read/Write<br>Read/Write |
| 1947<br>1948 | Auxiliary I/O #10 Tag Number                                  | 0 Inferred               | Read/Write               |
| 1946         | Auxiliary I/O #11 Tag Number                                  | 0 Inferred               | Read/Write               |
| 1950         | Slave#1 DP Calib. Index                                       | 0 Inferred               | Read/Write               |
| 1950         | Slave#1 Dr Calib. Index Slave#1 Pressure Calib. Index         | 0 Inferred               | Read/Write               |
| 1952         | Slave#1 Tessure Calib. Index Slave#1 Temperature Calib. Index | 0 Inferred               | Read/Write               |
| 1953         | Spare Auxiliary I/O#1 Calib. Index                            | 0 Inferred               | Read/Write               |
| 1954         | Spare Auxiliary I/O#2 Calib. Index                            | 0 Inferred               | Read/Write               |
| 1955         | Spare Auxiliary I/O#3 Calib. Index                            | 0 Inferred               | Read/Write               |
| 1956         | Spare Auxiliary I/O#4 Calib. Index                            | 0 Inferred               | Read/Write               |
| 1957         | Slave#2 DP Calib. Index                                       | 0 Inferred               | Read/Write               |
| 1958         | Slave#2 Pressure Calib. Index                                 | 0 Inferred               | Read/Write               |
| 1959         | Slave#2 Temperature Calib. Index                              | 0 Inferred               | Read/Write               |
| 1960         | Spare Auxiliary I/O#5 Calib. Index                            | 0 Inferred               | Read/Write               |
| 1961         | Spare Auxiliary I/O#6 Calib. Index                            | 0 Inferred               | Read/Write               |
| 1962         | Spare Auxiliary I/O#7 Calib. Index                            | 0 Inferred               | Read/Write               |
|              | •                                                             |                          |                          |

# Modbus Address Table – 16 Bits Integer ADDRESS DESCRIPTION DECIMAL READWRITE

| <u>ADDRESS</u> | DESCRIPTION                            | DECIMAL    | READ/WRITE |
|----------------|----------------------------------------|------------|------------|
|                |                                        |            |            |
| 1963           | Spare Auxiliary I/O#8 Calib. Index     | 0 Inferred | Read/Write |
| 1964           | Slave#3 DP Calib. Index                | 0 Inferred | Read/Write |
| 1965           | Slave#3 Pressure Calib. Index          | 0 Inferred | Read/Write |
| 1966           | Slave#3 Temperature Calib. Index       | 0 Inferred | Read/Write |
| 1967           | Spare Auxiliary I/O#9 Calib. Index     | 0 Inferred | Read/Write |
| 1968           | Spare Auxiliary I/O#10 Calib. Index    | 0 Inferred | Read/Write |
| 1969           | Spare Auxiliary I/O#11 Calib. Index    | 0 Inferred | Read/Write |
| 1970           | Spare Auxiliary I/O#12 Calib. Index    | 0 Inferred | Read/Write |
| 1971           | Analog Input #5 Calib. Index           | 0 Inferred | Read/Write |
| 1972           | Analog Input #6 Calib. Index           | 0 Inferred | Read/Write |
| 1973           | Analog Input #7 Calib. Index           | 0 Inferred | Read/Write |
| 1974           | Analog Input #8 Calib. Index           | 0 Inferred | Read/Write |
| 1975           | Analog Input #9 Calib. Index           | 0 Inferred | Read/Write |
|                |                                        |            |            |
| 1976           | Spare Auxiliary I/O #1 Decimal Places  | 0 Inferred | Read       |
| 1977           | Spare Auxiliary I/O #2 Decimal Places  | 0 Inferred | Read       |
| 1978           | Spare Auxiliary I/O #3 Decimal Places  | 0 Inferred | Read       |
| 1979           | Spare Auxiliary I/O #4 Decimal Places  | 0 Inferred | Read       |
| 1980           | Spare Auxiliary I/O #5 Decimal Places  | 0 Inferred | Read       |
| 1981           | Spare Auxiliary I/O #6 Decimal Places  | 0 Inferred | Read       |
| 1982           | Spare Auxiliary I/O #7 Decimal Places  | 0 Inferred | Read       |
| 1983           | Spare Auxiliary I/O #8 Decimal Places  | 0 Inferred | Read       |
| 1984           | Spare Auxiliary I/O #9 Decimal Places  | 0 Inferred | Read       |
| 1985           | Spare Auxiliary I/O #10 Decimal Places | 0 Inferred | Read       |
| 1986           | Spare Auxiliary I/O #11 Decimal Places | 0 Inferred | Read       |
| 1987           | Spare Auxiliary I/O #12 Decimal Places | 0 Inferred | Read       |
| 1988-1999      | Spare                                  |            |            |
|                |                                        |            |            |

| ADDRESS                                                                                                                                                   | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DECIMAL                                                                                                                                                                                                                                           | READ/WRITE                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2142<br>2143                                                                                                                                              | Display Sensitive Factor<br>Spare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 Inferred                                                                                                                                                                                                                                        | Read/Write                                                                                                                                                                                                                                                                                    |
| 2144<br>2145                                                                                                                                              | Diagnostic Mode<br>Modbus Shift Update                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 Inferred<br>0 Inferred                                                                                                                                                                                                                          | Read/Write<br>Read/Write                                                                                                                                                                                                                                                                      |
| 2146-2350<br>2351<br>2352<br>2353                                                                                                                         | Reserved Port 3 (2 <sup>nd</sup> 485) Modbus Type (0=RTU,1=ASCII) Port 3 (2 <sup>nd</sup> 485) Parity(0=None,1=Odd,2=Even) Port 3 (2 <sup>nd</sup> 485) Baud Rate(0=1200,1=2400,3=480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 Inferred<br>0 Inferred<br>0,4=9600)                                                                                                                                                                                                             | Read/Write<br>Read/Write                                                                                                                                                                                                                                                                      |
| 2354<br>2355<br>2356-2367                                                                                                                                 | reserved Port 3 (2 <sup>nd</sup> 485) RTS Delay in Milliseconds Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 Inferred                                                                                                                                                                                                                                        | Read/Write                                                                                                                                                                                                                                                                                    |
| 2368<br>2369<br>2370-2398                                                                                                                                 | IEEE Floating Point Modbus 0=one 32 bit data ,1= IEEE Floating Point Modbus 0=HI,LO,1=LO,HI Byt Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                   | a<br>Read/Write                                                                                                                                                                                                                                                                               |
| 2399                                                                                                                                                      | Program Variable Statement Update                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 Inferred                                                                                                                                                                                                                                        | Read/Write                                                                                                                                                                                                                                                                                    |
| 2400<br>2401-2530                                                                                                                                         | Boolean Statement Update Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 Inferred                                                                                                                                                                                                                                        | Read/Write                                                                                                                                                                                                                                                                                    |
| 2531<br>2532-2533                                                                                                                                         | Floating Variable Modbus Shift Update Spare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 Inferred                                                                                                                                                                                                                                        | Read/Write                                                                                                                                                                                                                                                                                    |
| 2532 2533<br>2534<br>2535<br>2536<br>2537<br>2538<br>2539<br>2540<br>2541<br>2542<br>2543<br>2544<br>2545<br>2546<br>2547<br>2548<br>2549<br>2550<br>2551 | Flow Copmputer Display Delay DFM Display Screen#1 Assignment #1 DFM Display Screen#1 Assignment #2 DFM Display Screen#2 Assignment #1 DFM Display Screen#2 Assignment #2 DFM Display Screen#3 Assignment #1 DFM Display Screen#3 Assignment #2 DFM Display Screen#4 Assignment #2 DFM Display Screen#4 Assignment #1 DFM Display Screen#5 Assignment #1 DFM Display Screen#5 Assignment #2 DFM Display Screen#6 Assignment #2 DFM Display Screen#6 Assignment #1 DFM Display Screen#7 Assignment #1 DFM Display Screen#7 Assignment #1 DFM Display Screen#8 Assignment #1 DFM Display Screen#8 Assignment #1 DFM Display Screen#8 Assignment #2 FIOM Copmputer ID or Unit ID | O Inferred | Read/Write |
| 2552<br>2553<br>2554<br>2555<br>2556                                                                                                                      | reserved Port 1 (1st 485) Modbus Type (0=RTU,1=ASCII) Port 1 (1st 485) Parity(0=None,1=Odd,2=Even) Port 1 (1st 485) Baud Rate(0=1200,1=2400,3=4800) reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 Inferred<br>0 Inferred<br>0,4=9600)                                                                                                                                                                                                             | Read/Write<br>Read/Write                                                                                                                                                                                                                                                                      |
| 2557<br>2558-2559<br>2560<br>2561<br>2562<br>2563                                                                                                         | Port 1 (1st 485) RTS Delay in Milliseconds reserved Port 2 (RS232) Select 0=RTS,1=Printer Port 2 (RS232) Modbus Type (0=RTU,1=ASCII) Port 2 (RS232) Parity(0=None,1=Odd,2=Even) Port 2 (RS232) Baud Rate(0=1200,1=2400,3=4800)                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 Inferred<br>0 Inferred<br>0 Inferred<br>0 Inferred<br>0,4=9600)                                                                                                                                                                                 | Read/Write<br>Read/Write<br>Read/Write<br>Read/Write                                                                                                                                                                                                                                          |
| 2564<br>2565<br>2566<br>2567                                                                                                                              | Reserved Port 2 (RS232) RTS Delay in Milliseconds Printer- Number of Nulls Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 Inferred<br>0 Inferred                                                                                                                                                                                                                          | Read/Write<br>Read/Write                                                                                                                                                                                                                                                                      |

| ADDRESS      | DESCRIPTION                                                            | DECIMAL    | READ/WRITE               |
|--------------|------------------------------------------------------------------------|------------|--------------------------|
| 2569         | No. of Meters                                                          | 0 Inferred | Pood/Mrito               |
| 2568<br>2569 |                                                                        | 0 Inferred | Read/Write<br>Read/Write |
| 2570         | Select 0=US, 1=Metric Unit Metric Pressure Units? 0=Bar,1=KG/CM2,2=KPA | 0 Inferred |                          |
|              |                                                                        |            | Read/Write               |
| 2571         | Flow Units? 0=CF,1=M3,2=Gallon,3=Liter,4=BBL                           | 0 Inferred | Read/Write               |
| 2572         | Common Temperature 1=Yes                                               | 0 Inferred | Read/Write               |
| 2573         | Common Pressure 1=Yes                                                  | 0 Inferred | Read/Write               |
| 2574         | Common Density 1=Yes                                                   | 0 Inferred | Read/Write               |
| 2575         | Use Station Total                                                      | 0 Inferred | Read/Write               |
| 2576         | Spare #1 Assignment                                                    | 0 Inferred | Read/Write               |
| 2577         | Spare #2 Assignment                                                    | 0 Inferred | Read/Write               |
| 2578         | Spare #3 Assignment                                                    | 0 Inferred | Read/Write               |
| 2579         | Spare #4 Assignment                                                    | 0 Inferred | Read/Write               |
| 2580         | DP Unit (0=m.Bar, 1=KPA) – Metric Unit                                 | 0 Inferred | Read/Write               |
| 2581         | Flow Rate Display 0=Hour,1=Day,2=Minute                                | 0 Inferred | Read/Write               |
| 2582         | Flowrate Averaged Seconds (1-5)                                        | 0 Inferred | Read/Write               |
| 2583         | Day Start Hour (0-23)                                                  | 0 Inferred | Read/Write               |
| 2584         | Disable Alarms ? (0=No, 1=Yes)                                         | 0 Inferred | Read/Write               |
| 2585         | New Alarm Delay Timer                                                  | 0 Inferred | Read/Write               |
| 2586         | Disable Cry-Out Alarm Message                                          | 0 Inferred | Read/Write               |
| 2587         | Pulse Width                                                            | 0 Inferred | Read/Write               |
| 2588         | Cry-Out Alarm Delay Timer                                              | 0 Inferred | Read/Write               |
| 2589         | Reserved                                                               |            |                          |
| 2590         | Analog Output Expnasion                                                | 0 Inferred | Read/Write               |
| 2591         | Spare #5 Assignment                                                    | 0 Inferred | Read/Write               |
| 2592         | Spare #6 Assignment                                                    | 0 Inferred | Read/Write               |
| 2593         | Spare #7 Assignment                                                    | 0 Inferred | Read/Write               |
| 2594         | Spare #8 Assignment                                                    | 0 Inferred | Read/Write               |
| 2595         | Spare #9 Assignment                                                    | 0 Inferred | Read/Write               |
| 2596         | Status Input/Switch Output #1 Assign                                   | 0 Inferred | Read/Write               |
| 2597         | Status Input/Switch Output #2 Assign                                   | 0 Inferred | Read/Write               |
| 2598         | Status Input/Switch Output #3 Assign                                   | 0 Inferred | Read/Write               |
| 2599         | Status Input/Switch Output #4 Assign                                   | 0 Inferred | Read/Write               |
| 2600         | Analog Output #1 Assign                                                | 0 Inferred | Read/Write               |
| 2601         | Analog Output #2 Assign                                                | 0 Inferred | Read/Write               |
| 2602         | Analog Output #3 Assign                                                | 0 Inferred | Read/Write               |
| 2603         | Analog Output #4 Assign                                                | 0 Inferred | Read/Write               |
| 2604         | Analog Input #5 Fail Code                                              | 0 Inferred | Read/Write               |
| 2605         | Analog Input #6 Fail Code                                              | 0 Inferred | Read/Write               |
| 2606         | Analog Input #7 Fail Code                                              | 0 Inferred | Read/Write               |
| 2607         | Analog Input #8 Fail Code                                              | 0 Inferred | Read/Write               |
| 2608         | Analog Input #9 Fail Code                                              | 0 Inferred | Read/Write               |
| 2609         | Freq KF.Unit 0=CF,1=BBL,2=Gal.,3=Liter,4=BBL                           | 0 Inferred | Read/Write               |
| 2610         | Enable Battery Alarm (1=Yes)                                           | 0 Inferred | Read/Write               |
| 2611-2620    | Company Name                                                           | 20 Chars   | Read/Write               |
| 2621-2630    | Meter Location                                                         | 20 Chars.  | Read/Write               |
| 2631-2634    | Meter #1 ID                                                            | 8 Chars    | Read/Write               |
| 2635-2638    | Meter #2 ID                                                            | 8 Chars    | Read/Write               |
| 2639-2642    | Meter #3 ID                                                            | 8 Chars    | Read/Write               |
| 2643-2646    | Meter #4 ID                                                            | 8 Chars    | Read/Write               |
| 2647-2655    | Reserved                                                               |            |                          |
| 2656         | Meter #1 Use Stack DP                                                  | 0 Inferred | Read/Write               |
|              |                                                                        |            |                          |

| ADDRESS      | DESCRIPTION                                                        | DECIMAL                  | READ/WRITE               |
|--------------|--------------------------------------------------------------------|--------------------------|--------------------------|
| 2657         | Meter #1 Density Type                                              | 0 Inferred               | Read/Write               |
| 2658         | Meter #1 Density Unit                                              | 0 Inferred               | Read/Write               |
| 2659         | Meter #1 Flow Cut Off                                              | 0 Inferred               | Read/Write               |
| 2660         | Meter #1 Flow Equation                                             | 0 Inferred               | Read/Write               |
| 2661         | Meter #1 Y Factor Select                                           | 0 Inferred               | Read/Write               |
| 2662         | Meter #1 BS&W Assignment                                           | 0 Inferred               | Read/Write               |
| 2663         | Meter #1 Retroactive Meter Factor (1=Yes)                          | 0 Inferred               | Read/Write               |
| 2664         | Meter #1 DP.Low Assignment                                         | 0 Inferred               | Read/Write               |
| 2665         | Meter #1 Temperature Assignment                                    | 0 Inferred               | Read/Write               |
| 2666         | Meter #1 Pressure Assignment                                       | 0 Inferred               | Read/Write               |
| 2667         | Meter #1 Density Assignment                                        | 0 Inferred               | Read/Write               |
| 2668         | Meter #1 DP.High Assignment                                        | 0 Inferred               | Read/Write               |
| 2669         | Meter #1 Mass Pulse                                                | 0 Inferred               | Read/Write               |
| 2670-2675    | Spare                                                              |                          |                          |
| 2676         | Meter #2 Use Stack DP                                              | 0 Inferred               | Read/Write               |
| 2677         | Meter #2 Density Type                                              | 0 Inferred               | Read/Write               |
| 2678         | Meter #2 Density Unit                                              | 0 Inferred               | Read/Write               |
| 2679         | Meter #2 Flow Cut Off                                              | 0 Inferred               | Read/Write               |
| 2680         | Meter #2 Flow Equation                                             | 0 Inferred               | Read/Write               |
| 2681         | Meter #2 Y Factor Select                                           | 0 Inferred               | Read/Write               |
| 2682         | Meter #2 BS&W Assignment                                           | 0 Inferred               | Read/Write               |
| 2683         | Meter #2 Retroactive Meter Factor (1=Yes)                          | 0 Inferred               | Read/Write               |
| 2684         | Meter #2 DP.Low Assignment                                         | 0 Inferred               | Read/Write               |
| 2685         | Meter #2 Temperature Assignment                                    | 0 Inferred               | Read/Write               |
| 2686         | Meter #2 Pressure Assignment                                       | 0 Inferred               | Read/Write               |
| 2687         | Meter #2 Density Assignment                                        | 0 Inferred               | Read/Write               |
| 2688         | Meter #2 DP.High Assignment                                        | 0 Inferred               | Read/Write               |
| 2689         | Meter #1 Mass Pulse                                                | 0 Inferred               | Read/Write               |
| 2690-2695    | Spare                                                              |                          | 5 1047                   |
| 2696         | Meter #3 Use Stack DP                                              | 0 Inferred               | Read/Write               |
| 2697         | Meter #3 Density Type                                              | 0 Inferred               | Read/Write               |
| 2698         | Meter #3 Density Unit                                              | 0 Inferred               | Read/Write               |
| 2699         | Meter #3 Flow Cut Off                                              | 0 Inferred               | Read/Write               |
| 2700         | Meter #3 Flow Equation                                             | 0 Inferred               | Read/Write               |
| 2701<br>2702 | Meter #3 Y Factor Select                                           | 0 Inferred               | Read/Write               |
| 2702         | Meter #3 BS&W Assignment Meter #3 Retroactive Meter Factor (1=Yes) | 0 Inferred<br>0 Inferred | Read/Write<br>Read/Write |
| 2703         | Meter #3 DP.Low Assignment                                         | 0 Inferred               | Read/Write               |
| 2705         | Meter #3 Temperature Assignment                                    | 0 Inferred               | Read/Write               |
| 2706         | Meter #3 Pressure Assignment                                       | 0 Inferred               | Read/Write               |
| 2707         | Meter #3 Density Assignment                                        | 0 Inferred               | Read/Write               |
| 2708         | Meter #3 DP.High Assignment                                        | 0 Inferred               | Read/Write               |
| 2709         | Meter #3 Mass Pulse                                                | 0 Inferred               | Read/Write               |
| 2710-2715    | Spare                                                              | o inilotrou              | rtodd, vviito            |
| 2716         | Meter #4 Use Stack DP                                              | 0 Inferred               | Read/Write               |
| 2717         | Meter #4 Density Type                                              | 0 Inferred               | Read/Write               |
| 2718         | Meter #4 Density Unit                                              | 0 Inferred               | Read/Write               |
| 2719         | Meter #4 Flow Cut Off                                              | 0 Inferred               | Read/Write               |
| 2720         | Meter #4 Flow Equation                                             | 0 Inferred               | Read/Write               |
| 2721         | Meter #4 Y Factor Select                                           | 0 Inferred               | Read/Write               |
| 2722         | Meter #4 BS&W Assignment                                           | 0 Inferred               | Read/Write               |
| 2723         | Meter #4 Retroactive Meter Factor                                  | 0 Inferred               | Read/Write               |
| 2724         | Meter #4 DP.Low Assignment                                         | 0 Inferred               | Read/Write               |

| ADDRESS                | DESCRIPTION                                            | DECIMAL               | READ/WRITE               |
|------------------------|--------------------------------------------------------|-----------------------|--------------------------|
| 2725                   | Meter #4 Temperature Assignment                        | 0 Inferred            | Read/Write               |
| 2726                   | Meter #4 Pressure Assignment                           | 0 Inferred            | Read/Write               |
| 2727                   | Meter #4 Density Assignment                            | 0 Inferred            | Read/Write               |
| 2728                   | Meter #4 DP High Assignment                            | 0 Inferred            | Read/Write               |
| 2729                   | Meter #1 Mass Pulse                                    | 0 Inferred            | Read/Write               |
| 2730-2735              |                                                        |                       |                          |
| 2736                   | Analog Input #1 Fail Code                              | 0 Inferred            | Read/Write               |
| 2737                   | Analog Input #2 Fail Code                              | 0 Inferred            | Read/Write               |
| 2738                   | Analog Input #3 Fail Code                              | 0 Inferred            | Read/Write               |
| 2739                   | Analog Input #4 Fail Code                              | 0 Inferred            | Read/Write               |
| 2740                   | RTD Input Fail Code                                    | 0 Inferred            | Read/Write               |
| 2741                   | Muti.Var.DP Fail Code                                  | 0 Inferred            | Read/Write               |
| 2742                   | Muti.Var.Pressure Fail Code                            | 0 Inferred            | Read/Write               |
| 2743                   | Muti.Var.Temperature Fail Code                         | 0 Inferred            | Read/Write               |
| 2744                   | Densitometer Fail Code                                 | 0 Inferred            | Read/Write               |
| 2745                   | Densitometer Temperature Assignment                    | 0 Inferred            | Read/Write               |
| 2746                   | Densitometer Pressure Assignment                       | 0 Inferred            | Read/Write               |
| 2747                   | Activiate Backlight Start Hour (0-23)                  | 0 Inferred            | Read/Write               |
| 2748                   | Backlight On Timer in Hours                            | 0 Inferred            | Read/Write               |
| 2749                   | Backlignt Mode                                         | 0 Inferred            | Read/Write               |
| 2750                   | Spare                                                  |                       |                          |
| 2751                   | Status Input/Switch Output #1 (0=OFF,1=ON)             | 0 Inferred            | Read/Write               |
| 2752                   | Status Input/Switch Output #2 (0=OFF,1=ON)             | 0 Inferred            | Read/Write               |
| 2753                   | Status Input/Switch Output #3 (0=OFF,1=ON)             | 0 Inferred            | Read/Write               |
| 2754                   | Status Input/Switch Output #4 (0=OFF,1=ON)             | 0 Inferred            | Read/Write               |
| 2755-2860              | Reserved                                               | 0.01                  | D 1007.                  |
| 2861-2864              | Analog Input #5 Tag Name                               | 8 Chars               | Read/Write               |
| 2865-2868              | Analog Input #6 Tag Name                               | 8 Chars               | Read/Write               |
| 2869-2872              | Analog Input #7 Tag Name                               | 8 Chars               | Read/Write               |
| 2873-2876              | Analog Input #8 Tag Name                               | 8 Chars               | Read/Write               |
| 2877-2880<br>2881      | Analog Input #9 Tag Name Multivar.DP Calibration Index | 8 Chars<br>0 Inferred | Read/Write<br>Read/Write |
| 2882                   | Multivar.Pressure Calibration Index                    | 0 Inferred            | Read/Write               |
| 2883                   | Multivar.Temperature Calibration Index                 | 0 Inferred            | Read/Write               |
| 2003                   | Multival. Lemperature Calibration Index                | o iilielleu           | ixeau/vviite             |
| 2884-2887              | Spare                                                  |                       |                          |
| 2888                   | Reset Multivar. Calibration                            | 0 Inferred            | Read/Write               |
| 2889-2990              | Spare                                                  |                       |                          |
| 2891-2894              | Analog Input #1 Tag Name                               | 8 Chars               | Read/Write               |
| 2895-2898              | Analog Input #2 Tag Name                               | 8 Chars               | Read/Write               |
| 2899-2902              | Analog Input #3 Tag Name                               | 8 Chars               | Read/Write               |
| 2903-2906              | Analog Input #4 Tag Name                               | 8 Chars               | Read/Write               |
| 2907-2910              | RTD Input Tag Name                                     | 8 Chars               | Read/Write               |
| 2911-2914              | Density Input Tag Name                                 | 8 Chars               | Read/Write               |
| 2915-2918              | Analog Output #1 Tag Name                              | 8 Chars<br>8 Chars    | Read/Write<br>Read/Write |
| 2919-2922              | Analog Output #2 Tag Name                              |                       | Read/Write               |
| 2923-2926<br>2927-2930 | Analog Output #3 Tag Name Analog Output #4 Tag Name    | 8 Chars<br>8 Chars    | Read/Write               |
| 2927-2930<br>2931-2934 | Multi.Var DP Tag                                       | 8 Chars.              | Read/Write               |
| 2931-2934              | Multi.Var.Pressure Tag                                 | 8 Chars.              | Read/Write               |
| 2939-2942              | Multi.Var.Fressure Tag Multi.Var Temperature Tag       | 8 Chars.              | Read/Write               |
| 2943                   | Meter#1 PID Auto/Manual                                | 0 Inferred            | Read/Write               |
| 2944                   | Meter#1 PID Flow Loop Used (1=Yes)                     | 0 Inferred            | Read/Write               |
|                        |                                                        | 5664                  |                          |

| ADDRESS      | DESCRIPTION                                                            | DECIMAL                  | READ/WRITE               |
|--------------|------------------------------------------------------------------------|--------------------------|--------------------------|
| 2045         | Meter#1 PID Flow Direct/Reverse Act                                    | 0 Inferred               | Read/Write               |
| 2945<br>2946 | Meter#1 PID Pressure Loop Used (1=Yes)                                 | 0 Inferred               | Read/Write               |
| 2947         | Meter#1 PID Pressure Direct/Reverse Act                                | 0 Inferred               | Read/Write               |
| 2948         |                                                                        | 0 Inferred               |                          |
|              | Meter#1 PID Flow Loop in Service                                       |                          | Read/Write               |
| 2949         | Meter#1 PID Pressure Loop in Service                                   | 0 Inferred               | Read/Write               |
| 2950         | Meter#1 PID 0=Low,1=High Signal                                        | 0 Inferred               | Read/Write               |
| 2951         | Meter#1 PID Flow Base 0=Gross,1=Net,2=Mass                             | 0 Inferred               | Read/Write               |
| 2952         | Meter#2 PID Auto/Manual                                                | 0 Inferred               | Read/Write               |
| 2953<br>2954 | Meter#2 PID Flow Loop Used (1=Yes) Meter#2 PID Flow Direct/Reverse Act | 0 Inferred<br>0 Inferred | Read/Write               |
|              |                                                                        |                          | Read/Write               |
| 2955         | Meter#2 PID Pressure Loop Used (1=Yes)                                 | 0 Inferred               | Read/Write               |
| 2956         | Meter#2 PID Pressure Direct/Reverse Act                                | 0 Inferred               | Read/Write               |
| 2957         | Meter#2 PID Flow Loop in Service                                       | 0 Inferred               | Read/Write               |
| 2958         | Meter#2 PID Pressure Loop in Service                                   | 0 Inferred               | Read/Write               |
| 2959         | Meter#2 PID 0=Low,1=High Signal                                        | 0 Inferred               | Read/Write               |
| 2960         | Meter#2 PID Flow Base 0=Gross,1=Net,2=Mass                             | 0 Inferred               | Read/Write               |
| 2961         | Meter#3 PID Auto/Manual                                                | 0 Inferred               | Read/Write               |
| 2962         | Meter#3 PID Flow Loop Used (1=Yes)                                     | 0 Inferred               | Read/Write               |
| 2963         | Meter#3 PID Flow Direct/Reverse Act                                    | 0 Inferred               | Read/Write               |
| 2964         | Meter#3 PID Pressure Loop Used (1=Yes)                                 | 0 Inferred               | Read/Write               |
| 2965         | Meter#3 PID Pressure Direct/Reverse Act                                | 0 Inferred               | Read/Write               |
| 2966         | Meter#3 PID Flow Loop in Service                                       | 0 Inferred               | Read/Write               |
| 2967         | Meter#3 PID Pressure Loop in Service                                   | 0 Inferred               | Read/Write               |
| 2968         | Meter#3 PID 0=Low,1=High Signal                                        | 0 Inferred               | Read/Write               |
| 2969         | Meter#3 PID Flow Base 0=Gross,1=Net,2=Mass                             | 0 Inferred               | Read/Write               |
| 2970         | Meter#4 PID Auto/Manual                                                | 0 Inferred               | Read/Write               |
| 2971         | Meter#4 PID Flow Loop Used (1=Yes)                                     | 0 Inferred               | Read/Write               |
| 2972         | Meter#4 PID Flow Direct/Reverse Act                                    | 0 Inferred               | Read/Write               |
| 2973         | Meter#4 PID Pressure Loop Used (1=Yes)                                 | 0 Inferred               | Read/Write               |
| 2974         | Meter#4 PID Pressure Direct/Reverse Act                                | 0 Inferred               | Read/Write               |
| 2975         | Meter#4 PID Flow Loop in Service                                       | 0 Inferred               | Read/Write               |
| 2976         | Meter#4 PID Pressure Loop in Service                                   | 0 Inferred               | Read/Write               |
| 2977         | Meter#4 PID 0=Low,1=High Signal                                        | 0 Inferred               | Read/Write               |
| 2978         | Meter#4 PID Flow Base 0=Gross,1=Net,2=Mass                             | 0 Inferred               | Read/Write               |
| 2979         | Meter#1 PID Pressure Base                                              | 0 Inferred               | Read/Write               |
| 2980         | Meter#2 PID Pressure Base                                              | 0 Inferred               | Read/Write               |
| 2981         | Meter#3 PID Pressure Base                                              | 0 Inferred               | Read/Write               |
| 2982         | Meter#4 PID Pressure Base                                              | 0 Inferred               | Read/Write               |
| 2983-2984    | Spare Apples Output#1 Remote Central (0.100)                           | 0 Informad               | Dood/Mrito               |
| 2985         | Analog Output#1 –Remote Control (0-100)                                | 0 Inferred               | Read/Write               |
| 2986         | Analog Output#2 –Remote Control (0-100)                                | 0 Inferred               | Read/Write               |
| 2987         | Analog Output#4 Pemote Control (0-100)                                 | 0 Inferred               | Read/Write               |
| 2988         | Analog Output#4 –Remote Control (0-100)                                | 0 Inferred               | Read/Write               |
| 2989         | Reset PID<br>Slave #1 DP Fail Code                                     | O Informed               | DoodAMrita               |
| 2990<br>2991 | Slave #1 Pressure Fail Code                                            | 0 Inferred<br>0 Inferred | Read/Write<br>Read/Write |
|              |                                                                        |                          |                          |
| 2992         | Slave #1 Temperature Fail Code                                         | 0 Inferred<br>0 Inferred | Read/Write<br>Read/Write |
| 2993         | Slave #2 DP Fail Code                                                  |                          |                          |
| 2994         | Slave #2 Pressure Fail Code                                            | 0 Inferred               | Read/Write               |
| 2995         | Slave #2 Temperature Fail Code                                         | 0 Inferred               | Read/Write               |
| 2996<br>2997 | Slave #3 DP Fail Code<br>Slave #3 Pressure Fail Code                   | 0 Inferred<br>0 Inferred | Read/Write<br>Read/Write |
|              |                                                                        |                          |                          |
| 2998         | Slave #3 Temperature Fail Code                                         | 0 Inferred               | Read/Write               |

| modbus Address Tuble - To Bits Integer |                                                                           |                          |                          |  |
|----------------------------------------|---------------------------------------------------------------------------|--------------------------|--------------------------|--|
| <u>ADDRESS</u>                         | DESCRIPTION                                                               | DECIMAL                  | READ/WRITE               |  |
| 2999                                   | Spare                                                                     |                          |                          |  |
| 3001                                   | Version Number                                                            | 2 Inferred               | Read                     |  |
| 3002-3006                              | Reserved                                                                  |                          |                          |  |
| 3007                                   | Product Used                                                              | 0 Inferred               | Read                     |  |
| 3008-3011                              | Meter #1 ID                                                               | 8 Chars                  | Read                     |  |
| 3012                                   | Report Format (0=Standard, 1=Prog.Variable)                               | 0 Inferred               | Read/Write               |  |
| 3013                                   | End Batch                                                                 | 0 Inferred               | Read/Write               |  |
| 3014-3017                              | Meter #2 ID                                                               | 8 Chars                  | Read                     |  |
| 3018                                   | Flow Computer Unit Number                                                 | 0 Inferred               | Read                     |  |
| 3019                                   | Disable Alarms (1=Yes)                                                    | 0 Inferred               | Read/Write               |  |
| 3020<br>3021                           | Spare                                                                     | 0 Inferred<br>0 Inferred | Read/Write<br>Read/Write |  |
| 3021                                   | Spare<br>Calibrate Meter                                                  | 0 Inferred               |                          |  |
| 3022                                   | Application Tag                                                           | 0 Inferred               | Read<br>Read             |  |
| 3023                                   | Enable Calibration Mode (1=Yes)                                           | 0 Inferred               | Read                     |  |
| 3025                                   | Calibration – Set Time (1-9 Hours)                                        | 0 Inferred               | Read                     |  |
| 3026                                   | Spare                                                                     | 0 iiiieiieu              | Neau                     |  |
| 3027                                   | Last Batch Report Request (1-8)                                           | 0 Inferred               | Write                    |  |
| 3028                                   | Reserved                                                                  | o illicited              | WIIIO                    |  |
| 0020                                   | 110001100                                                                 |                          |                          |  |
| 3029                                   | Last Hourly Report Request (1-8 Long Report)                              | 0 Inferred               | Write                    |  |
| 3030                                   | Last Alarm Report Request (1-80)                                          | 0 Inferred               | Write                    |  |
| 3031                                   | Last Audit Report Request (1-80)                                          | 0 Inferred               | Write                    |  |
| 3032                                   | Last Daily Report Request (1-8 Long Report)                               | 0 Inferred               | Write                    |  |
| 3033                                   | Last Month Report Request                                                 | 0 Inferred               | Write                    |  |
| 3034-3040                              | Spare                                                                     |                          |                          |  |
| 3041                                   | Product #1 Table Selection                                                | 0 Inferred               | Read/Write               |  |
| 3042                                   | Product #2 Table Selection                                                | 0 Inferred               | Read/Write               |  |
| 3043                                   | Product #3 Table Selection                                                | 0 Inferred               | Read/Write               |  |
| 3044                                   | Product #4 Table Selection                                                | 0 Inferred               | Read/Write               |  |
| 3045                                   | Product #5 Table Selection                                                | 0 Inferred               | Read/Write               |  |
| 3046                                   | Product #6 Table Selection                                                | 0 Inferred               | Read/Write               |  |
| 3047                                   | Product #7 Table Selection                                                | 0 Inferred               | Read/Write               |  |
| 3048                                   | Product #8 Table Selection                                                | 0 Inferred               | Read/Write               |  |
| 3049                                   | Next Batch Product Number                                                 | 0 Inferred               | Read/Write               |  |
| 3050                                   | Spring Forward Month                                                      | 0 Inferred               | Read/Write               |  |
| 3051                                   | Spring Forward Day                                                        | 0 Inferred               | Read/Write               |  |
| 3052                                   | Fall Back Month                                                           | 0 Inferred               | Read/Write               |  |
| 3053                                   | Fall Back Day                                                             | 0 Inferred               | Read/Write               |  |
| 3054                                   | Enable Daylight Time Saving                                               | 0 Inferred               | Read/Write               |  |
| 3055-3121                              | Reserved                                                                  |                          |                          |  |
| 3122                                   | Data Verification Number                                                  | 0 Inferred               | Read/Write               |  |
| 3123-3128                              | Spare                                                                     |                          |                          |  |
| 3129                                   | 29 Last Calib./Verification Rpt Req.(1=Latest,20=Oldest) 0 Inferred Write |                          | l Write                  |  |

#### Modbus 16-bit Address Table End

# Modbus Address Table – 2x16 Bits Integer ADDRESS DESCRIPTION DECIMAL READWRITE

| <b>ADDRESS</b>  | DESCRIPTION                                                     | DECIMAL     | READ/WRITE |
|-----------------|-----------------------------------------------------------------|-------------|------------|
| *Non-resettable | e accumulated volume will roll over at 999999999.               |             |            |
| 3131            | Meter #1 Daily Gross Total                                      | 1 inferred  | Read       |
| 3133            | Meter #1 Daily Net Total                                        | 1 inferred  | Read       |
| 3135            | Meter #1 Daily Mass Total                                       | 1 inferred  | Read       |
| 3137            | Meter #1 Hourly Gross Total                                     | 1 Inferred  | Read       |
| 3139            | Meter #1 Hourly Net Total                                       | 1 Inferred  | Read       |
| 3141            | Meter #1 Hourly Mass Total                                      | 1 Inferred  | Read       |
| 3143            | Meter #1 Batch Gross Total                                      | 1 Inferred  | Read       |
| 3145            | Meter #1 Batch Net Total                                        | 1 Inferred  | Read       |
| 3147            | Meter #1 Batch Mass Total                                       | 1 Inferred  | Read       |
| 3149            | Meter #1 Monthly Gross Total                                    | 0 Inferred  | Read       |
| 3151            | Meter #1 Monthly Net Total                                      | 0 Inferred  | Read       |
| 3153            | Meter #1 Monthly Mass Total                                     | 0 Inferred  | Read       |
| 3155            | Meter #1 Cumulative Gross Total*                                | 0 Inferred  | Read       |
| 3157            | Meter #1 Cumulative Oross Total  Meter #1 Cumulative Net Total* | 0 Inferred  | Read       |
| 3159            | Meter #1 Cumulative Mass Total*                                 | 0 Inferred  | Read       |
| 3161            | Spare                                                           | o illielled | Neau       |
| 3163            | Meter #1 Meter Factor                                           | 6 Inferred  | Read       |
| 3165            | Meter #1 Linear Factor                                          | 6 Inferred  | Read       |
| 3167-3169       | Spare                                                           | 0 111101104 | 11000      |
| 3171            | Meter #2 Daily Gross Total                                      | 1 inferred  | Read       |
| 3173            | Meter #2 Daily Net Total                                        | 1 inferred  | Read       |
| 3175            | Meter #2 Daily Mass Total                                       | 1 inferred  | Read       |
| 3177            | Meter #2 Hourly Gross Total                                     | 1 Inferred  | Read       |
| 3179            | Meter #2 Hourly Net Total                                       | 1 Inferred  | Read       |
| 3181            | Meter #2 Hourly Mass Total                                      | 1 Inferred  | Read       |
| 3183            | Meter #2 Batch Gross Total                                      | 1 inferred  | Read       |
| 3185            | Meter #2 Batch Net Total                                        | 1 Inferred  | Read       |
| 3187            | Meter #2 Batch Mass Total                                       | 0 Inferred  | Read       |
| 3189            | Meter #2 Monthly Gross Total                                    | 0 Inferred  | Read       |
| 3191            | Meter #2 Monthly Net Total                                      | 0 Inferred  | Read       |
| 3193            |                                                                 | 0 Inferred  |            |
| 3195            | Meter #2 Monthly Mass Total Meter #2 Cumulative Gross Total*    | 0 Inferred  | Read       |
|                 |                                                                 |             | Read       |
| 3197            | Meter #2 Cumulative Net Total*                                  | 0 Inferred  | Read       |
| 3199            | Meter #2 Cumulative Mass Total*                                 | 0 Inferred  | Read       |
| 3201            | Spare                                                           | 0 Inferred  | Read       |
| 3203            | Meter #2 Meter Factor                                           | 6 Inferred  | Read       |
| 3205            | Meter #2 Linear Factor                                          | 6 Inferred  | Read       |
| 3207-3209       | Spare                                                           | 4 :         | Darad      |
| 3211            | Meter #3 Daily Gross Total                                      | 1 inferred  | Read       |
| 3213            | Meter #3 Daily Net Total                                        | 1 inferred  | Read       |
| 3215            | Meter #3 Daily Mass Total                                       | 1 inferred  | Read       |
| 3217            | Meter #3 Hourly Gross Total                                     | 1 Inferred  | Read       |
| 3219            | Meter #3 Hourly Net Total                                       | 1 Inferred  | Read       |
| 3221            | Meter #3 Hourly Mass Total                                      | 1 Inferred  | Read       |
| 3223            | Meter #3 Batch Gross Total                                      | 1 inferred  | Read       |
| 3225            | Meter #3 Batch Net Total                                        | 1 inferred  | Read       |
| 3227            | Meter #3 Batch Mass Total                                       | 1 inferred  | Read       |
| 3229            | Meter #3 Monthly Gross Total                                    | 0 Inferred  | Read       |
| 3231            | Meter #3 Monthly Net Total                                      | 0 Inferred  | Read       |
| 3233            | Meter #3 Monthly Mass Total                                     | 0 Inferred  | Read       |
| 3235            | Meter #3 Cumulative Gross Total*                                | 0 Inferred  | Read       |

| Meter #3 Cumulative Net Total*   0 Inferred   Read   3239   Meter #3 Cumulative Mass Total*   0 Inferred   Read   3241   Spare     3243   Meter #3 Meter Factor   6 Inferred   Read   3245   Meter #3 Linear Factor   6 Inferred   Read   3247-3249   Spare     3251   Meter #4 Daily Gross Total   1 inferred   Read   3253   Meter #4 Daily Net Total   1 inferred   Read   3255   Meter #4 Daily Net Total   1 inferred   Read   3257   Meter #4 Hourly Gross Total   1 Inferred   Read   3257   Meter #4 Hourly Gross Total   1 Inferred   Read   3257   Meter #4 Hourly Mass Total   1 Inferred   Read   3261   Meter #4 Hourly Mass Total   1 Inferred   Read   3261   Meter #4 Hourly Mass Total   1 Inferred   Read   3263   Meter #4 Daily Gross Total   1 Inferred   Read   3265   Meter #4 Daily Net Total   1 Inferred   Read   3267   Meter #4 Daily Net Total   1 Inferred   Read   3267   Meter #4 Daily Net Total   1 Inferred   Read   3269   Meter #4 Daily Net Total   1 Inferred   Read   3269   Meter #4 Monthly Gross Total   0 Inferred   Read   3273   Meter #4 Monthly Net Total   0 Inferred   Read   3273   Meter #4 Monthly Mass Total   0 Inferred   Read   3275   Meter #4 Cumulative Gross Total*   0 Inferred   Read   3275   Meter #4 Cumulative Net Total*   0 Inferred   Read   3279   Meter #4 Cumulative Mass Total*   0 Inferred   Read   3281   Spare   3283   Meter #4 Linear Factor   6 Inferred   Read   3285   Meter #4 Linear Factor   6 Inferred   Read   3285   Meter #4 Linear Factor   6 Inferred   Read   3287   Battery Voltage   2 Inferred   Read   3287   Battery Voltage   2 Inferred   Read   3287   Battery Voltage   3 Multi. Var PF Alarm   000000001   Slave#3 Multi. Var PF Alarm   000000002   Spare   Auxiliary#1   Alarm   00000004   Spare   Auxiliary#1   Al | ADDRESS   | DESCRIPTION            | DECIMAL RE | AD/WRITE |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------|------------|----------|
| 3239   Meter #3 Cumulative Mass Total*   0   Inferred   Read   3241   Spare   3243   Meter #3 Meter Factor   6   Inferred   Read   3245   Meter #3 Linear Factor   6   Inferred   Read   3247-3249   Spare   3251   Meter #4 Daily Gross Total   1   Inferred   Read   3253   Meter #4 Daily Net Total   1   Inferred   Read   3255   Meter #4 Daily Mass Total   1   Inferred   Read   3257   Meter #4 Hourly Gross Total   1   Inferred   Read   3259   Meter #4 Hourly Mass Total   1   Inferred   Read   3261   Meter #4 Hourly Mass Total   1   Inferred   Read   3263   Meter #4 Hourly Mass Total   1   Inferred   Read   3263   Meter #4 Daily Gross Total   1   Inferred   Read   3265   Meter #4 Daily Mass Total   1   Inferred   Read   3267   Meter #4 Daily Mass Total   1   Inferred   Read   3269   Meter #4 Daily Mass Total   1   Inferred   Read   3271   Meter #4 Monthly Gross Total   0   Inferred   Read   3273   Meter #4 Monthly Mass Total   0   Inferred   Read   3275   Meter #4 Cumulative Gross Total   0   Inferred   Read   3275   Meter #4 Cumulative Net Total   0   Inferred   Read   3277   Meter #4 Cumulative Net Total   0   Inferred   Read   3279   Meter #4 Cumulative Net Total   0   Inferred   Read   3279   Meter #4 Cumulative Net Total   0   Inferred   Read   3285   Meter #4 Meter Factor   6   Inferred   Read   3285   Meter #4 Meter Factor   6   Inferred   Read   3285   Meter #4 Linear Factor   6   Inferred   Read   3285   Meter #4 Linear Factor   6   Inferred   Read   3287   Battery Voltage   2   Inferred   Read   3289-3289   Spare   3325   Report by Exception Alarms   00000001   Slave#3   Multi.Var   PF Alarm   00000002   Slave#3   Multi.Var   PF Alarm   000000008   Spare   Auxiliary#10   Alarm   000000008   Spare   Auxiliary#1 |           |                        |            |          |
| 3241   Spare   3243   Meter #3 Meter #3 Meter Factor   6 Inferred   Read   3245   Meter #3 Linear Factor   6 Inferred   Read   3247-3249   Spare   3251   Meter #4 Daily Gross Total   1 inferred   Read   3253   Meter #4 Daily Mass Total   1 inferred   Read   3255   Meter #4 Daily Mass Total   1 inferred   Read   3257   Meter #4 Hourly Gross Total   1 Inferred   Read   3259   Meter #4 Hourly Mets Total   1 Inferred   Read   3259   Meter #4 Hourly Mass Total   1 Inferred   Read   3261   Meter #4 Hourly Mass Total   1 Inferred   Read   3263   Meter #4 Daily Gross Total   1 Inferred   Read   3265   Meter #4 Daily Mass Total   1 inferred   Read   3265   Meter #4 Daily Mass Total   1 inferred   Read   3267   Meter #4 Daily Mass Total   1 inferred   Read   3269   Meter #4 Monthly Gross Total   0 Inferred   Read   3271   Meter #4 Monthly Mets Total   0 Inferred   Read   3273   Meter #4 Monthly Mass Total   0 Inferred   Read   3275   Meter #4 Cumulative Gross Total   0 Inferred   Read   3277   Meter #4 Cumulative Het Total   0 Inferred   Read   3279   Meter #4 Cumulative Mass Total   0 Inferred   Read   3281   Spare   3283   Meter #4 Meter Factor   6 Inferred   Read   3285   Meter #4 Linear Factor   6 Inferred   Read   3285   Meter #4 Linear Factor   6 Inferred   Read   3285   Meter #4 Linear Factor   6 Inferred   Read   3287   Battery Voltage   2 Inferred   Read   3289-3289   Spare   3291-3323   Spare   3291-3 |           |                        |            |          |
| 3243   Meter #3 Meter Factor   6 Inferred   Read   3245   Meter #3 Linear Factor   6 Inferred   Read   3247-3249   Spare   3251   Meter #4 Daily Gross Total   1 inferred   Read   3253   Meter #4 Daily Net Total   1 inferred   Read   3255   Meter #4 Daily Mass Total   1 inferred   Read   3257   Meter #4 Hourly Gross Total   1 Inferred   Read   3259   Meter #4 Hourly Net Total   1 Inferred   Read   3259   Meter #4 Hourly Mass Total   1 Inferred   Read   3261   Meter #4 Hourly Mass Total   1 Inferred   Read   3263   Meter #4 Daily Gross Total   1 Inferred   Read   3265   Meter #4 Daily Gross Total   1 inferred   Read   3265   Meter #4 Daily Mass Total   1 inferred   Read   3267   Meter #4 Daily Mass Total   1 inferred   Read   3269   Meter #4 Monthly Gross Total   0 Inferred   Read   3271   Meter #4 Monthly Net Total   0 Inferred   Read   3271   Meter #4 Monthly Mass Total   0 Inferred   Read   3275   Meter #4 Cumulative Gross Total*   0 Inferred   Read   3277   Meter #4 Cumulative Net Total*   0 Inferred   Read   3279   Meter #4 Cumulative Net Total*   0 Inferred   Read   3281   Spare   3283   Meter #4 Meter Factor   6 Inferred   Read   3285   Meter #4 Linear Factor   6 Inferred   Read   3287   Battery Voltage   2 Inferred   Read   3289-3289   Spare   3291-3323   Spare   3291-3323   Spare   3291-3323   Spare   3291-3323   Spare   3291-3323   Spare   3291-3323   Spare   3291-3324   Spare   3291-3325   Report by Exception Alarms   00000001   Spare Auxiliary#10   Alarm   00000002   Spare Auxiliary#10   Alarm   00000002   Spare Auxiliary#10   Alarm   00000004   Spare Auxiliary#10   Alarm   00000004   Spare Auxiliary#11   Alarm   00000004   Spare Auxiliary#12   A |           |                        | 0 Interred | Read     |
| 3245   Meter #3 Linear Factor   Spare   Spar |           |                        | 0.1.6      | Deed     |
| 3247-3249         Spare           3251         Meter #4 Daily Net Total         1 inferred         Read           3253         Meter #4 Daily Net Total         1 inferred         Read           3255         Meter #4 Daily Mass Total         1 inferred         Read           3257         Meter #4 Hourly Gross Total         1 Inferred         Read           3259         Meter #4 Hourly Mass Total         1 Inferred         Read           3261         Meter #4 Daily Gross Total         1 inferred         Read           3263         Meter #4 Daily Gross Total         1 inferred         Read           3265         Meter #4 Daily Mass Total         1 inferred         Read           3267         Meter #4 Monthly Gross Total         0 Inferred         Read           3269         Meter #4 Monthly Gross Total         0 Inferred         Read           3271         Meter #4 Wonthly Net Total         0 Inferred         Read           3273         Meter #4 Cumulative Gross Total*         0 Inferred         Read           3275         Meter #4 Cumulative Net Total*         0 Inferred         Read           3277         Meter #4 Cumulative Net Total*         0 Inferred         Read           3281         Spare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                        |            |          |
| Meter #4 Daily Gross Total   1 inferred   Read   3253   Meter #4 Daily Net Total   1 inferred   Read   3255   Meter #4 Daily Mass Total   1 inferred   Read   3257   Meter #4 Hourly Gross Total   1 Inferred   Read   3259   Meter #4 Hourly Net Total   1 Inferred   Read   3261   Meter #4 Hourly Mass Total   1 Inferred   Read   3263   Meter #4 Daily Gross Total   1 inferred   Read   3265   Meter #4 Daily Net Total   1 inferred   Read   3267   Meter #4 Daily Net Total   1 inferred   Read   3269   Meter #4 Daily Mass Total   1 inferred   Read   3269   Meter #4 Monthly Gross Total   0 Inferred   Read   3271   Meter #4 Monthly Net Total   0 Inferred   Read   3273   Meter #4 Monthly Mass Total   0 Inferred   Read   3275   Meter #4 Cumulative Gross Total*   0 Inferred   Read   3277   Meter #4 Cumulative Net Total*   0 Inferred   Read   3279   Meter #4 Cumulative Mass Total*   0 Inferred   Read   3281   Spare   3283   Meter #4 Meter Factor   6 Inferred   Read   3285   Meter #4 Linear Factor   6 Inferred   Read   3287   Battery Voltage   2 Inferred   Read   3289-3289   Spare   3291-3323   Spare   3291-3324   Spare   3291-3325   Report by Exception Alarms   O0000004   Slave#3 Multi.Var DP Alarm   O0000004   Slave#3 Multi.Var TF Alarm   O0000004   Slave#3 Multi.Var TF Alarm   O0000004   Slave#3 Multi.Var TF Alarm   O0000000   Spare Auxiliary#10 Alarm   O00000000   Spare Auxiliary#10 Alarm   O00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                        | 6 Interred | Read     |
| 3253   Meter #4 Daily Net Total   1 inferred   Read   3255   Meter #4 Daily Mass Total   1 inferred   Read   3257   Meter #4 Hourly Gross Total   1 Inferred   Read   3259   Meter #4 Hourly Net Total   1 Inferred   Read   3261   Meter #4 Hourly Mass Total   1 Inferred   Read   3263   Meter #4 Daily Gross Total   1 inferred   Read   3265   Meter #4 Daily Mass Total   1 inferred   Read   3267   Meter #4 Daily Mass Total   1 inferred   Read   3268   Meter #4 Daily Mass Total   1 inferred   Read   3269   Meter #4 Monthly Gross Total   0 Inferred   Read   3271   Meter #4 Monthly Net Total   0 Inferred   Read   3273   Meter #4 Monthly Nass Total   0 Inferred   Read   3275   Meter #4 Cumulative Gross Total*   0 Inferred   Read   3277   Meter #4 Cumulative Net Total*   0 Inferred   Read   3279   Meter #4 Cumulative Nass Total*   0 Inferred   Read   3281   Spare   3283   Meter #4 Meter Factor   6 Inferred   Read   3285   Meter #4 Linear Factor   6 Inferred   Read   3287   Battery Voltage   2 Inferred   Read   3287   Battery Voltage   2 Inferred   Read   3289-3289   Spare   3291-3323   Spare   3291-3323   Spare   3291-3323   Spare   3291-3323   Spare   3291-3323   Spare   3291-3323   Spare   3291-3324   Multi.Var DP Alarm   00000001   Slave#3 Multi.Var DP Alarm   00000001   Spare Auxiliary#9 Alarm   00000002   Spare Auxiliary#9 Alarm   00000004   Spare Auxiliary#10 Alarm   00000004   Spare Auxiliary#11 Alarm   00000004   Spare Auxiliary#11 Alarm   00000004   Spare Auxiliary#11 Alarm   00000004   Spare Auxiliary#11 Alarm   00000004   Spare Auxiliary#12 Alarm   00000004   Sp |           |                        | 4 : - f    | Dood     |
| 3255   Meter #4 Daily Mass Total   1 inferred   Read   3257   Meter #4 Hourly Gross Total   1 Inferred   Read   3259   Meter #4 Hourly Net Total   1 Inferred   Read   3261   Meter #4 Hourly Mass Total   1 Inferred   Read   3263   Meter #4 Daily Gross Total   1 inferred   Read   3265   Meter #4 Daily Net Total   1 inferred   Read   3267   Meter #4 Daily Net Total   1 inferred   Read   3269   Meter #4 Monthly Gross Total   0 Inferred   Read   3271   Meter #4 Monthly Net Total   0 Inferred   Read   3273   Meter #4 Monthly Net Total   0 Inferred   Read   3275   Meter #4 Cumulative Gross Total*   0 Inferred   Read   3277   Meter #4 Cumulative Net Total*   0 Inferred   Read   3277   Meter #4 Cumulative Net Total*   0 Inferred   Read   3279   Meter #4 Cumulative Mass Total*   0 Inferred   Read   3281   Spare   Spare   3283   Meter #4 Meter Factor   6 Inferred   Read   3285   Meter #4 Linear Factor   6 Inferred   Read   3287   Battery Voltage   2 Inferred   Read   3289-3289   Spare   3289-3289   Spare   3291-3323   Spare   3291-3323   Spare   3291-3323   Spare   3291-3323   Spare   3291-3324   Spare   3291-3325   Report by Exception Alarms   00000001   Slave#3   Multi. Var DP Alarm   00000002   Slave#3   Multi. Var TF Alarm   00000001   Spare   Auxiliary#9   Alarm   00000002   Spare   Auxiliary#10   Alarm   00000004   Spare   Auxiliary#11   Alarm   00000004   Spare   Auxiliary#11   Alarm   00000004   Spare   Auxiliary#11   Alarm   00000004   Spare   Auxiliary#12   Alarm   000000004   Spare   Auxiliary#12   Alarm   00000004   Spare   Auxiliary#12   Alarm   00000004   Spare   Auxiliary#12   Alarm   00000000 |           |                        |            |          |
| 3257   Meter #4 Hourly Gross Total   1 Inferred   Read   3259   Meter #4 Hourly Net Total   1 Inferred   Read   3261   Meter #4 Hourly Mass Total   1 Inferred   Read   3263   Meter #4 Daily Gross Total   1 inferred   Read   3265   Meter #4 Daily Net Total   1 inferred   Read   3267   Meter #4 Daily Mass Total   1 inferred   Read   3269   Meter #4 Monthly Gross Total   0 Inferred   Read   3271   Meter #4 Monthly Net Total   0 Inferred   Read   3273   Meter #4 Monthly Net Total   0 Inferred   Read   3275   Meter #4 Cumulative Gross Total   0 Inferred   Read   3277   Meter #4 Cumulative Net Total   0 Inferred   Read   3277   Meter #4 Cumulative Net Total   0 Inferred   Read   3279   Meter #4 Cumulative Mass Total   0 Inferred   Read   3279   Meter #4 Cumulative Mass Total   0 Inferred   Read   3281   Spare   3283   Meter #4 Meter Factor   6 Inferred   Read   3285   Meter #4 Linear Factor   6 Inferred   Read   3287   Battery Voltage   2 Inferred   Read   3289-3289   Spare   3291-3323   Spare   3325   Report by Exception Alarms   00000001   Slave#3 Multi.Var PF Alarm   00000001   Spare Auxiliary#9 Alarm   00000001   Spare Auxiliary#10 Alarm   00000002   Spare Auxiliary#10 Alarm   00000004   Spare Auxiliary#11 Alarm   00000004   Spare Auxiliary#12 Alarm   00000000001   Spare Auxiliary#12 Alarm   0000000001   Spare Auxiliary#12 Alarm   00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                        |            |          |
| Meter #4 Hourly Net Total   1 Inferred   Read   3261   Meter #4 Hourly Mass Total   1 Inferred   Read   3263   Meter #4 Daily Gross Total   1 inferred   Read   3265   Meter #4 Daily Net Total   1 inferred   Read   3267   Meter #4 Daily Mass Total   1 inferred   Read   3269   Meter #4 Monthly Gross Total   0 Inferred   Read   3271   Meter #4 Monthly Net Total   0 Inferred   Read   3273   Meter #4 Monthly Mass Total   0 Inferred   Read   3275   Meter #4 Cumulative Gross Total   0 Inferred   Read   3277   Meter #4 Cumulative Mass Total   0 Inferred   Read   3277   Meter #4 Cumulative Mass Total   0 Inferred   Read   3279   Meter #4 Cumulative Mass Total   0 Inferred   Read   3281   Spare   Spare   3283   Meter #4 Meter Factor   6 Inferred   Read   3285   Meter #4 Linear Factor   6 Inferred   Read   3287   Battery Voltage   2 Inferred   Read   3289-3289   Spare   3291-3323   Spare   3291-3324   Spare   3291-3325   Report by Exception Alarms   00000004   Slave#3 Multi.Var DP Alarm   00000004   Slave#3 Multi.Var TF Alarm   00000008   Spare Auxiliary#9 Alarm   00000002   Spare Auxiliary#10 Alarm   00000004   Spare Auxiliary#10 Alarm   00000004   Spare Auxiliary#11 Alarm   00000004   Spare Auxiliary#12 Alarm   000000004   Spare Auxiliary#12 Alarm   000000004   Spare Auxiliary#12 Alarm   000000004   Spare Auxiliary#12 Alarm   000000004   Spare Auxiliary#12 Alarm   00000000000000000000000000000000000                                                                                                                                                                                                                                                                        |           | •                      |            |          |
| 3261   Meter #4 Hourly Mass Total   1 Inferred   Read   3263   Meter #4 Daily Gross Total   1 inferred   Read   3265   Meter #4 Daily Net Total   1 inferred   Read   3267   Meter #4 Daily Mass Total   1 inferred   Read   3268   Meter #4 Monthly Gross Total   0 Inferred   Read   3271   Meter #4 Monthly Net Total   0 Inferred   Read   3273   Meter #4 Monthly Mass Total   0 Inferred   Read   3275   Meter #4 Cumulative Gross Total*   0 Inferred   Read   3277   Meter #4 Cumulative Net Total*   0 Inferred   Read   3279   Meter #4 Cumulative Mass Total*   0 Inferred   Read   3281   Spare   Spare   3283   Meter #4 Meter Factor   6 Inferred   Read   3285   Meter #4 Linear Factor   6 Inferred   Read   3287   Battery Voltage   2 Inferred   Read   3289-3289   Spare   3291-3323   Spare   3291-3323   Spare   3291-3323   Spare   3291-3323   Spare   3291-3323   Spare   3291-3324   Spare   3291-3325   Report by Exception Alarms   00000001   Slave#3 Multi.Var DP Alarm   00000002   Slave#3 Multi.Var DP Alarm   000000004   Slave#3 Multi.Var DP Alarm   000000008   Spare Auxiliary#9 Alarm   000000000   Spare Auxiliary#10 Alarm   00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | •                      |            |          |
| 3263         Meter #4 Daily Gross Total         1 inferred         Read           3265         Meter #4 Daily Net Total         1 inferred         Read           3267         Meter #4 Daily Mass Total         1 inferred         Read           3269         Meter #4 Monthly Gross Total         0 Inferred         Read           3271         Meter #4 Monthly Net Total         0 Inferred         Read           3273         Meter #4 Monthly Mass Total         0 Inferred         Read           3275         Meter #4 Cumulative Gross Total*         0 Inferred         Read           3277         Meter #4 Cumulative Net Total*         0 Inferred         Read           3279         Meter #4 Cumulative Mass Total*         0 Inferred         Read           3281         Spare         3283         Meter #4 Meter Factor         6 Inferred         Read           3285         Meter #4 Linear Factor         6 Inferred         Read           3287         Battery Voltage         2 Inferred         Read           3289-3289         Spare           3325         Report by Exception Alarms         0 Inferred         Read           00000002         Slave#3 Multi.Var DP Alarm         000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                        |            |          |
| 3265         Meter #4 Daily Net Total         1 inferred         Read           3267         Meter #4 Daily Mass Total         1 inferred         Read           3269         Meter #4 Monthly Gross Total         0 Inferred         Read           3271         Meter #4 Monthly Net Total         0 Inferred         Read           3273         Meter #4 Monthly Mass Total         0 Inferred         Read           3275         Meter #4 Cumulative Gross Total*         0 Inferred         Read           3277         Meter #4 Cumulative Net Total*         0 Inferred         Read           3279         Meter #4 Cumulative Mass Total*         0 Inferred         Read           3281         Spare         Spare         3283         Meter #4 Meter Factor         6 Inferred         Read           3285         Meter #4 Linear Factor         6 Inferred         Read           3287         Battery Voltage         2 Inferred         Read           3289-3289         Spare         Read         3291-3323         Spare         Read           3291-3323         Spare         Report by Exception Alarms         0 Inferred         Read           3291-3323         Spare         Read         3291-321-321-321-321-321-321-321-321-321-32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                        |            |          |
| 3267         Meter #4 Daily Mass Total         1 inferred         Read           3269         Meter #4 Monthly Gross Total         0 Inferred         Read           3271         Meter #4 Monthly Net Total         0 Inferred         Read           3273         Meter #4 Monthly Mass Total         0 Inferred         Read           3275         Meter #4 Cumulative Gross Total*         0 Inferred         Read           3277         Meter #4 Cumulative Net Total*         0 Inferred         Read           3279         Meter #4 Cumulative Mass Total*         0 Inferred         Read           3281         Spare         Spare         3283         Meter #4 Meter Factor         6 Inferred         Read           3285         Meter #4 Linear Factor         6 Inferred         Read           3287         Battery Voltage         2 Inferred         Read           3289-3289         Spare         3291-3323         Spare         Read           3291-3323         Spare         Report by Exception Alarms         0 Inferred         Read           3291-3323         Spare         Multi.Var DP Alarm         000000002         Slave#3 Multi.Var DP Alarm           000000001         Spare Auxiliary#10 Alarm         000000000         Spare Auxiliary#10 Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                        |            |          |
| 3269 Meter #4 Monthly Gross Total 0 Inferred Read 3271 Meter #4 Monthly Net Total 0 Inferred Read 3273 Meter #4 Monthly Mass Total 0 Inferred Read 3275 Meter #4 Cumulative Gross Total* 0 Inferred Read 3276 Meter #4 Cumulative Net Total* 0 Inferred Read 3277 Meter #4 Cumulative Net Total* 0 Inferred Read 3279 Meter #4 Cumulative Mass Total* 0 Inferred Read 3281 Spare 3283 Meter #4 Meter Factor 6 Inferred Read 3285 Meter #4 Linear Factor 6 Inferred Read 3287 Battery Voltage 2 Inferred Read 3289-3289 Spare  3291-3323 Spare 3325 Report by Exception Alarms 00000001 Slave#3 Multi.Var DP Alarm 00000002 Slave#3 Multi.Var DF Alarm 00000008 Spare Auxiliary#9 Alarm 00000001 Spare Auxiliary#9 Alarm 0000002 Spare Auxiliary#10 Alarm 0000002 Spare Auxiliary#11 Alarm 00000004 Spare Auxiliary#11 Alarm 00000040 Spare Auxiliary#12 Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                        |            |          |
| 3271 Meter #4 Monthly Net Total 0 Inferred Read 3273 Meter #4 Monthly Mass Total 0 Inferred Read 3275 Meter #4 Cumulative Gross Total* 0 Inferred Read 3277 Meter #4 Cumulative Net Total* 0 Inferred Read 3279 Meter #4 Cumulative Mass Total* 0 Inferred Read 3281 Spare 3283 Meter #4 Meter Factor 6 Inferred Read 3285 Meter #4 Linear Factor 6 Inferred Read 3287 Battery Voltage 2 Inferred Read 3287 Spare 3291-3323 Spare 3291-3323 Spare 3291-3323 Spare 3291-3323 Spare 3291-3323 Spare 00000001 Slave#3 Multi.Var DP Alarm 00000002 Slave#3 Multi.Var DP Alarm 00000004 Slave#3 Multi.Var TF Alarm 00000008 Spare Auxiliary#9 Alarm 00000001 Spare Auxiliary#10 Alarm 00000002 Spare Auxiliary#11 Alarm 00000004 Spare Auxiliary#11 Alarm 00000004 Spare Auxiliary#11 Alarm 00000040 Spare Auxiliary#11 Alarm 00000040 Spare Auxiliary#11 Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                        |            |          |
| 3273 Meter #4 Monthly Mass Total 0 Inferred Read 3275 Meter #4 Cumulative Gross Total* 0 Inferred Read 3277 Meter #4 Cumulative Net Total* 0 Inferred Read 3279 Meter #4 Cumulative Mass Total* 0 Inferred Read 3281 Spare 3283 Meter #4 Meter Factor 6 Inferred Read 3285 Meter #4 Linear Factor 6 Inferred Read 3287 Battery Voltage 2 Inferred Read 3289-3289 Spare 3291-3323 Spare 3325 Report by Exception Alarms 00000001 Slave#3 Multi.Var DP Alarm 00000002 Slave#3 Multi.Var DP Alarm 000000004 Slave#3 Multi.Var TF Alarm 000000008 Spare Auxiliary#9 Alarm 00000001 Spare Auxiliary#10 Alarm 00000002 Spare Auxiliary#11 Alarm 00000040 Spare Auxiliary#11 Alarm 00000040 Spare Auxiliary#12 Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                        |            |          |
| 3275 Meter #4 Cumulative Gross Total* 0 Inferred Read 3277 Meter #4 Cumulative Net Total* 0 Inferred Read 3279 Meter #4 Cumulative Mass Total* 0 Inferred Read 3281 Spare 3283 Meter #4 Meter Factor 6 Inferred Read 3285 Meter #4 Linear Factor 6 Inferred Read 3287 Battery Voltage 2 Inferred Read 3289-3289 Spare 3291-3323 Spare 3291-3323 Spare 3291-3323 Spare 3291-3323 Spare 3291-3323 Spare 3291-3324 Multi.Var DP Alarm 000000002 Slave#3 Multi.Var DP Alarm 000000004 Slave#3 Multi.Var TF Alarm 000000008 Spare Auxiliary#9 Alarm 00000001 Spare Auxiliary#10 Alarm 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                        |            |          |
| 3277       Meter #4 Cumulative Net Total*       0 Inferred       Read         3279       Meter #4 Cumulative Mass Total*       0 Inferred       Read         3281       Spare           3283       Meter #4 Meter Factor       6 Inferred       Read         3285       Meter #4 Linear Factor       6 Inferred       Read         3287       Battery Voltage       2 Inferred       Read         3291-3323       Spare       Spare         3325       Report by Exception Alarms       0 Inferred       Read         00000001       Slave#3 Multi.Var DP Alarm       00000004       Slave#3 Multi.Var TF Alarm       00000004       Spare Auxiliary#9 Alarm       00000000       Spare Auxiliary#10 Alarm       00000000       Spare Auxiliary#11 Alarm       00000004       Spare Auxiliary#12 Alarm       Alarm       00000004       Spare Auxiliary#12 Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                        |            |          |
| Meter #4 Cumulative Mass Total*   0 Inferred   Read   3281   Spare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                        |            |          |
| 3281       Spare         3283       Meter #4 Meter Factor       6 Inferred       Read         3285       Meter #4 Linear Factor       6 Inferred       Read         3287       Battery Voltage       2 Inferred       Read         3289-3289       Spare       2 Inferred       Read         3291-3323       Spare       0 Inferred       Read         00000001       Slave#3 Multi.Var DP Alarm       00000002       Slave#3 Multi.Var PF Alarm         00000004       Slave#3 Multi.Var TF Alarm       000000000       Spare Auxiliary#9 Alarm         00000001       Spare Auxiliary#10 Alarm       000000000       Spare Auxiliary#11 Alarm         000000040       Spare Auxiliary#12 Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                        |            |          |
| 3283         Meter #4 Meter Factor         6 Inferred         Read           3285         Meter #4 Linear Factor         6 Inferred         Read           3287         Battery Voltage         2 Inferred         Read           3289-3289         Spare         3291-3323         Spare         0 Inferred         Read           3325         Report by Exception Alarms         0 Inferred         Read           00000001         Slave#3 Multi.Var DP Alarm         00000002         Slave#3 Multi.Var TF Alarm           00000004         Slave#3 Multi.Var TF Alarm         00000000         Spare Auxiliary#10 Alarm           00000002         Spare Auxiliary#11 Alarm         000000040 Spare Auxiliary#12 Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                        |            |          |
| 3287 Battery Voltage 2 Inferred Read  3289-3289 Spare  3291-3323 Spare  3325 Report by Exception Alarms 00000001 Slave#3 Multi.Var DP Alarm 00000002 Slave#3 Multi.Var PF Alarm 00000004 Slave#3 Multi.Var TF Alarm 00000008 Spare Auxiliary#9 Alarm 00000010 Spare Auxiliary#10 Alarm 00000020 Spare Auxiliary#11 Alarm 00000040 Spare Auxiliary#12 Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                        | 6 Inferred | Read     |
| 3291-3323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3285      | Meter #4 Linear Factor | 6 Inferred | Read     |
| 3291-3323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3287      | Battery Voltage        | 2 Inferred | Read     |
| 3291-3323 Spare 3325 Report by Exception Alarms 0 Inferred Read  00000001 Slave#3 Multi.Var DP Alarm 00000002 Slave#3 Multi.Var PF Alarm 00000004 Slave#3 Multi.Var TF Alarm 00000008 Spare Auxiliary#9 Alarm 00000010 Spare Auxiliary#10 Alarm 00000020 Spare Auxiliary#11 Alarm 00000040 Spare Auxiliary#12 Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                        |            |          |
| 3325 Report by Exception Alarms 0 Inferred Read  00000001 Slave#3 Multi.Var DP Alarm 00000002 Slave#3 Multi.Var PF Alarm 00000004 Slave#3 Multi.Var TF Alarm 00000008 Spare Auxiliary#9 Alarm 00000010 Spare Auxiliary#10 Alarm 00000020 Spare Auxiliary#11 Alarm 00000040 Spare Auxiliary#12 Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3289-3289 | Spare                  |            |          |
| 3325 Report by Exception Alarms 0 Inferred Read  00000001 Slave#3 Multi.Var DP Alarm 00000002 Slave#3 Multi.Var PF Alarm 00000004 Slave#3 Multi.Var TF Alarm 00000008 Spare Auxiliary#9 Alarm 00000010 Spare Auxiliary#10 Alarm 00000020 Spare Auxiliary#11 Alarm 00000040 Spare Auxiliary#12 Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0004 0000 | 0                      |            |          |
| 00000001 Slave#3 Multi.Var DP Alarm 00000002 Slave#3 Multi.Var PF Alarm 00000004 Slave#3 Multi.Var TF Alarm 00000008 Spare Auxiliary#9 Alarm 00000010 Spare Auxiliary#10 Alarm 00000020 Spare Auxiliary#11 Alarm 00000040 Spare Auxiliary#12 Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                        | 0 Informed | Pood     |
| 00000002 Slave#3 Multi.Var PF Alarm 00000004 Slave#3 Multi.Var TF Alarm 00000008 Spare Auxiliary#9 Alarm 00000010 Spare Auxiliary#10 Alarm 00000020 Spare Auxiliary#11 Alarm 00000040 Spare Auxiliary#12 Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                        | o interred | Reau     |
| 00000004 Slave#3 Multi.Var TF Alarm<br>00000008 Spare Auxiliary#9 Alarm<br>00000010 Spare Auxiliary#10 Alarm<br>00000020 Spare Auxiliary#11 Alarm<br>00000040 Spare Auxiliary#12 Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                        |            |          |
| 00000008 Spare Auxiliary#9 Alarm<br>00000010 Spare Auxiliary#10 Alarm<br>00000020 Spare Auxiliary#11 Alarm<br>00000040 Spare Auxiliary#12 Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                        |            |          |
| 00000010 Spare Auxiliary#10 Alarm<br>00000020 Spare Auxiliary#11 Alarm<br>00000040 Spare Auxiliary#12 Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                        |            |          |
| 00000020 Spare Auxiliary#11 Alarm<br>00000040 Spare Auxiliary#12 Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                        |            |          |
| 00000040 Spare Auxiliary#12 Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                        |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                        |            |          |
| 3327 Reserved 0 Inferred Read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                        |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3327      | Reserved               | 0 Inferred | Read     |

| ADDRESS D   | DESCRIPTION                                                        | DECIMAL                  | READ/WRITE   |
|-------------|--------------------------------------------------------------------|--------------------------|--------------|
|             | Leport by Exception Alarms                                         | 0 Inferred               | Read         |
|             | 1 Analog Input #1 Alarm                                            |                          |              |
|             | 2 Analog Input #2 Alarm<br>4 Analog Input #3 Alarm                 |                          |              |
|             | 8 Analog Input #4 Alarm                                            |                          |              |
|             | O Analog Input #5 Alarm                                            |                          |              |
|             | O Analog Input #6 Alarm                                            |                          |              |
|             | 0 Analog Input #7 Alarm                                            |                          |              |
| 0000008     | O Analog Input #8 Alarm                                            |                          |              |
| 0000010     | 0 Analog Input #9 Alarm                                            |                          |              |
|             | 0 Multi.Var DP Alarm                                               |                          |              |
|             | 0 Multi.Var Pressure Alarm                                         |                          |              |
|             | 0 Multi.Var Temperature Alarm                                      |                          |              |
|             | 0 Battery Alarm<br>0 Slave Comm. Failed                            |                          |              |
| 0000200     |                                                                    |                          |              |
| 008000      |                                                                    |                          |              |
| 0001000     | 0 Slave#1 Multi.Var DP Alarm                                       |                          |              |
| 0002000     | 0 Slave#1 Multi.Var Pressure Alarm                                 |                          |              |
|             | O Slave#1 Multi.Var Temperature Alar                               | m                        |              |
|             | O Spare Auxiliary#1 Alarm                                          |                          |              |
|             | O Spare Auxiliary#2 Alarm                                          |                          |              |
|             | O Spare Auxiliary#3 Alarm O Spare Auxiliary#4 Alarm                |                          |              |
|             | -                                                                  |                          |              |
|             | 0 Slave#2 Multi.Var DP Alarm<br>0 Slave#2 Multi.Var Pressure Alarm |                          |              |
|             | O Slave#2 Multi.var Temperature Alar                               | m                        |              |
|             | O Spare Auxiliary#5 Alarm                                          |                          |              |
|             | 0 Spare Auxiliary#6 Alarm                                          |                          |              |
| 2000000     | O Spare Auxiliary#7 Alarm                                          |                          |              |
|             | O Spare Auxiliary#8 Alarm                                          |                          |              |
|             | Reserved                                                           | 0 Inferred               | Read         |
|             | nalog Input #5 mA Value                                            | 3 Inferred               | Read         |
|             | .nalog Input #6 mA Value<br>.nalog Input #7 mA Value               | 3 Inferred<br>3 Inferred | Read<br>Read |
|             | nalog Input #7 IIIA Value                                          | 3 Inferred               | Read         |
|             | nalog Input #9 mA Value                                            | 3 Inferred               | Read         |
|             | pare                                                               | ·                        |              |
|             | nalog Input #1 mA Value                                            | 3 Inferred               | Read         |
|             | nalog Input #2 mA Value                                            | 3 Inferred               | Read         |
|             | nalog Input #3 mA Value                                            | 3 Inferred               | Read         |
|             | nalog Input #4 mA Value                                            | 3 Inferred               | Read         |
|             | RTD Input Ohm Value                                                | 3 Inferred<br>3 Inferred | Read         |
|             | .nalog Output #1 mA Value<br>.nalog Output #2 mA Value             | 3 Interred<br>3 Inferred | Read<br>Read |
|             | nalog Output #2 mA Value                                           | 3 Inferred               | Read         |
|             | nalog Output #4 mA Value                                           | 3 Inferred               | Read         |
|             | Display Contrast                                                   | 0 Inferred               | Read         |
| 3373 D      | Display Sensitive Factor                                           | 0 Inferred               | Read         |
| 3375-3381 S | pare                                                               |                          |              |

| ADDRESS   | DESCRIPTION                         | DECIMAL R  | READ/WRITE |
|-----------|-------------------------------------|------------|------------|
| 3383      | Analog Output #1 Output %           | 2 Inferred | Read       |
| 3385      | Analog Output #2 Output %           | 2 Inferred | Read       |
| 3387      | Analog Output #3 Output %           | 2 Inferred | Read       |
| 3389      | Analog Output #4 Output %           | 2 Inferred | Read       |
| 3391      | Uncorrected Density                 | 6 Inferred | Read       |
| 3393-3421 | Reserved                            |            |            |
| 3423      | Meter#1 Yesterday's FWA Temperature | 2 Inferred | Read       |
| 3425      | Meter#1 Yesterday's FWA Pressure    | 2 Inferred | Read       |
| 3427      | Meter#1 Yesterday's Gross Total     | 1 Inferred | Read       |
| 3429      | Meter#1 Yesterday's Net Total       | 1 Inferred | Read       |
| 3431      | Meter#1 Yesterday's Mass Total      | 1 Inferred | Read       |
| 3433      | Meter#2 Yesterday's FWA Temperature | 2 Inferred | Read       |
| 3435      | Meter#2 Yesterday's FWA Pressure    | 2 Inferred | Read       |
| 3437      | Meter#2 Yesterday's Gross Total     | 1 Inferred | Read       |
| 3439      | Meter#2 Yesterday's Net Total       | 1 Inferred | Read       |
| 3441      | Meter#1 Yesterday's Mass Total      | 1 Inferred | Read       |
| 3443      | Meter#3 Yesterday's FWA Temperature | 2 Inferred | Read       |
| 3445      | Meter#3 Yesterday's FWA Pressure    | 2 Inferred | Read       |
| 3447      | Meter#3 Yesterday's Gross Total     | 1 Inferred | Read       |
| 3449      | Meter#3 Yesterday's Net Total       | 1 Inferred | Read       |
| 3451      | Meter#1 Yesterday's Mass Total      | 1 Inferred | Read       |
| 3453      | Meter#4 Yesterday's FWA Temperature | 2 Inferred | Read       |
| 3455      | Meter#4 Yesterday's FWA Pressure    | 2 Inferred | Read       |
| 3457      | Meter#4 Yesterday's Gross Total     | 1 Inferred | Read       |
| 3459      | Meter#4 Yesterday's Net Total       | 1 Inferred | Read       |
| 3461      | Meter#4 Yesterday's Mass Total      | 1 Inferred | Read       |
| 3463      | Meter#1 Last Hour Flowing Time      | 2 Inferred | Read       |
| 3465      | Meter#1 Last Hour Gross Total       | 1 Inferred | Read       |
| 3467      | Meter#1 Last Hour Net Total         | 1 Inferred | Read       |
| 3469      | Meter#1 Last Hour Mass Total        | 1 Inferred | Read       |
| 3471      | Meter#1 Last Hour FWA Temperature   | 2 Inferred | Read       |
| 3473      | Meter#1 Last Hour FWA Pressure      | 2 Inferred | Read       |
| 3475      | Meter#1 Last Hour FWA DP            | 4 Inferred | Read       |
| 3477      | Meter#1 Last Hour FWA DP/EXT        | 4 Inferred | Read       |
| 3479      | Meter#2 Last Hour Flowing Time      | 2 Inferred | Read       |
| 3481      | Meter#2 Last Hour Gross Total       | 1 Inferred | Read       |
| 3483      | Meter#2 Last Hour Net Total         | 1 Inferred | Read       |
| 3485      | Meter#1 Last Hour Mass Total        | 1 Inferred | Read       |
| 3487      | Meter#2 Last Hour FWA Temperature   | 2 Inferred | Read       |
| 3489      | Meter#2 Last Hour FWA Pressure      | 2 Inferred | Read       |
| 3491      | Meter#2 Last Hour FWA DP            | 4 Inferred | Read       |
| 3493      | Meter#2 Last Hour FWA DP/EXT        | 4 Inferred | Read       |
| 3495      | Meter#3 Last Hour Flowing Time      | 2 Inferred | Read       |
| 3497      | Meter#3 Last Hour Gross Total       | 1 Inferred | Read       |
| 3499      | Meter#3 Last Hour Net Total         | 1 Inferred | Read       |
| 3501      | Meter#3 Last Hour Mass Total        | 1 Inferred | Read       |

| ADDDESS      | DESCRIPTION                                                     | DECIMAL B                |              |
|--------------|-----------------------------------------------------------------|--------------------------|--------------|
| ADDRESS      | DESCRIPTION FINA Terror and the                                 |                          | READ/WRITE   |
| 3503         | Meter#3 Last Hour FWA Temperature                               | 2 Inferred               | Read         |
| 3505         | Meter#3 Last Hour FWA Pressure                                  | 2 Inferred               | Read         |
| 3507         | Meter#3 Last Hour FWA DP Meter#3 Last Hour FWA DP/EXT           | 4 Inferred               | Read         |
| 3509<br>3511 |                                                                 | 4 Inferred<br>2 Inferred | Read<br>Read |
| 3513         | Meter#4 Last Hour Flowing Time<br>Meter#4 Last Hour Gross Total | 1 Inferred               | Read         |
| 3515         | Meter#4 Last Hour Net Total                                     | 1 Inferred               | Read         |
| 3517         | Meter#4 Last Hour Mass Total                                    | 1 Inferred               | Read         |
| 3519         | Meter#4 Last Hour FWA Temperature                               | 2 Inferred               | Read         |
| 3521         | Meter#4 Last Hour FWA Pressure                                  | 2 Inferred               | Read         |
| 3523         | Meter#4 Last Hour FWA DP                                        | 4 Inferred               | Read         |
| 3525         | Meter#4 Last Hour FWA DP/EXT                                    | 4 Inferred               | Read         |
| 0020         | Wictor#4 East Hour F WA DI /EXT                                 | 4 IIIICIICG              | rtoad        |
| 3527         | Meter #1 Last Batch Gross Total                                 | 1 Inferred               | Read         |
| 3529         | Meter #1 Last Batch Net Total                                   | 1 Inferred               | Read         |
| 3531         | Meter #1 Last Batch Mass Total                                  | 1 Inferred               | Read         |
| 3533         | Meter #1 Last Batch FWA Temperature                             | 2 Inferred               | Read         |
| 3535         | Meter #1 Last Batch FWA Pressure                                | 2 Inferred               | Read         |
| 3537         | Meter #1 Last Batch FWA DP                                      | 4 Inferred               | Read         |
| 3539         | Meter #1 Last Batch FWA Density                                 | 3 Inferred               | Read         |
| 3541         | Meter #2 Last Batch Gross Total                                 | 1 Inferred               | Read         |
| 3543         | Meter #2 Last Batch Net Total                                   | 1 Inferred               | Read         |
| 3545         | Meter #2 Last Batch Mass Total                                  | 1 Inferred               | Read         |
| 3547         | Meter #2 Last Batch FWA Temperature                             | 2 Inferred               | Read         |
| 3549         | Meter #2 Last Batch FWA Pressure                                | 2 Inferred               | Read         |
| 3551         | Meter #2 Last Batch FWA DP                                      | 4 Inferred               | Read         |
| 3553         | Meter #2 Last Batch FWA Density                                 | 3 Inferred               | Read         |
| 3555         | Meter #3 Last Batch Gross Total                                 | 1 Inferred               | Read         |
| 3557         | Meter #3 Last Batch Net Total                                   | 1 Inferred               | Read         |
| 3559         | Meter #2 Last Batch Mass Total                                  | 1 Inferred               | Read         |
| 3561         | Meter #3 Last Batch FWA Temperature                             | 2 Inferred               | Read         |
| 3563         | Meter #3 Last Batch FWA Pressure                                | 2 Inferred               | Read         |
| 3565         | Meter #3 Last Batch FWA DP                                      | 4 Inferred               | Read         |
| 3567         | Meter #3 Last Batch FWA Density                                 | 3 Inferred               | Read         |
| 3569         | Meter #4 Last Batch Gross Total                                 | 1 Inferred               | Read         |
| 3571         | Meter #4 Last Batch Net Total                                   | 1 Inferred               | Read         |
| 3573         | Meter #4 Last Batch Mass Total                                  | 1 Inferred               | Read         |
| 3575         | Meter #4 Last Batch FWA Temperature                             | 2 Inferred               | Read         |
| 3577         | Meter #4 Last Batch FWA Pressure                                | 2 Inferred               | Read         |
| 3579         | Meter #4 Last Batch FWA DP                                      | 4 Inferred               | Read         |
| 3581<br>3583 | Meter #4 Last Batch FWA Density                                 | 3 Inferred               | Read         |
| 3585         | Spare<br>Spare#1 Data                                           | 1 Inferred               | Read         |
| 3587         | Spare#2 Data                                                    | 1 Inferred               | Read         |
| 3589         | Spare#3 Data                                                    | 1 Inferred               | Read         |
| 3599<br>3591 | Spare#4 Data                                                    | 1 Inferred               | Read         |
| 3593         | Spare#5 Data                                                    | 1 Inferred               | Read         |
| 3595         | Spare#6 Data                                                    | 1 Inferred               | Read         |
| 3597         | Spare#7 Data                                                    | 1 Inferred               | Read         |
| 3599         | Spare#8 Data                                                    | 1 Inferred               | Read         |
| 3601         | Spare#9 Data                                                    | 1 Inferred               | Read         |
|              | - p - m - m - =                                                 |                          |              |
|              |                                                                 |                          |              |

3603-3649 Reserved

| <u>ADDRESS</u> | DESCRIPTION                             | DECIMAL    | READ/WRITE |
|----------------|-----------------------------------------|------------|------------|
| 3651           | Slave#1 Spare Auxiliary I/O #1 mA Value | 3 Inferred | Read       |
| 3653           | Slave#1 Spare Auxiliary I/O #2 mA Value | 3 Inferred | Read       |
| 3655           | Slave#1 Spare Auxiliary I/O #3 mA Value | 3 Inferred | Read       |
| 3657           | Slave#1 Spare Auxiliary I/O #4 mA Value | 3 Inferred | Read       |
| 3659           | Slave#1 DP                              | 4 Inferred | Read       |
| 3661           | Slave#1 Pressure                        | 2 Inferred | Read       |
| 3663           | Slave#1 Temperature                     | 2 Inferred | Read       |
| 3665           | Slave#1 Multi.Var.Unit Flag             | 0 Inferred | Read       |
| 3667           | Slave#2 Spare Auxiliary I/O #1 mA Value | 3 Inferred | Read       |
| 3669           | Slave#2 Spare Auxiliary I/O #2 mA Value | 3 Inferred | Read       |
| 3671           | Slave#2 Spare Auxiliary I/O #3 mA Value | 3 Inferred | Read       |
| 3673           | Slave#2 Spare Auxiliary I/O #4 mA Value | 3 Inferred | Read       |
| 3675           | Slave#2 DP                              | 4 Inferred | Read       |
| 3677           | Slave#2 Pressure                        | 2 Inferred | Read       |
| 3679           | Slave#2 Temperature                     | 2 Inferred | Read       |
| 3681           | Slave#2 Multi.Var.Unit Flag             | 0 Inferred | Read       |
| 3683           | Slave#3 Spare Auxiliary I/O #1 mA Value | 3 Inferred | Read       |
| 3685           | Slave#3 Spare Auxiliary I/O #2 mA Value | 3 Inferred | Read       |
| 3687           | Slave#3 Spare Auxiliary I/O #2 mA Value | 3 Inferred | Read       |
| 3689           | Slave#3 Spare Auxiliary I/O #4 mA Value | 3 Inferred | Read       |
| 3691           | Slave#3 DP                              | 4 Inferred | Read       |
| 3693           | Slave#3 Pressure                        | 2 Inferred | Read       |
| 3695           | Slave#3 Temperature                     | 2 Inferred | Read       |
| 3697           | Slave#3 Multi.Var.Unit Flag             | 0 Inferred | Read       |
| 3699           | Slave Connection Status                 | 0 Inferred | Read       |
| 3701-3999      | Spare                                   | o illionoa | rtodd      |
| 4001-4089      | Reserved                                |            |            |
| 4091-4109      | Spare                                   |            |            |
|                | = r = : =                               |            |            |

| <u>ADDRESS</u> | DESCRIPTION                      | DECIMAL    | READ/WRITE |
|----------------|----------------------------------|------------|------------|
| 4111           | Meter #1 PID – Pressure          | 2 Inferred | Read       |
| 4113           | Meter #1 PID – Flow              | 2 Inferred | Read       |
| 4115           | Meter #1 PID – Output %          | 2 Inferred | Read       |
| 4117           | Meter #1 PID – Flow Output %     | 2 Inferred | Read       |
| 4119           | Meter #1 PID – Pressure Output % | 2 Inferred | Read       |
| 4121           | Meter #2 PID – Pressure          | 2 Inferred | Read       |
| 4123           | Meter #2 PID – Flow              | 2 Inferred | Read       |
| 4125           | Meter #2 PID – Output %          | 2 Inferred | Read       |
| 4127           | Meter #2 PID – Flow Output %     | 2 Inferred | Read       |
| 4129           | Meter #2 PID – Pressure Output % | 2 Inferred | Read       |
| 4131           | Meter #3 PID – Pressure          | 2 Inferred | Read       |
| 4133           | Meter #3 PID – Flow              | 2 Inferred | Read       |
| 4135           | Meter #3 PID – Output %          | 2 Inferred | Read       |
| 4137           | Meter #3 PID – Flow Output %     | 2 Inferred | Read       |
| 4139           | Meter #3 PID – Pressure Output % | 2 Inferred | Read       |
| 4141           | Meter #4 PID – Pressure          | 2 Inferred | Read       |
| 4143           | Meter #4 PID – Flow              | 2 Inferred | Read       |
| 4145           | Meter #4 PID – Output %          | 2 Inferred | Read       |
| 4147           | Meter #4 PID – Flow Output %     | 2 Inferred | Read       |
| 4149           | Meter #4 PID – Pressure Output % | 2 Inferred | Read       |
| 4151           | Densitometer Period              | 3 Inferred | Read       |
| 4153-4199      | Spare                            |            |            |

| 0 = = 0        |                             | 10 1111090    | -          |
|----------------|-----------------------------|---------------|------------|
| <b>ADDRESS</b> | DESCRIPTION                 | DECIMAL R     | EAD/WRITE  |
| 4201           | Date (MMDDYY)               | 0 Inferred    | Read/Write |
| 4203           | Time (HHMMSS)               | 0 Inferred    | Read/Write |
|                | ,                           |               |            |
| 4205-4211      | Product #1 Name             | 16 Chars.     | Read/Write |
| 4213-4219      | Product #2 Name             | 16 Chars.     | Read/Write |
| 4221-4227      | Product #3 Name             | 16 Chars.     | Read/Write |
| 4229-4235      | Product #4 Name             | 16 Chars.     | Read/Write |
| 4237-4243      | Product #5 Name             | 16 Chars.     | Read/Write |
| 4245-4251      | Product #6 Name             | 16 Chars.     | Read/Write |
| 4253-4259      | Product #7 Name             | 16 Chars.     | Read/Write |
| 4261-4267      | Product #8 Name             | 16 Chars.     | Read/Write |
|                |                             |               |            |
| 4269           | Product #1 SG Override      | 4 Inferred    | Read/Write |
| 4271           | Product #1 Density Override | 1,4 Inferred  | Read/Write |
| 4273           | Product #1 Alpha-T Override | 1,3 Inferred* | Read/Write |
| 4275           | Product #2 SG Override      | 4 Inferred    | Read/Write |
| 4277           | Product #2 Density Override | 1,4 Inferred  | Read/Write |
| 4279           | Product #2 Alpha-T Override | 1,3 Inferred* | Read/Write |
| 4281           | Product #3 SG Override      | 4 Inferred    | Read/Write |
| 4283           | Product #3 Density Override | 1,4 Inferred  | Read/Write |
| 4285           | Product #3 Alpha-T Override | 1,3 Inferred* | Read/Write |
| 4287           | Product #4 SG Override      | 4 Inferred    | Read/Write |
| 4289           | Product #4 Density Override | 1,4 Inferred  | Read/Write |
| 4291           | Product #4 Alpha-T Override | 1,3 Inferred* | Read/Write |
| 4293           | Product #5 SG Override      | 4 Inferred    | Read/Write |
| 4295           | Product #5 Density Override | 1,4 Inferred  | Read/Write |
| 4297           | Product #5 Alpha-T Override | 1,3 Inferred* | Read/Write |
| 4299           | Product #6 SG Override      | 4 Inferred    | Read/Write |
| 4301           | Product #6 Density Override | 1,4 Inferred  | Read/Write |
| 4303           | Product #6 Alpha-T Override | 1,3 Inferred* | Read/Write |
| 4305           | Product #7 SG Override      | 4 Inferred    | Read/Write |
| 4307           | Product #7 Density Override | 1,4 Inferred  | Read/Write |
| 4309           | Product #7 Alpha-T Override | 1,3 Inferred* | Read/Write |
| 4311           | Product #8 SG Override      | 4 Inferred    | Read/Write |
| 4313           | Product #8 Density Override | 1,4 Inferred  | Read/Write |
| 4315           | Product #8 Alpha-T Override | 1,3 Inferred* | Read/Write |
| 4317           | Batch or Ticket Number      | 0 Inferred    | Read/Write |
| 4319-4373      | Spare                       |               |            |
| 4375           | Spare                       |               |            |
| 4377           | Spare                       |               |            |
|                |                             |               |            |

Alpha-T 3 decimal inferred for firmware version 6.01.06 or newer, 1 decimal inferred for version before 6.01.06.

| ADDRESS | DESCRIPTION                               | DECIMAL    | READ/WRITE |
|---------|-------------------------------------------|------------|------------|
| 4379    | Meter #1 Ratio of Heat                    | 4 Inferred | Read/Wirte |
| 4381    | Meter #1 Viscosity                        | 6 Inferred | Read/Write |
| 4383    | Meter #1 Pipe Thermal E-6                 | 2 Inferred | Read/Write |
| 4385    | Meter #1 Orifice Thermal E-6              | 2 Inferred | Read/Write |
| 4387    | Meter #1 Reference Temperature of Pipe    | 2 Inferred | Read/Write |
| 4389    | Meter #1 Reference Temperature of Orifice | 2 Inferred | Read/Write |
| 4391    | Meter #1 Spare                            | 2 Inferred | Read/Write |
| 4393    | Meter #1 Spare                            | 2 Inferred | Read/Write |
| 4395    | Meter #1 DP Cut Off                       | 4 Inferred | Read/Write |
| 4397    | Meter #1 DP Switch High %                 | 2 Inferred | Read/Write |
| 4399    | Meter #1 Meter Factor                     | 6 Inferred | Read/Write |
| 4401    | Meter #1 Flow Threshold #1                | 2 Inferred | Read/Write |
| 4403    | Meter #1 Flow Threshold #2                | 2 Inferred | Read/Write |
| 4405    | Meter #1 Flow Threshold #3                | 2 Inferred | Read/Write |
| 4407    | Meter #1 Flow Threshold #4                | 2 Inferred | Read/Write |
| 4409    | Meter #1 Linear Factor #1                 | 6 Inferred | Read/Write |
| 4411    | Meter #1 Linear Factor #2                 | 6 Inferred | Read/Write |
| 4413    | Meter #1 Linear Factor #3                 | 6 Inferred | Read/Write |
| 4415    | Meter #1 Linear Factor #4                 | 6 Inferred | Read/Write |
| 4417    | Spare                                     |            |            |
| 4419    | Spare                                     |            |            |
| 4421    | Meter #2 Ratio of Heat                    | 4 Inferred | Read/Wirte |
| 4423    | Meter #2 Viscosity                        | 6 Inferred | Read/Write |
| 4425    | Meter #2 Pipe Thermal E-6                 | 2 Inferred | Read/Write |
| 4427    | Meter #2 Orifice Thermal E-6              | 2 Inferred | Read/Write |
| 4429    | Meter #2 Reference Temperature of Pipe    | 2 Inferred | Read/Write |
| 4431    | Meter #2 Reference Temperature of Orifice | 2 Inferred | Read/Write |
| 4433    | Spare                                     |            |            |
| 4435    | Spare                                     |            |            |
| 4437    | Meter #2 DP Cut Off                       | 4 Inferred | Read/Write |
| 4439    | Meter #2 DP Switch High %                 | 2 Inferred | Read/Write |
| 4441    | Meter #2 Meter Factor                     | 6 Inferred | Read/Write |
| 4443    | Meter #2 Flow Threshold #1                | 2 Inferred | Read/Write |
| 4445    | Meter #2 Flow Threshold #2                | 2 Inferred | Read/Write |
| 4447    | Meter #2 Flow Threshold #3                | 2 Inferred | Read/Write |
| 4449    | Meter #2 Flow Threshold #4                | 2 Inferred | Read/Write |
| 4451    | Meter #2 Linear Factor #1                 | 6 Inferred | Read/Write |
| 4453    | Meter #2 Linear Factor #2                 | 6 Inferred | Read/Write |
| 4455    | Meter #2 Linear Factor #3                 | 6 Inferred | Read/Write |
| 4457    | Meter #2 Linear Factor #4                 | 6 Inferred | Read/Write |
| 4459    | Spare                                     |            |            |
| 4461    | Spare                                     |            |            |
| 4463    | Meter #3 Ratio of Heat                    | 4 Inferred | Read/Wirte |
| 4465    | Meter #3 Viscosity                        | 6 Inferred | Read/Write |
| 4467    | Meter #3 Pipe Thermal E-6                 | 2 Inferred | Read/Write |
| 4469    | Meter #3 Orifice Thermal E-6              | 2 Inferred | Read/Write |
| 4471    | Meter #3 Reference Temperature of Pipe    | 2 Inferred | Read/Write |
| 4473    | Meter #3 Reference Temperature of Orifice | 2 Inferred | Read/Write |
| 4475    | Spare                                     |            |            |
| 4477    | Spare                                     |            |            |
| 4479    | Meter #3 DP Cut Off                       | 4 Inferred | Read/Write |
| 4481    | Meter #3 DP Switch High %                 | 2 Inferred | Read/Write |

| <b>ADDRESS</b> | DESCRIPTION                               | DECIMAL    | READ/WRITE |
|----------------|-------------------------------------------|------------|------------|
| 4483           | Meter #3 Meter Factor                     | 6 Inferred | Read/Write |
| 4485           | Meter #3 Flow Threshold #1                | 2 Inferred | Read/Write |
| 4487           | Meter #3 Flow Threshold #2                | 2 Inferred | Read/Write |
| 4489           | Meter #3 Flow Threshold #3                | 2 Inferred | Read/Write |
| 4491           | Meter #3 Flow Threshold #4                | 2 Inferred | Read/Write |
| 4493           | Meter #3 Linear Factor #1                 | 6 Inferred | Read/Write |
| 4495           | Meter #3 Linear Factor #2                 | 6 Inferred | Read/Write |
| 4497           | Meter #3 Linear Factor #3                 | 6 Inferred | Read/Write |
| 4499           | Meter #3 Linear Factor #4                 | 6 Inferred | Read/Write |
| 4501           | Spare                                     |            |            |
| 4503           | Spare                                     |            |            |
| 4505           | Meter #4 Ratio of Heat                    | 4 Inferred | Read/Wirte |
| 4507           | Meter #4 Viscosity                        | 6 Inferred | Read/Write |
| 4509           | Meter #4 Pipe Thermal E-6                 | 2 Inferred | Read/Write |
| 4511           | Meter #4 Orifice Thermal E-6              | 2 Inferred | Read/Write |
| 4513           | Meter #4 Reference Temperature of Pipe    | 2 Inferred | Read/Write |
| 4515           | Meter #4 Reference Temperature of Orifice | 2 Inferred | Read/Write |
| 4517           | Spare                                     |            |            |
| 4519           | Spare                                     |            |            |
| 4521           | Meter #4 DP Cut Off                       | 4 Inferred | Read/Write |
| 4523           | Meter #4 DP Switch High %                 | 2 Inferred | Read/Write |
| 4525           | Meter #4 Meter Factor                     | 6 Inferred | Read/Write |
| 4527           | Meter #4 Flow Threshold #1                | 2 Inferred | Read/Write |
| 4529           | Meter #4 Flow Threshold #2                | 2 Inferred | Read/Write |
| 4531           | Meter #4 Flow Threshold #3                | 2 Inferred | Read/Write |
| 4533           | Meter #4 Flow Threshold #4                | 2 Inferred | Read/Write |
| 4535           | Meter #4 Linear Factor #1                 | 6 Inferred | Read/Write |
| 4537           | Meter #4 Linear Factor #2                 | 6 Inferred | Read/Write |
| 4539           | Meter #4 Linear Factor #3                 | 6 Inferred | Read/Write |
| 4541           | Meter #4 Linear Factor #4                 | 6 Inferred | Read/Write |
| 4543           | Density Correction Factor                 | 5 Inferred | Read/Write |
| 4545           | Densitometer Period Low Limit             | 3 Inferred | Read/Write |
| 4547           | Densitometer Period High Limit            | 3 Inferred | Read/Write |
| 4549           | Multi.Var. DP Low Limit                   | 4 Inferred | Read/Write |
| 4551           | Multi.Var. DP High Limit                  | 4 Inferred | Read/Write |
| 4553           | Multi.Var. DP Maintenance                 | 4 Inferred | Read/Write |
| 4555           | Multi.Var. Pressure Low Limit             | 2 Inferred | Read/Write |
| 4557           | Multi.Var. Pressure High Limit            | 2 Inferred | Read/Write |
| 4559           | Multi.Var. Pressure Maintenance           | 2 Inferred | Read/Write |
| 4561           | Multi.Var. Temperature Low Limit          | 2 Inferred | Read/Write |
| 4563           | Multi.Var. Temperature High Limit         | 2 Inferred | Read/Write |
| 4565           | Multi.Var. Temperature Maintenance        | 2 Inferred | Read/Write |
| 4567           | Multi.Var DP Override                     | 4 Inferred | Read/Write |
| 4569           | Multi.Var Pressure Override               | 2 Inferred | Read/Write |
| 4571           | Multi.Var Temperature Override            | 2 Inferred | Read/Write |
| 4573           | Spare                                     |            |            |
| 4575           | Analog Output #1 Percentage               | 2 Inferred | Read/Write |
| 4577           | Analog Output #2 Percentage               | 2 Inferred | Read/Write |
| 4579           | Analog Output #3 Percentage               | 2 Inferred | Read/Write |
| 4581           | Analog Output #4 Percentage               | 2 Inferred | Read/Write |
| 4581-4615      | Spare                                     | 5.1.54     |            |
| 4617           | Muti.Var DP Calibration Data Entry        | 4 Inferred | Read/Write |

| ADDRESS                | DESCRIPTION                                 |                    | READ/WRITE               |
|------------------------|---------------------------------------------|--------------------|--------------------------|
| 4619                   | Muti.Var Pressure Calibration Data Entry    | 2 Inferred         | Read/Write               |
| 4621                   | Muti.Var Temperature Calibration Data Entry | 2 Inferred         | Read/Write               |
| 4623-4627              | Spare                                       |                    |                          |
| 4629                   | Meter #1 Equilibrium Pressure Override      | 3 Inferred         | Read/Write               |
| 4631                   | Meter #2 Equilibrium Pressure Override      | 3 Inferred         | Read/Write               |
| 4633                   | Meter #3 Equilibrium Pressure Override      | 3 Inferred         | Read/Write               |
| 4635                   | Meter #4 Equilibrium Pressure Override      | 3 Inferred         | Read/Write               |
| 4637-4655              | Reserved                                    |                    |                          |
| 4657                   | Meter #1 Wedge Fa Override                  | 6 Inferred         | Read/Write               |
| 4659                   | Meter #2 Wedge Fa Override                  | 6 Inferred         | Read/Write               |
| 4661                   | Meter #3 Wedge Fa Override                  | 6 Inferred         | Read/Write               |
| 4663                   | Meter #4 Wedge Fa Override                  | 6 Inferred         | Read/Write               |
| 4665                   | Meter #1 BS&W Override                      | 3 Inferred         | Read/Write               |
| 4667                   | Meter #2 BS&W Override                      | 3 Inferred         | Read/Write               |
| 4669                   | Meter #3 BS&W Override                      | 3 Inferred         | Read/Write               |
| 4671                   | Meter #4 BS&W Override                      | 3 Inferred         | Read/Write               |
| 4673                   | Meter #1 Temperature Override               | 2 Inferred         | Read/Write               |
| 4675                   | Meter #2 Temperature Override               | 2 Inferred         | Read/Write               |
| 4677                   | Meter #3 Temperature Override               | 2 Inferred         | Read/Write               |
| 4679                   | Meter #4 Temperature Override               | 2 Inferred         | Read/Write               |
| 4681                   | Meter #1 Pressure Override                  | 2 Inferred         | Read/Write               |
| 4683                   | Meter #2 Pressure Override                  | 2 Inferred         | Read/Write               |
| 4685                   | Meter #3 Pressure Override                  | 2 Inferred         | Read/Write               |
| 4687                   | Meter #4 Pressure Override                  | 2 Inferred         | Read/Write               |
| 4689                   | Meter #1 Venturi C Override/Wedge Kd2       | 6 Inferred         | Read/Write               |
| 4691                   | Meter #2 Venturi C Override/Wedge Kd2       | 6 Inferred         | Read/Write               |
| 4693                   | Meter #3 Venturi C Override/Wedge Kd2       | 6 Inferred         | Read/Write               |
| 4695                   | Meter #4 Venturi C Override/Wedge Kd2       | 6 Inferred         | Read/Write               |
| 4697-4699              | Spare                                       |                    | D 104/11                 |
| 4701-4703              | Spare Auxiliary I/O #1 TAG                  | 8 Chars            | Read/Write               |
| 4705-4707              | Spare Auxiliary I/O #2 TAG                  | 8 Chars            | Read/Write               |
| 4709-4711              | Spare Auxiliary I/O #3 TAG                  | 8 Chars            | Read/Write               |
| 4713-4715              | Spare Auxiliary I/O #4 TAG                  | 8 Chars            | Read/Write               |
| 4717-4719              | Spare Auxiliary I/O #5 TAG                  | 8 Chars            | Read/Write               |
| 4721-4723              | Spare Auxiliary I/O #6 TAG                  | 8 Chars            | Read/Write               |
| 4725-4727              | Spare Auxiliary I/O #7 TAG                  | 8 Chars            | Read/Write               |
| 4729-4731              | Spare Auxiliary I/O #8 TAG                  | 8 Chars            | Read/Write               |
| 4733-4735              | Spare Auxiliary I/O #9 TAG                  | 8 Chars            | Read/Write               |
| 4737-4739              | Spare Auxiliary I/O #10 TAG                 | 8 Chars            | Read/Write               |
| 4741-4743              | Spare Auxiliary I/O #11 TAG                 | 8 Chars            | Read/Write               |
| 4745-4747              | Spare Auxiliary I/O #12 TAG                 | 8 Chars            | Read/Write               |
| 4749-4759              | Spare                                       | O Chara            | Dood Mrito               |
| 4761-4763              | Slave #1 DP Tag                             | 8 Chars            | Read/Write               |
| 4765-4767              | Slave #1 Pressure Tag                       | 8 Chars            | Read/Write               |
| 4769-4771              | Slave #1 Temperature Tag                    | 8 Chars            | Read/Write               |
| 4773-4775              | Slave #2 DP Tag                             | 8 Chars            | Read/Write               |
| 4777-4779              | Slave #2 Pressure Tag                       | 8 Chars            | Read/Write               |
| 4781-4783              | Slave #2 Temperature Tag                    | 8 Chars<br>8 Chars | Read/Write               |
| 4785-4787              | Slave #3 DP Tag                             | 8 Chars            | Read/Write<br>Read/Write |
| 4789-4791<br>4703-4705 | Slave #3 Pressure Tag                       |                    |                          |
| 4793-4795              | Slave #3 Temperature Tag                    | 8 Chars            | Read/Write               |
| 4797-4821<br>4827      | Spare Pulse Output Volume #1 Pulses/Unit    | 3 Inferred         | Read/Write               |
| 4827                   | Pulse Output Volume #1 Pulses/Unit          | 3 Inferred         | Read/Write               |
| 4829                   | Pulse Output Volume #2 Pulses/Unit          | 3 mieneu           | reau/Wille               |

| ADDRESS   | DESCRIPTION                            | DECIMAL    | READ/WRITE   |
|-----------|----------------------------------------|------------|--------------|
| 4831      | Meter #1 PID Output %                  | 2 nferred  | Read/Write   |
| 4833      | Meter #1 PID Flow                      | 2 Inferred | Read/Write   |
| 4835      | Meter #1 PID Flow Set Point            | 2 Inferred | Read/Write   |
| 4837      | Meter #1 PID Flow Controller Gain      | 2 Inferred | Read/Write   |
| 4839      | Meter #1 PID Flow Controller Reset     | 2 Inferred | Read/Write   |
| 4841      | Meter #1 PID Pressure Maximum          | 2 Inferred | Read/Write   |
| 4843      | Meter #1 PID Pressure Set Point        | 2 Inferred | Read/Write   |
| 4845      | Meter #1 PID Pressure Controller Gain  | 2 Inferred | Read/Write   |
| 4847      | Meter #1 PID Pressure Controller Reset | 2 Inferred | Read/Write   |
| 4849      | Meter #1 PID Mininum Output %          | 2 Inferred | Read/Write   |
| 4851      | Meter #1 PID Maxinum Output %          | 2 Inferred | Read/Write   |
| 4853      | Meter #2 PID Output %                  | 2 nferred  | Read/Write   |
| 4855      | Meter #2 PID Flow                      | 2 Inferred | Read/Write   |
| 4857      | Meter #2 PID Flow Set Point            | 2 Inferred | Read/Write   |
| 4859      | Meter #2 PID Flow Controller Gain      | 2 Inferred | Read/Write   |
| 4861      | Meter #2 PID Flow Controller Reset     | 2 Inferred | Read/Write   |
| 4863      | Meter #2 PID Pressure Maximum          | 2 Inferred | Read/Write   |
| 4865      | Meter #2 PID Pressure Set Point        | 2 Inferred | Read/Write   |
| 4867      | Meter #2 PID Flow Controller Gain      | 2 Inferred | Read/Write   |
| 4869      | Meter #2 PID Flow Controller Reset     | 2 Inferred | Read/Write   |
| 4871      | Meter #2 PID Mininum Output %          | 2 Inferred | Read/Write   |
| 4873      | Meter #2 PID Maxinum Output %          | 2 Inferred | Read/Write   |
| .0.0      | Motor #2 1 12 Maximum Guipa: 76        | 2          | rtodd, rrino |
| 4875      | Meter #3 PID Output %                  | 2 nferred  | Read/Write   |
| 4877      | Meter #3 PID Flow                      | 2 Inferred | Read/Write   |
| 4879      | Meter #3 PID Flow Set Point            | 2 Inferred | Read/Write   |
| 4881      | Meter #3 PID Flow Controller Gain      | 2 Inferred | Read/Write   |
| 4883      | Meter #3 PID Flow Controller Reset     | 2 Inferred | Read/Write   |
| 4885      | Meter #3 PID Pressure Maximum          | 2 Inferred | Read/Write   |
| 4887      | Meter #3 PID Pressure Set Point        | 2 Inferred | Read/Write   |
| 4889      | Meter #3 PID Pressure Controller Gain  | 2 Inferred | Read/Write   |
| 4891      | Meter #3 PID Pressure Controller Reset | 2 Inferred | Read/Write   |
| 4893      | Meter #3 PID Mininum Output %          | 2 Inferred | Read/Write   |
| 4895      | Meter #3 PID Maxinum Output %          | 2 Inferred | Read/Write   |
| 4897      | Meter #4 PID Output %                  | 2 nferred  | Read/Write   |
| 4899      | Meter #4 PID Flow                      | 2 Inferred | Read/Write   |
| 4901      | Meter #4 PID Flow Set Point            | 2 Inferred | Read/Write   |
| 4903      | Meter #4 PID Flow Controller Gain      | 2 Inferred | Read/Write   |
| 4905      | Meter #4 PID Flow Controller Reset     | 2 Inferred | Read/Write   |
| 4907      | Meter #4 PID Pressure Maximum          | 2 Inferred | Read/Write   |
| 4909      | Meter #4 PID Pressure Set Point        | 2 Inferred | Read/Write   |
| 4911      | Meter #4 PID Pressure Controller Gain  | 2 Inferred | Read/Write   |
| 4913      | Meter #4 PID Pressure Controller Reset | 2 Inferred | Read/Write   |
| 4915      | Meter #4 PID Mininum Output %          | 2 Inferred | Read/Write   |
| 4917      | Meter #4 PID Maxinum Output %          | 2 Inferred | Read/Write   |
| 4919-4975 | Spare                                  |            |              |
| 4977      | Multivar.DP                            | 4 Inferred | Read/Write   |
| 4979      | Multivar.Pressure                      | 2 Inferred | Read/Write   |
| 4981      | Multivar.Temperature                   | 2 Inferred | Read/Write   |
| 4991-5093 | Resserved                              |            |              |
|           |                                        |            |              |

ADDRESS DESCRIPTION

DECIMAL READ/WRITE

#### Last Batch/Hourly/Daily/Month DATA AREA

#### **Last Batch Report**

3027 (16 bits Ingeter, Wirte only) =Last Batch Request Set last batch report request to 1=Latest, 8=Oldest

#### **Last Hourly Report**

3029 (16 bits Ingeter, Wirte only) = Last Hour Request Set last hour report request to 1=Latest, 8=Oldest

#### **Last Daily Report**

3032 (16 bits Ingeter, Wirte only) = Last Daily Request Set last daily report request to 1=Latest, 8=Oldest

#### **Last Month Report**

3033 (16 bits Ingeter, Wirte only) = Last Month Request Set last month report request to 1

| 6161<br>6163<br>6165<br>6167<br>6169<br>6171<br>6173<br>6175<br>6177<br>6179<br>6181<br>6183<br>6185<br>6187<br>6189<br>6191<br>6193-6203 | Meter#1 CTPL Meter#1 Batch/Hourly/Daily/Month FWA CTPL Meter#1 Meter Density M1 Batch/Hourly/Daily/Month FWA Meter Density Meter#2 CTPL Meter#2 Batch/Hourly/Daily/Month FWA CTPL Meter#2 Meter Density M2 Batch/Hourly/Daily/Month FWA Meter Density Meter#3 CTPL Meter#3 Batch/Hourly/Daily/Month FWA CTPL Meter#3 Meter Density M3 Batch/Hourly/Daily/Month FWA Meter Density Meter#4 CTPL Meter#4 Batch/Hourly/Daily/Month FWA CTPL Meter#4 Meter Density M4 Batch/Hourly/Daily/Month FWA Meter Density Reserved | 5 Inferred 5 Inferred 3 Inferred 5 Inferred 6 Inferred 7 Inferred | Read<br>Read<br>Read<br>Read<br>Read<br>Read<br>Read<br>Read |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 6205<br>6207<br>6209<br>6211<br>6213<br>6215<br>6217-6223<br>6225-6229                                                                    | Product/Table/Number Batch Number Batch Start Date Batch Start Time Date(mmddyy) Time (hhmmss) Product Name Spare                                                                                                                                                                                                                                                                                                                                                                                                    | O Inferred O inferred O inferred O inferred O Inferred O Inferred 16 Chars.                                                                                                                                                                                                                   | Read<br>Read<br>Read<br>Read<br>Read<br>Read                 |
| 6231-6233<br>6235<br>6237<br>6239<br>6241                                                                                                 | Meter#1 ID Meter #1 Alarm Status Meter #1 Daily Gross Total Meter #1 Daily Net Total Meter #1 Daily Mass Total                                                                                                                                                                                                                                                                                                                                                                                                       | 8 Chars. 0 Inferred 1 Inferred 1 Inferred 1 Inferred                                                                                                                                                                                                                                          | Read<br>Read<br>Read<br>Read<br>Read                         |

| 4DDDE00        | DECODIDETION                                    |            | DEADAMDITE |
|----------------|-------------------------------------------------|------------|------------|
| <u>ADDRESS</u> | DESCRIPTION                                     |            | READ/WRITE |
| 6243           | Meter #1 Cumulative Gross Total                 | 0 Inferred | Read       |
| 6245           | Meter #1 Cumulative Net Total                   | 0 Inferred | Read       |
| 6247           | Meter #1 Cumulative Mass Total                  | 0 Inferred | Read       |
| 6249           | Meter #1 Batch/Hourly/Daily/Monthly Gross Total | 1 Inferred | Read       |
| 6251           | Meter #1 Batch/Hourly/Daily/Monthly Net Total   | 1 Inferred | Read       |
| 6253           | Meter #1 Batch/Hourly/Daily/Monthly Mass Total  | 1 Inferred | Read       |
|                | , , , , , , , , , , , , , , , , , , ,           |            |            |
| 6255           | Meter #1 Gross Flowrate                         | 2 Inferred | Read       |
| 6257           | Meter #1 Net Flowrate                           | 2 Inferred | Read       |
| 6259           | Meter #1 Mass Flowrate                          | 2 Inferred | Read       |
| 0200           | Weter #1 Wass Flowrate                          | Zilliolloa | rtoad      |
| 6261           | M#1 Batch/Hourly/Daily/Monthly FW Average DP    | 4 Inferred | Read       |
| 6263           | M#1 Batch/Hourly/Daily/Monthly FWA Temperature  |            | Read       |
|                |                                                 |            |            |
| 6265           | M#1 Batch/Hourly/Daily/Monthly FWA Pressure     | 2 Inferred | Read       |
| 6267           | M1 Batch/Hourly/Daily/Monthly FWA Observed De   |            | Read       |
| 6269           | M1 Batch/Hourly/Daily/Monthly FWA Base Density  |            | Read       |
| 6271           | M#1 Batch/Hourly/Daily/Monthly FWA SG           | 4 Inferred | Read       |
| 6273           | M1 Batch/Hourly/Daily/Monthly FWA Base SG       | 4 Inferred | Read       |
| 6275           | M#1 Batch/Hourly/Daily/Monthly FWA. K/CD/LMF    | 6 Inferred | Read       |
| 6277           | M#1 Batch/Hourly/Daily/Monthly FWA. CTL         | 5 Inferred | Read       |
| 6279           | M#1 Batch/Hourly/Daily/Monthly FWA. CPL         | 5 Inferred | Read       |
| 6281           | M#1 Batch/Hourly/Daily/Monthly FWA. DP EXT      | 4 Inferred | Read       |
| 6283           | M#1 Batch/Hourly/Daily/Monthly FWA. BS&W        | 2 Inferred | Read       |
|                | , , ,                                           |            |            |
| 6285           | Meter#1 DP                                      | 4 Inferred | Read       |
| 6287           | Meter#1 Temperature                             | 2 Inferred | Read       |
| 6289           | Meter#1 Pressure                                | 2 Inferred | Read       |
| 6291           | Meter#1 Observed Density                        | 3 Inferred | Read       |
| 6293           | Meter#1 Base Density                            | 3 Inferred | Read       |
| 6295           | Meter#1 SG                                      | 4 Inferred |            |
|                |                                                 |            | Read       |
| 6297           | Meter#1 Base SG                                 | 4 Inferred | Read       |
| 6299           | Meter#1 K/CD/LMF                                | 6 Inferred | Read       |
| 6301           | Meter#1 CTL                                     | 5 Inferred | Read       |
| 6303           | Meter#1 CPL                                     | 5 Inferred | Read       |
| 6305           | Meter#1 DP EXT                                  | 4 Inferred | Read       |
| 6307           | Meter#1 BS&W                                    | 2 Inferred | Read       |
|                |                                                 |            |            |
| 6309           | Meter #1 Y Factor                               | 6 Inferred | Read       |
| 6311           | Meter#1 Densitometer Temperature                | 2 Inferred | Read       |
| 6313           | Meter#1 Densitometer Pressure                   | 2 Inferred | Read       |
| 6315           | Meter#1 Equilibrium Pressure                    | 3 Inferred | Read       |
|                | ·                                               |            |            |
| 6317           | Meter #1 Pipe ID                                | 5 Inferred | Read       |
| 6319           | Meter #1 Orifice ID                             | 5 Inferred | Read       |
| 6321           | Meter #1 Density Correction Factor              | 5 Inferred | Read       |
| 6323           | Meter #1 K Factor                               | 3 Inferred | Read       |
| 6325           | Meter #1 Batch Opening Cum. Gross               | 0 Inferred | Read       |
| 6327           | Meter #1 Batch Opening Cum. Net                 | 0 Inferred | Read       |
|                |                                                 |            |            |
| 6329           | Meter #1 Batch Opening Cum. Mass                | 0 Inferred | Read       |
| 0004 0000      | Matar#2 ID                                      | 0.05       | Danie      |
| 6331-6333      | Meter#2 ID                                      | 8 Chars.   | Read       |
| 6335           | Meter #2 Alarm Status                           | 0 Inferred | Read       |
| 6337           | Meter #2 Daily Gross Total                      | 1 Inferred | Read       |
| 6339           | Meter #2 Daily Net Total                        | 1 Inferred | Read       |
|                |                                                 |            |            |

| ADDRESS   | DESCRIPTION                                     |             | READ/WRITE |
|-----------|-------------------------------------------------|-------------|------------|
| 6341      | Meter #2 Daily Mass Total                       | 1 Inferred  | Read       |
| 6343      | Meter #2 Cumulative Gross Total                 | 0 Inferred  | Read       |
| 6345      | Meter #2 Cumulative Net Total                   | 0 Inferred  | Read       |
| 6347      | Meter #2 Cumulative Mass Total                  | 0 Inferred  | Read       |
| 6349      | Meter #2 Batch/Hourly/Daily/Monthly Gross Total | 1 Inferred  | Read       |
| 6351      | Meter #2 Batch/Hourly/Daily/Monthly Net Total   | 1 Inferred  | Read       |
| 6353      | Meter #2 Batch/Hourly/Daily/Monthly Mass Total  | 1 Inferred  | Read       |
|           | , , , , , , , , , , , , , , , , , , ,           |             |            |
| 6355      | Meter #2 Gross Flowrate                         | 2 Inferred  | Read       |
| 6357      | Meter #2 Net Flowrate                           | 2 Inferred  | Read       |
| 6359      | Meter #2 Mass Flowrate                          | 2 Inferred  | Read       |
|           |                                                 |             |            |
| 6361      | M#2 Batch/Hourly/Daily/Monthly F.W. Average DP  | 4 Inferred  | Read       |
| 6363      | M#2 Batch/Hourly/Daily/Monthly FWA Temperature  |             | Read       |
| 6365      | M#2 Batch/Hourly/Daily/Monthly FWA Pressure     | 2 Inferred  | Read       |
| 6367      | M2 Batch/Hourly/Daily/Monthly FWA Observed De   |             | Read       |
| 6369      | M2 Batch/Hourly/Daily/Monthly FWA Base Density  |             | Read       |
| 6371      | M#2 Batch/Hourly/Daily/Monthly FW. Average SG   | 4 Inferred  | Read       |
| 6373      | M2 Batch/Hourly/Daily/Monthly FWA Base SG       | 4 Inferred  | Read       |
| 6375      | M#2 Batch/Hourly/Daily/Monthly FWA K/CD/LMF     | 6 Inferred  | Read       |
| 6377      | M#2 Batch/Hourly/Daily/Monthly FWA CTL          | 5 Inferred  | Read       |
| 6379      | M#2 Batch/Hourly/Daily/Monthly FWA CTL          | 5 Inferred  |            |
|           |                                                 |             | Read       |
| 6381      | M#2 Batch/Hourly/Daily/Monthly FWA DP EXT       | 4 Inferred  | Read       |
| 6383      | M#2 Batch/Hourly/Daily/Monthly FWA BS&W         | 2 Inferred  | Read       |
| 6385      | Meter#2 DP                                      | 4 Inferred  | Read       |
| 6387      | Meter#2 Temperature                             | 2 Inferred  | Read       |
| 6389      | Meter#2 Pressure                                | 2 Inferred  | Read       |
| 6391      | Meter#2 Observed Density                        | 3 Inferred  | Read       |
| 6393      | Meter#2 Base Density                            | 3 Inferred  | Read       |
| 6395      | Meter#2 SG                                      | 4 Inferred  | Read       |
| 6397      | Meter#2 Base SG                                 | 4 Inferred  | Read       |
| 6399      | Meter#2 K/CD/LMF                                | 6 Inferred  | Read       |
| 6401      | Meter#2 CTL                                     | 5 Inferred  | Read       |
| 6403      | Meter#2 CPL                                     | 5 Inferred  | Read       |
| 6405      | Meter#2 DP EXT                                  | 4 Inferred  |            |
| 6407      | Meter#2 BS&W                                    | 2 Inferred  | Read       |
| 0407      | Weter#2 DS&W                                    | 2 illielleu | Read       |
| 6409      | Meter #2 Y Factor                               | 6 Inferred  | Read       |
| 6411      | Meter#2 Densitometer Temperature                | 2 Inferred  | Read       |
| 6413      | Meter#2 Densitometer Pressure                   | 2 Inferred  | Read       |
| 6415      | Meter#2 Equilibrium Pressure                    | 3 Inferred  | Read       |
|           | ·                                               |             |            |
| 6417      | Meter #2 Pipe ID                                | 5 Inferred  | Read       |
| 6419      | Meter #2 Orifice ID                             | 5 Inferred  | Read       |
| 6421      | Meter #2 Density Correction Factor              | 5 Inferred  | Read       |
| 6423      | Meter #2 K Factor                               | 3 Inferred  | Read       |
| 6425      | Meter #2 Batch Opening Cum. Gross               | 0 Inferred  | Read       |
| 6427      | Meter #2 Batch Opening Cum. Net                 | 0 Inferred  | Read       |
| 6429      | Meter #2 Batch Opening Cum. Mass                | 0 Inferred  | Read       |
|           | , 0                                             |             | -          |
| 6431-6433 | Meter#3 ID                                      | 8 Chars.    | Read       |
| 6435      | Meter #3 Alarm Status                           | 0 Inferred  | Read       |
| 6437      | Meter #3 Daily Gross Total                      | 1 Inferred  | Read       |

| ADDRESS   | DESCRIPTION                                    | DECIMAL      | READ/WRITE |
|-----------|------------------------------------------------|--------------|------------|
| 6439      | Meter #3 Daily Net Total                       | 1 Inferred   | Read       |
| 6441      | Meter #3 Daily Mass Total                      | 1 Inferred   | Read       |
| 6443      | Meter #3 Cumulative Gross Total                | 0 Inferred   | Read       |
| 6445      | Meter #3 Cumulative Net Total                  | 0 Inferred   | Read       |
| 6447      | Meter #3 Cumulative Mass Total                 | 0 Inferred   | Read       |
| 6449      | Meter #3 Batch/Hourly/Daily Gross Total        | 1 Inferred   | Read       |
| 6451      | Meter #3 Batch/Hourly/Daily Net Total          | 1 Inferred   | Read       |
| 6453      | Meter #3 Batch/Hourly/Daily Mass Total         | 1 Inferred   | Read       |
| 6455      | Meter #3 Gross Flowrate                        | 2 Inferred   | Read       |
| 6457      | Meter #3 Net Flowrate                          | 2 Inferred   | Read       |
| 6459      | Meter #3 Mass Flowrate                         | 2 Inferred   | Read       |
| 6461      | M#3 Batch/Hourly/Daily/Monthly FW. Average DP  | 4 Inferred   | Read       |
| 6463      | M#3 Batch/Hourly/Daily/Monthly FWA Temperatur  | e 2 Inferred | Read       |
| 6465      | M#3 Batch/Hourly/Daily/Monthly FWA Pressure    | 2 Inferred   | Read       |
| 6467      | M3 Batch/Hourly/Daily/Monthly FWA Observed De  | n 3 Inferred | Read       |
| 6469      | M3 Batch/Hourly/Daily/Monthly FWA Base Density |              | Read       |
| 6471      | M#3 Batch/Hourly/Daily/Monthly FWA SG          | 4 Inferred   | Read       |
| 6473      | M3 Batch/Hourly/Daily/Monthly FWA Base SG      | 4 Inferred   | Read       |
| 6475      | M#3 Batch/Hourly/Daily/Monthly FWA K/CD/LMF    | 6 Inferred   | Read       |
| 6477      | M#3 Batch/Hourly/Daily/Monthly FWA CTL         | 5 Inferred   | Read       |
| 6479      | M#3 Batch/Hourly/Daily/Monthly FWA CPL         | 5 Inferred   | Read       |
| 6481      |                                                | 4 Inferred   | Read       |
|           | M#3 Batch/Hourly/Daily/Monthly FWA DP EXT      |              |            |
| 6483      | M#3 Batch/Hourly/Daily/Monthly FWA BS&W        | 2 Inferred   | Read       |
| 6485      | Meter#3 DP                                     | 4 Inferred   | Read       |
| 6487      | Meter#3 Temperature                            | 2 Inferred   | Read       |
| 6489      | Meter#3 Pressure                               | 2 Inferred   | Read       |
| 6491      | Meter#3 Observed Density                       | 3 Inferred   | Read       |
| 6493      | Meter#3 Base Density                           | 3 Inferred   | Read       |
| 6495      | Meter#3 SG                                     | 4 Inferred   | Read       |
| 6497      | Meter#3 Base SG                                | 4 Inferred   | Read       |
| 6499      | Meter#3 K/CD/LMF                               | 6 Inferred   | Read       |
| 6501      | Meter#3 CTL                                    | 5 Inferred   | Read       |
| 6503      | Meter#3 CPL                                    | 5 Inferred   | Read       |
| 6505      | Meter#3 DP EXT                                 | 4 Inferred   | Read       |
| 6507      | Meter#3 BS&W                                   | 2 Inferred   | Read       |
| 0007      |                                                |              | rtoad      |
| 6509      | Meter #3 Y Factor                              | 6 Inferred   | Read       |
| 6511      | Meter#3 Densitometer Temperature               | 2 Inferred   | Read       |
| 6513      | Meter#3 Densitometer Pressure                  | 2 Inferred   | Read       |
| 6515      | Meter#3 Equilibrium Pressure                   | 3 Inferred   | Read       |
| 6517      | Meter #3 Pipe ID                               | 5 Inferred   | Read       |
| 6519      | Meter #3 Orifice ID                            | 5 Inferred   | Read       |
| 6521      | Meter #3 Density Correction Factor             | 5 Inferred   | Read       |
| 6523      | Meter #3 K Factor                              | 3 Inferred   | Read       |
| 6525      | Meter #3 Batch Opening Cum. Gross              | 0 Inferred   | Read       |
| 6527      | Meter #3 Batch Opening Cum. Net                | 0 Inferred   | Read       |
| 6529      | Meter #3 Batch Opening Cum. Mass               | 0 Inferred   | Read       |
| GE24 GE22 | Motor#4 ID                                     | 0 Cha        | Dood       |
| 6531-6533 | Meter#4 ID                                     | 8 Chars.     | Read       |
| 6535      | Meter #4 Alarm Status                          | 0 Inferred   | Read       |

| ADDRESS | DESCRIPTION                                     |                | READ/WRITE |
|---------|-------------------------------------------------|----------------|------------|
| 6537    | Meter #4 Daily Gross Total                      | 1 Inferred     | Read       |
| 6539    | Meter #4 Daily Net Total                        | 1 Inferred     | Read       |
| 6541    | Meter #4 Daily Mass Total                       | 1 Inferred     | Read       |
| 6543    | Meter #4 Cumulative Gross Total                 | 0 Inferred     | Read       |
| 6545    | Meter #4 Cumulative Net Total                   | 0 Inferred     | Read       |
| 6547    | Meter #4 Cumulative Mass Total                  | 0 Inferred     | Read       |
| 6549    | Meter #4 Batch/Hourly/Daily/Monthly Gross Total | 1 Inferred     | Read       |
| 6551    | Meter #4 Batch/Hourly/Daily/Monthly Net Total   | 1 Inferred     | Read       |
| 6553    | Meter #4 Batch/Hourly/Daily/Monthly Mass Total  | 1 Inferred     | Read       |
| 6555    | Meter #4 Gross Flowrate                         | 2 Inferred     | Read       |
| 6557    | Meter #4 Net Flowrate                           | 2 Inferred     | Read       |
| 6559    | Meter #4 Mass Flowrate                          | 2 Inferred     | Read       |
| 6561    | M#4 Batch/Hourly/Daily/Monthly FW. Average DP   | 4 Inferred     | Read       |
| 6563    | M#4 Batch/Hourly/Daily/Monthly FWA Temperature  | e 2 Inferred   | Read       |
| 6565    | M#4 Batch/Hourly/Daily/Monthly FWA Pressure     | 2 Inferred     | Read       |
| 6567    | M4 Batch/Hourly/Daily/Monthly FWA Observed De   | n 3 Inferred   | Read       |
| 6569    | M4 Batch/Hourly/Daily/Monthly FWA Base Density  |                | Read       |
| 6571    | M#4 Batch/Hourly/Daily/Monthly FWA SG           | 4 Inferred     | Read       |
| 6573    | M4 Batch/Hourly/Daily/Monthly FWA Base SG       | 4 Inferred     | Read       |
| 6575    | M#4 Batch/Hourly/Daily/Monthly FWA K/CD/LMF     | 6 Inferred     | Read       |
| 6577    | M#4 Batch/Hourly/Daily/Monthly FWA CTL          | 5 Inferred     | Read       |
| 6579    | M#4 Batch/Hourly/Daily/Monthly FWA CPL          | 5 Inferred     | Read       |
| 6581    | M#4 Batch/Hourly/Daily/Monthly FWA DP EXT       | 4 Inferred     | Read       |
| 6583    | M#4 Batch/Hourly/Daily/Monthly FWA BS&W         | 2 Inferred     | Read       |
| 6585    | Meter#4 DP                                      | 4 Inferred     | Read       |
| 6587    | Meter#4 Temperature                             | 2 Inferred     | Read       |
| 6589    | Meter#4 Pressure                                | 2 Inferred     | Read       |
| 6591    | Meter#4 Observed Density                        | 3 Inferred     | Read       |
| 6593    | Meter#4 Base Density                            | 3 Inferred     | Read       |
| 6595    | Meter#4 SG                                      | 4 Inferred     | Read       |
| 6597    | Meter#4 Base SG                                 | 4 Inferred     | Read       |
| 6599    | Meter#4 K/CD/LMF                                | 6 Inferred     | Read       |
| 6601    | Meter#4 CTL                                     | 5 Inferred     | Read       |
| 6603    | Meter#4 CPL                                     | 5 Inferred     | Read       |
| 6605    | Meter#4 DP EXT                                  | 4 Inferred     | Read       |
| 6607    | Meter#4 BS&W                                    | 2 Inferred     | Read       |
| 6609    | Meter #4 Y Factor                               | 6 Inferred     | Read       |
| 6611    | Meter#4 Densitometer Temperature                | 2 Inferred     | Read       |
| 6613    | Meter#4 Densitometer Pressure                   | 2 Inferred     | Read       |
| 6615    | Meter#4 Equilibrium Pressure                    | 3 Inferred     | Read       |
| 6617    | Meter #4 Pipe ID                                | 5 Inferred     | Read       |
| 6619    | Meter #4 Orifice ID                             | 5 Inferred     | Read       |
| 6621    | Meter #4 Density Correction Factor              | 5 Inferred     | Read       |
| 6623    | Meter #4 K Factor                               | 3 Inferred     | Read       |
| 6625    | Meter #4 Batch Opening Cum. Gross               | 0 Inferred     | Read       |
| 6627    | Meter #4 Batch Opening Cum. Net                 | 0 Inferred     | Read       |
| 6629    | Meter #4 Batch Opening Cum. Mass                | 0 Inferred     | Read       |
| 3020    | motor " i Batori Oporning Odini Mado            | 5 II II 511 CU | 11000      |

ADDRESS DESCRIPTION

**DECIMAL READ/WRITE** 

Non-resettable accumulated volume will roll over at 999999999.

| 9001<br>9003<br>9005<br>9007<br>9009<br>9011<br>9013<br>9015<br>9017-9023<br>9025-9029 | Spare Spare Product/Table/Number Batch Number Batch Start Date Batch Start Time Date(mmddyy) Time (hhmmss) Product Name Spare | 0 Inferred<br>0 Inferred<br>0 Inferred<br>0 inferred<br>0 inferred<br>0 Inferred<br>0 Inferred<br>16 Chars. | Read<br>Read<br>Read<br>Read<br>Read<br>Read<br>Read<br>Read |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 9031-9033                                                                              | Meter#1 ID                                                                                                                    | 8 Chars.                                                                                                    | Read                                                         |
| 9035                                                                                   | Meter #1 Alarm Status                                                                                                         | 0 Inferred                                                                                                  | Read                                                         |
| 9037                                                                                   | Meter #1 Daily Gross Total                                                                                                    | 1 Inferred                                                                                                  | Read                                                         |
| 9039                                                                                   | Meter #1 Daily Net Total                                                                                                      | 1 Inferred                                                                                                  | Read                                                         |
| 9041                                                                                   | Meter #1 Daily Mass Total                                                                                                     | 1 Inferred                                                                                                  | Read                                                         |
| 9043                                                                                   | Meter #1 Cumulative Gross Total*                                                                                              | 0 Inferred                                                                                                  | Read                                                         |
| 9045                                                                                   | Meter #1 Cumulative Net Total*                                                                                                | 0 Inferred                                                                                                  | Read                                                         |
| 9047                                                                                   | Meter #1 Cumulative Mass Total*                                                                                               | 0 Inferred                                                                                                  | Read                                                         |
| 9049                                                                                   | Meter #1 Batch Gross Total                                                                                                    | 1 Inferred                                                                                                  | Read                                                         |
| 9051                                                                                   | Meter #1 Batch Net Total                                                                                                      | 1 Inferred                                                                                                  | Read                                                         |
| 9053                                                                                   | Meter #1 Batch Mass Total                                                                                                     | 1 Inferred                                                                                                  | Read                                                         |
| 9055                                                                                   | Meter #1 Gross Flowrate                                                                                                       | 2 Inferred                                                                                                  | Read                                                         |
| 9057                                                                                   | Meter #1 Net Flowrate                                                                                                         | 2 Inferred                                                                                                  | Read                                                         |
| 9059                                                                                   | Meter #1 Mass Flowrate                                                                                                        | 2 Inferred                                                                                                  | Read                                                         |
| 9061                                                                                   | Meter#1 Batch Flow Weighted Average- DP                                                                                       | 4 Inferred                                                                                                  | Read                                                         |
| 9063                                                                                   | Meter#1 Batch F.W. Average- Temperature                                                                                       | 2 Inferred                                                                                                  | Read                                                         |
| 9065                                                                                   | Meter#1 Batch F.W. Average- Pressure                                                                                          | 2 Inferred                                                                                                  | Read                                                         |
| 9067                                                                                   | Meter#1 Batch F.W. Average- Observed Density                                                                                  | 3 Inferred                                                                                                  | Read                                                         |
| 9069                                                                                   | Meter#1 Batch F.W. Average- Base Density                                                                                      | 3 Inferred                                                                                                  | Read                                                         |
| 9071                                                                                   | Meter#1 Batch F.W. Average SG                                                                                                 | 4 Inferred                                                                                                  | Read                                                         |
| 9073                                                                                   | Meter#1 Batch F.W. Average- Base SG                                                                                           | 4 Inferred                                                                                                  | Read                                                         |
| 9075                                                                                   | Meter#1 Batch F.W. Average- K/CD/LMF                                                                                          | 6 Inferred                                                                                                  | Read                                                         |
| 9077                                                                                   | Meter#1 Batch F.W. Average- CTL                                                                                               | 5 Inferred                                                                                                  | Read                                                         |
| 9079                                                                                   | Meter#1 Batch F.W. Average CPL                                                                                                | 5 Inferred                                                                                                  | Read                                                         |
| 9081                                                                                   | Meter#1 Batch F.W. Average- DP EXT                                                                                            | 4 Inferred                                                                                                  | Read                                                         |
| 9083                                                                                   | Meter#1 Batch F.W. Average- BS&W                                                                                              | 2 Inferred                                                                                                  | Read                                                         |
| 9085                                                                                   | Meter#1 DP                                                                                                                    | 4 Inferred                                                                                                  | Read                                                         |
| 9087                                                                                   | Meter#1 Temperature                                                                                                           | 2 Inferred                                                                                                  | Read                                                         |
| 9089                                                                                   | Meter#1 Pressure                                                                                                              | 2 Inferred                                                                                                  | Read                                                         |
| 9091                                                                                   | Meter#1 Observed Density                                                                                                      | 3 Inferred                                                                                                  | Read                                                         |
| 9093                                                                                   | Meter#1 Base Density                                                                                                          | 3 Inferred                                                                                                  | Read                                                         |
| 9095                                                                                   | Meter#1 SG                                                                                                                    | 4 Inferred                                                                                                  | Read                                                         |
| 9097                                                                                   | Meter#1 Base SG                                                                                                               | 4 Inferred                                                                                                  | Read                                                         |
| 9099                                                                                   | Meter#1 K/CD/LMF                                                                                                              | 6 Inferred                                                                                                  | Read                                                         |
| 9101                                                                                   | Meter#1 CTL                                                                                                                   | 5 Inferred                                                                                                  | Read                                                         |
| 9103                                                                                   | Meter#1 CPL                                                                                                                   | 5 Inferred                                                                                                  | Read                                                         |
| 9105                                                                                   | Meter#1 DP EXT                                                                                                                | 4 Inferred                                                                                                  | Read                                                         |

| ADDRESS   | DESCRIPTION                                  | DECIMAL R  | EAD/WRITE |
|-----------|----------------------------------------------|------------|-----------|
| 9107      | Meter#1 BS&W                                 | 2 Inferred | Read      |
| 9109      | Meter #1 Y Factor                            | 6 Inferred | Read      |
| 9111      | Meter#1 Densitometer Temperature             | 2 Inferred | Read      |
| 9113      | Meter#1 Densitometer Pressure                | 2 Inferred | Read      |
| 9115      | Meter#1 Equilibrium Pressure                 | 3 Inferred | Read      |
| 9117      | Meter #1 Pipe ID                             | 5 Inferred | Read      |
| 9119      | Meter #1 Orifice ID                          | 5 Inferred | Read      |
| 9121      | Meter #1 Density Correction Factor           | 5 Inferred | Read      |
| 9123      | Meter #1 K Factor                            | 3 Inferred | Read      |
| 9125      | Meter #1 Batch Opening Cum. Gross            | 0 Inferred | Read      |
| 9127      | Meter #1 Batch Opening Cum. Net              | 0 Inferred | Read      |
| 9129      | Meter #1 Batch Opening Cum. Mass             | 0 Inferred | Read      |
| 9131-9133 | Meter#2 ID                                   | 8 Chars.   | Read      |
| 9135      | Meter #2 Alarm Status                        | 0 Inferred | Read      |
| 9137      | Meter #2 Daily Gross Total                   | 1 Inferred | Read      |
| 9139      | Meter #2 Daily Net Total                     | 1 Inferred | Read      |
| 9141      | Meter #2 Daily Mass Total                    | 1 Inferred | Read      |
| 9143      | Meter #2 Cumulative Gross Total*             | 0 Inferred | Read      |
| 9145      | Meter #2 Cumulative Net Total*               | 0 Inferred | Read      |
| 9147      | Meter #2 Cumulative Mass Total*              | 0 Inferred | Read      |
| 9149      | Meter #2 Batch Gross Total                   | 1 Inferred | Read      |
| 9151      | Meter #2 Batch Net Total                     | 1 Inferred | Read      |
| 9153      | Meter #2 Batch Mass Total                    | 1 Inferred | Read      |
| 9155      | Meter #2 Gross Flowrate                      | 2 Inferred | Read      |
| 9157      | Meter #2 Net Flowrate                        | 2 Inferred | Read      |
| 9159      | Meter #2 Mass Flowrate                       | 2 Inferred | Read      |
| 9161      | Meter#2 Batch Flow Weighted Average- DP      | 4 Inferred | Read      |
| 9163      | Meter#2 Batch F.W. Average- Temperature      | 2 Inferred | Read      |
| 9165      | Meter#2 Batch F.W. Average- Pressure         | 2 Inferred | Read      |
| 9167      | Meter#2 Batch F.W. Average- Observed Density | 3 Inferred | Read      |
| 9169      | Meter#2 Batch F.W. Average- Base Density     | 3 Inferred | Read      |
| 9171      | Meter#2 Batch F.W. Average SG                | 4 Inferred | Read      |
| 9173      | Meter#2 Batch F.W. Average- Base SG          | 4 Inferred | Read      |
| 9175      | Meter#2 Batch F.W. Average- K/CD/LMF         | 6 Inferred | Read      |
| 9177      | Meter#2 Batch F.W. Average- CTL              | 5 Inferred | Read      |
| 9179      | Meter#2 Batch F.W. Average- CPL              | 5 Inferred | Read      |
| 9181      | Meter#2 Batch F.W. Average- DP EXT           | 4 Inferred | Read      |
| 9183      | Meter#2 Batch F.W. Average- BS&W             | 2 Inferred | Read      |
| 9185      | Meter#2 DP                                   | 4 Inferred | Read      |
| 9187      | Meter#2 Temperature                          | 2 Inferred | Read      |
| 9189      | Meter#2 Pressure                             | 2 Inferred | Read      |
| 9191      | Meter#2 Observed Density                     | 3 Inferred | Read      |
| 9193      | Meter#2 Base Density                         | 3 Inferred | Read      |
| 9195      | Meter#2 SG                                   | 4 Inferred | Read      |
| 9197      | Meter#2 Base SG                              | 4 Inferred | Read      |
| 9199      | Meter#2 K/CD/LMF                             | 6 Inferred | Read      |
| 9201      | Meter#2 CTL                                  | 5 Inferred | Read      |
| 9203      | Meter#2 CPL                                  | 5 Inferred | Read      |

| ADDRESS   | DESCRIPTION                                  | DECIMAL     | READ/WRITE |
|-----------|----------------------------------------------|-------------|------------|
| 9205      | Meter#2 DP EXT                               | 4 Inferred  | Read       |
| 9207      | Meter#2 BS&W                                 | 2 Inferred  | Read       |
|           |                                              |             |            |
| 9209      | Meter #2 Y Factor                            | 6 Inferred  | Read       |
| 9211      | Meter#2 Densitometer Temperature             | 2 Inferred  | Read       |
| 9213      | Meter#2 Densitometer Pressure                | 2 Inferred  | Read       |
| 9215      | Meter#2 Equilibrium Pressure                 | 3 Inferred  | Read       |
| 02.0      |                                              |             |            |
| 9217      | Meter #2 Pipe ID                             | 5 Inferred  | Read       |
| 9219      | Meter #2 Orifice ID                          | 5 Inferred  | Read       |
| 9221      | Meter #2 Density Correction Factor           | 5 Inferred  | Read       |
| 9223      | Meter #2 K Factor                            | 3 Inferred  | Read       |
| 9225      | Meter #2 Batch Opening Cum. Gross            | 0 Inferred  | Read       |
| 9227      | Meter #2 Batch Opening Cum. Net              | 0 Inferred  | Read       |
| 9229      | Meter #2 Batch Opening Cum. Mass             | 0 Inferred  | Read       |
| 0220      | Woter #2 Bater Opening Gam: Water            | o inilotrou | rtodd      |
| 9231-9233 | Meter#3 ID                                   | 8 Chars.    | Read       |
| 9235      | Meter #3 Alarm Status                        | 0 Inferred  | Read       |
| 9237      | Meter #3 Daily Gross Total                   | 1 Inferred  | Read       |
| 9239      | Meter #3 Daily Net Total                     | 1 Inferred  | Read       |
| 9241      | Meter #3 Daily Mass Total                    | 1 Inferred  | Read       |
| 9243      | Meter #3 Cumulative Gross Total*             | 0 Inferred  | Read       |
| 9245      | Meter #3 Cumulative Net Total*               | 0 Inferred  | Read       |
| 9247      | Meter #3 Cumulative Mass Total*              | 0 Inferred  | Read       |
| 9249      | Meter #3 Batch Gross Total                   | 1 Inferred  | Read       |
|           | Meter #3 Batch Net Total                     | 1 Inferred  |            |
| 9251      |                                              |             | Read       |
| 9253      | Meter #3 Batch Mass Total                    | 1 Inferred  | Read       |
| 9255      | Meter #3 Gross Flowrate                      | 2 Inferred  | Read       |
| 9257      | Meter #3 Net Flowrate                        | 2 Inferred  | Read       |
| 9259      | Meter #3 Mass Flowrate                       | 2 Inferred  | Read       |
| 9239      | Weter #3 Wass Flowrate                       | 2 illielled | Neau       |
| 9261      | Meter#3 Batch Flow Weighted Average- DP      | 4 Inferred  | Read       |
| 9263      | Meter#3 Batch F.W. Average- Temperature      | 2 Inferred  | Read       |
| 9265      | Meter#3 Batch F.W. Average- Pressure         | 2 Inferred  | Read       |
| 9267      | Meter#3 Batch F.W. Average- Observed Density | 3 Inferred  | Read       |
| 9269      | Meter#3 Batch F.W. Average- Base Density     | 3 Inferred  | Read       |
| 9271      | Meter#3 Batch F.W. Average SG                | 4 Inferred  | Read       |
| 9273      | Meter#3 Batch F.W. Average- Base SG          | 4 Inferred  | Read       |
| 9275      | Meter#3 Batch F.W. Average- K/CD/LMF         | 6 Inferred  | Read       |
| 9277      | Meter#3 Batch F.W. Average- CTL              | 5 Inferred  | Read       |
| 9279      | Meter#3 Batch F.W. Average- CPL              | 5 Inferred  | Read       |
| 9281      | Meter#3 Batch F.W. Average- DP EXT           | 4 Inferred  | Read       |
| 9283      | Meter#3 Batch F.W. Average- BS&W             | 2 Inferred  | Read       |
| 0200      | motorne Batorri III. Attorage Beatt          | 2           | rtoda      |
| 9285      | Meter#3 DP                                   | 4 Inferred  | Read       |
| 9287      | Meter#3 Temperature                          | 2 Inferred  | Read       |
| 9289      | Meter#3 Pressure                             | 2 Inferred  | Read       |
| 9291      | Meter#3 Observed Density                     | 3 Inferred  | Read       |
| 9293      | Meter#3 Base Density                         | 3 Inferred  | Read       |
| 9295      | Meter#3 SG                                   | 4 Inferred  | Read       |
| 9297      | Meter#3 Base SG                              | 4 Inferred  | Read       |
| 9299      | Meter#3 K/CD/LMF                             | 6 Inferred  | Read       |
| 9301      | Meter#3 CTL                                  | 5 Inferred  | Read       |
|           |                                              |             |            |

| ADDRESS   | DESCRIPTION                                  | DECIMAL    | READ/WRITE |
|-----------|----------------------------------------------|------------|------------|
| 9303      | Meter#3 CPL                                  | 5 Inferred | Read       |
| 9305      | Meter#3 DP EXT                               | 4 Inferred | Read       |
| 9307      | Meter#3 BS&W                                 | 2 Inferred | Read       |
| 9309      | Meter #3 Y Factor                            | 6 Inferred | Read       |
| 9311      | Meter#3 Densitometer Temperature             | 2 Inferred | Read       |
| 9313      | Meter#3 Densitometer Pressure                | 2 Inferred | Read       |
| 9315      | Meter#3 Equilibrium Pressure                 | 3 Inferred | Read       |
| 9317      | Meter #3 Pipe ID                             | 5 Inferred | Read       |
| 9319      | Meter #3 Orifice ID                          | 5 Inferred | Read       |
| 9321      | Meter #3 Density Correction Factor           | 5 Inferred | Read       |
| 9323      | Meter #3 K Factor                            | 3 Inferred | Read       |
| 9325      | Meter #3 Batch Opening Cum. Gross            | 0 Inferred | Read       |
| 9327      | Meter #3 Batch Opening Cum. Net              | 0 Inferred | Read       |
| 9329      | Meter #3 Batch Opening Cum. Mass             | 0 Inferred | Read       |
| 9331-9333 | Meter#4 ID                                   | 8 Chars.   | Read       |
| 9335      | Meter #4 Alarm Status                        | 0 Inferred | Read       |
| 9337      | Meter #4 Daily Gross Total                   | 1 Inferred | Read       |
| 9339      | Meter #4 Daily Net Total                     | 1 Inferred | Read       |
| 9341      | Meter #4 Daily Mass Total                    | 1 Inferred | Read       |
| 9343      | Meter #4 Cumulative Gross Total*             | 0 Inferred | Read       |
| 9345      | Meter #4 Cumulative Net Total*               | 0 Inferred | Read       |
| 9347      | Meter #4 Cumulative Mass Total*              | 0 Inferred | Read       |
| 9349      | Meter #4 Batch Gross Total                   | 1 Inferred | Read       |
| 9351      | Meter #4 Batch Net Total                     | 1 Inferred | Read       |
| 9353      | Meter #4 Batch Mass Total                    | 1 Inferred | Read       |
| 9355      | Meter #4 Gross Flowrate                      | 2 Inferred | Read       |
| 9357      | Meter #4 Net Flowrate                        | 2 Inferred | Read       |
| 9359      | Meter #4 Mass Flowrate                       | 2 Inferred | Read       |
| 9361      | Meter#4 Batch Flow Weighted Average- DP      | 4 Inferred | Read       |
| 9363      | Meter#4 Batch F.W. Average- Temperature      | 2 Inferred | Read       |
| 9365      | Meter#4 Batch F.W. Average- Pressure         | 2 Inferred | Read       |
| 9367      | Meter#4 Batch F.W. Average- Observed Density | 3 Inferred | Read       |
| 9369      | Meter#4 Batch F.W. Average- Base Density     | 3 Inferred | Read       |
| 9371      | Meter#4 Batch F.W. Average SG                | 4 Inferred | Read       |
| 9373      | Meter#4 Batch F.W. Average- Base SG          | 4 Inferred | Read       |
| 9375      | Meter#4 Batch F.W. Average- K/CD/LMF         | 6 Inferred | Read       |
| 9377      | Meter#4 Batch F.W. Average- CTL              | 5 Inferred | Read       |
| 9379      | Meter#4 Batch F.W. Average- CPL              | 5 Inferred | Read       |
| 9381      | Meter#4 Batch F.W. Average- DP EXT           | 4 Inferred | Read       |
| 9383      | Meter#4 Batch F.W. Average- BS&W             | 2 Inferred | Read       |
| 9385      | Meter#4 DP                                   | 4 Inferred | Read       |
| 9387      | Meter#4 Temperature                          | 2 Inferred | Read       |
| 9389      | Meter#4 Pressure                             | 2 Inferred | Read       |
| 9391      | Meter#4 Observed Density                     | 3 Inferred | Read       |
| 9393      | Meter#4 Base Density                         | 3 Inferred | Read       |
| 9395      | Meter#4 SG                                   | 4 Inferred | Read       |
| 9397      | Meter#4 Base SG                              | 4 Inferred | Read       |
| 9399      | Meter#4 K/CD/LMF                             | 6 Inferred | Read       |

| <b>ADDRESS</b> | DESCRIPTION                              | DECIMAL    | READ/WRITE |
|----------------|------------------------------------------|------------|------------|
| 9401           | Meter#4 CTL                              | 5 Inferred | Read       |
| 9403           | Meter#4 CPL                              | 5 Inferred | Read       |
| 9405           | Meter#4 DP EXT                           | 4 Inferred | Read       |
| 9407           | Meter#4 BS&W                             | 2 Inferred | Read       |
|                |                                          |            |            |
| 9409           | Meter #4 Y Factor                        | 6 Inferred | Read       |
| 9411           | Meter#4 Densitometer Temperature         | 2 Inferred | Read       |
| 9413           | Meter#4 Densitometer Pressure            | 2 Inferred | Read       |
| 9415           | Meter#4 Equilibrium Pressure             | 3 Inferred | Read       |
| 9417           | Meter #4 Pipe ID                         | 5 Inferred | Read       |
| 9419           | Meter #4 Orifice ID                      | 5 Inferred | Read       |
| 9421           | Meter #4 Density Correction Factor       | 5 Inferred | Read       |
| 9423           | Meter #4 K Factor                        | 3 Inferred | Read       |
| 9425           | Meter #4 Batch Opening Cum. Gross        | 0 Inferred | Read       |
| 9427           | Meter #4 Batch Opening Cum. Net          | 0 Inferred | Read       |
| 9429           | Meter #4 Batch Opening Cum. Mass         | 0 Inferred | Read       |
|                | g camera                                 |            |            |
| 9453           | Meter#1 GM/CC (Live Densitometer)        | 4 Inferred | Read       |
| 9457           | Meter#2 GM/CC (Live Densitometer)        | 4 Inferred | Read       |
| 9461           | Meter#1 GM/CC (Live Densitometer)        | 4 Inferred | Read       |
| 9465           | Meter#2 GM/CC (Live Densitometer)        | 4 Inferred | Read       |
|                | (2.10 - 2.10.00)                         |            |            |
| 9469           | Meter#1 CTPL                             | 5 Inferred | Read       |
| 9471           | Meter#1 Batch F.W. Average CTPL          | 5 Inferred | Read       |
| 9473           | Meter#1 Meter Density                    | 3 Inferred | Read       |
| 9471           | Meter#1 Batch F.W. Average Meter Density | 3 Inferred | Read       |
| 9473           | Meter#2 CTPL                             | 5 Inferred | Read       |
| 9475           | Meter#2 Batch F.W. Average CTPL          | 5 Inferred | Read       |
| 9477           | Meter#2 Meter Density                    | 3 Inferred | Read       |
| 9479           | Meter#2 Batch F.W. Average Meter Density | 3 Inferred | Read       |
| 9481           | Meter#3 CTPL                             | 5 Inferred | Read       |
| 9483           | Meter#3 Batch F.W. Average CTPL          | 5 Inferred | Read       |
| 9485           | Meter#3 Meter Density                    | 3 Inferred | Read       |
| 9487           | Meter#3 Batch F.W. Average Meter Density | 3 Inferred | Read       |
| 9489           | Meter#4 CTPL                             | 5 Inferred | Read       |
| 9491           | Meter#4 Batch F.W. Average CTPL          | 5 Inferred | Read       |
| 9493           | Meter#4 Meter Density                    | 3 Inferred | Read       |
| 9495           | Meter#4 Batch F.W. Average Meter Density | 3 Inferred | Read       |

| ADDRESS | DESCRIPTION                          | READ/WRITE |
|---------|--------------------------------------|------------|
| 7001    | Sarasota Constant D0                 | Read/Write |
| 7002    | Sarasota Constant T0                 | Read/Write |
| 7003    | Sarasota Constant K                  | Read/Write |
| 7004    | Sarasota Constant Temperature Coeff. | Read/Write |
| 7005    | Sarasota Constant Temperature Cal.   | Read/Write |
| 7006    | Sarasota Constant Pressure Coeff.    | Read/Write |
| 7007    | Sarasota Constant Pressure Cal.      | Read/Write |
| 7008    | UGC Constant K0                      | Read/Write |
| 7009    | UGC Constant K1                      | Read/Write |
| 7010    | UGC Constant K2                      | Read/Write |
| 7011    | UGC Constant KT                      | Read/Write |
| 7012    | UGC Constant Temperature Cal         | Read/Write |
| 7013    | UGC Constant K                       | Read/Write |
| 7014    | UGC Constant P0                      | Read/Write |
| 7015    | Solartron Constant K0                | Read/Write |
| 7016    | Solartron Constant K1                | Read/Write |
| 7017    | Solartron Constant K2                | Read/Write |
| 7018    | Solartron Constant K18               | Read/Write |
| 7019    | Solartron Constant K19               | Read/Write |
| 7020    | Solartron Constant K3                | Read/Write |
| 7021    | Solartron Constant K4                | Read/Write |
| 7022    | Calibration Data Entry               | Read/Write |
| 7023    | Spare                                | Read/Write |
| 7024    | Verification Data Entry              | Read/Write |
| 7025    | Spare                                | Read/Write |
| 7026    | Meter#1 Orifice ID                   | Read/Write |
| 7027    | Meter#1 Pipe ID                      | Read/Write |
| 7028    | Meter#1 K Factor                     | Read/Write |
| 7029    | Meter#1 Low Limit                    | Read/Write |
| 7030    | Meter#1 High Limit                   | Read/Write |
| 7031    | Meter#2 Orifice ID                   | Read/Write |
| 7032    | Meter#2 Pipe ID                      | Read/Write |
| 7033    | Meter#2 K Factor                     | Read/Write |
| 7034    | Meter#2 Low Limit                    | Read/Write |
| 7035    | Meter#2 High Limit                   | Read/Write |
| 7036    | Meter#3 Orifice ID                   | Read/Write |
| 7037    | Meter#3 Pipe ID                      | Read/Write |
| 7038    | Meter#3 K Factor                     | Read/Write |
| 7039    | Meter#3 Low Limit                    | Read/Write |
| 7040    | Meter#3 High Limit                   | Read/Write |
| 7041    | Meter#4 Orifice ID                   | Read/Write |
| 7042    | Meter#4 Pipe ID                      | Read/Write |
| 7043    | Meter#4 K Factor                     | Read/Write |
| 7044    | Meter#4 Low Limit                    | Read/Write |
| 7045    | Meter#4 High Limit                   | Read/Write |
| 7046    | Base Temperature                     | Read/Write |
| 7047    | Base Pressure                        | Read/Write |
| 7048    | Atmospheric Pressure                 | Read/Write |
| 7049    | Densitometer Low Limit               | Read/Write |
| 7050    | Densitometer High Limit              | Read/Write |
| 7051    | Densitometer Maintenance             | Read/Write |

| ADDRESS                                                                                                                             | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | READ/WRITE                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 7052<br>7053<br>7054<br>7055-7060                                                                                                   | Calibration Data Entry Verification Data Entry GMCC Conversion Factor Spare                                                                                                                                                                                                                                                                                                                                                                                                                                        | Read/Write<br>Read/Write<br>Read/Write                                                                        |
| 7061-7070<br>7071-7085<br>7086<br>7087<br>7088<br>7089<br>7090<br>7091<br>7092<br>7093<br>7094<br>7095<br>7096<br>7097<br>7098-7102 | Reserved Reserved Meter#1Density Override (Water–Dens and Base Dens Override Meter#1 SG Override Meter#1 Alpha-T E-6 Override Meter#2 Density Override (Water–Dens and Base Dens Override Meter#2 SG Override Meter#2 Alpha-T E-6 Override Meter#3 Density Override (Water–Dens and Base Dens Override Meter#3 SG Override Meter#3 SG Override Meter#3 Alpha-T E-6 Override Meter#4 Density Override (Water–Dens and Base Dens Override Meter#4 SG Override Meter#4 SG Override Meter#4 Alpha-T E-6 Override Spare | Read/Write |
| 7103<br>7104<br>7105<br>7106<br>7107<br>7108<br>7109<br>7110<br>7111<br>7112<br>7113<br>7114<br>7115                                | Meter#1 FWA CTPL Meter#1 Daily Gross Total Meter#1 Daily Net Total Meter#1 Daily Mass Total Meter#1 CTPL Meter#1 Density Meter#1 FWA Density Meter#1 Batch Gross Total Meter#1 Batch Net Total Meter#1 Batch Mass Total Meter#1 Gross Flow Rate Meter#1 Net Flow Rate Meter#1 Mass Flow Rate                                                                                                                                                                                                                       | Read<br>Read<br>Read<br>Read<br>Read<br>Read<br>Read<br>Read                                                  |
| 7116<br>7117<br>7118<br>7119<br>7120<br>7121<br>7122<br>7123<br>7124<br>7125<br>7126<br>7127                                        | Meter #1 FWA DP Meter #1 FWA Temperature Meter #1 FWA Pressure Meter #1 FWA Observed Density Meter #1 FWA Baes Density Meter #1 FWA SG Meter #1 FWA Base SG Meter #1 FWA K/CD/LMF Meter #1 FWA CTL Meter #1 FWA CPL Meter #1 FWA DP_EXT Meter #1 FWA BS&W                                                                                                                                                                                                                                                          | Read<br>Read<br>Read<br>Read<br>Read<br>Read<br>Read<br>Read                                                  |
| 7128<br>7129<br>7130<br>7131<br>7132                                                                                                | Meter #1 DP Meter #1 Temperature Meter #1 Pressure Meter #1 Observed Density Meter #1 Base Density                                                                                                                                                                                                                                                                                                                                                                                                                 | Read<br>Read<br>Read<br>Read<br>Read                                                                          |

| <u>ADDRESS</u> | DESCRIPTION                        | READ/WRITE |
|----------------|------------------------------------|------------|
| 7133           | Meter #1 SG                        | Read       |
| 7134           | Meter #1 Base SG                   | Read       |
| 7135           | Meter #1 K/CD/LMF                  | Read       |
| 7136           | Meter #1 CTL                       | Read       |
| 7137           | Meter #1 CPL                       | Read       |
| 7138           | Meter #1 DP_EXT                    | Read       |
| 7139           | Meter #1 BS&W                      | Read       |
| 7140           | Meter #1 Y                         | Read       |
| 7141           | Meter #1 Densitometer Temperature  | Read       |
| 7142           | Meter #1 Densitometer Pressure     | Read       |
| 7143           | Meter #1 Equilibrium Pressure      | Read       |
| 7144           | Meter #1 Pipe ID                   | Read       |
| 7145           | Meter #1 Orifice ID                | Read       |
| 7146           | Meter #1 Density Correction Factor | Read       |
| 7147           | Meter #1 K Factor                  | Read       |
| 7148           | Meter #1 Day Flow Time             | Read       |
| 7149           | Meter #1 Hour Flow Time            | Read       |
|                |                                    |            |
| 7150           | Meter #3 Day Flow Time             | Read       |
| 7151           | Meter #3 Hour Flow Time            | Read       |
| 7152           | Spare                              | Read       |
| 7153           | Spare                              | Read       |
| 7154           | Meter#3 FWA CTPL                   | Read       |
| 7155           | Meter#3 Daily Gross Total          | Read       |
| 7156           | Meter#3 Daily Net Total            | Read       |
| 7157           | Meter#3 Daily Mass Total           | Read       |
| 7158           | Meter#3 CTPL                       | Read       |
| 7159           | Meter#3 Density                    | Read       |
| 7160           | Meter#3 FWA Density                | Read       |
| 7161           | Meter#3 Batch Gross Total          | Read       |
| 7162           | Meter#3 Batch Net Total            | Read       |
| 7163           | Meter#3 Batch Mass Total           | Read       |
| 7164           | Meter#3 Gross Flow Rate            | Read       |
| 7165           | Meter#3 Net Flow Rate              | Read       |
| 7166           | Meter#3 Mass Flow Rate             | Read       |
| 7167           | Meter #3 FWA DP                    | Read       |
| 7168           | Meter #3 FWA Temperature           | Read       |
| 7169           | Meter #3 FWA Pressure              | Read       |
| 7170           | Meter #3 FWA Observed Density      | Read       |
| 7171           | Meter #3 FWA Base Density          | Read       |
| 7172           | Meter #3 FWA SG                    | Read       |
| 7173           | Meter #3 FWA Base SG               | Read       |
| 7174           | Meter #3 FWA K/CD/LMF              | Read       |
| 7175           | Meter #3 FWA CTL                   | Read       |
| 7176           | Meter #3 FWA CPL                   | Read       |
| 7177           | Meter #3 FWA DP_EXT                | Read       |
| 7178           | Meter #3 FWA BS&W                  | Read       |
| 7470           | Mater #2 DD                        | Daad       |
| 7179           | Meter #3 DP                        | Read       |
| 7180           | Meter #3 Temperature               | Read       |
| 7181           | Meter #3 Pressure                  | Read       |
| 7182           | Meter #3 Observed Density          | Read       |
| 7183           | Meter #3 Base Density              | Read       |
| 7184           | Meter #3 SG                        | Read       |

| <b>ADDRESS</b> | DESCRIPTION                        | READ/WRITE |
|----------------|------------------------------------|------------|
| 7185           | Meter #3 Base SG                   | Read       |
| 7186           | Meter #3 K/CD/LMF                  | Read       |
| 7187           | Meter #3 CTL                       | Read       |
| 7188           | Meter #3 CPL                       | Read       |
| 7189           | Meter #3 DP_EXT                    | Read       |
| 7190           | Meter #3 BS&W                      | Read       |
| 7191           | Meter #3 Y                         | Read       |
| 7192           | Meter #3 Densitometer Temperature  | Read       |
| 7193           | Meter #3 Densitometer Pressure     | Read       |
| 7194           | Meter #3 Equilibrium Pressure      | Read       |
| 7195           | Meter #3 Pipe ID                   | Read       |
| 7196           | Meter #3 Orifice ID                | Read       |
| 7197           | Meter #3 Density Correction Factor | Read       |
| 7198           | Meter #3 K Factor                  | Read       |
| 7199           | Spare                              |            |
| 7201           | Date – Floating                    | Read       |
| 7202           | Time – Floating                    | Read       |
| 7203           | Meter #3 Last Month Flow Time      | Read       |
| 7204           | Meter #3 Last Month Gross Total    | Read       |
| 7204           | Meter #3 Last Month Net Total      | Read       |
| 7206           | Meter #3 Last Month Mass Total     | Read       |
| 7207           | Spare                              | Noau       |
| 7000           | Mater #4 Loct Month Flour Time     | Dood       |
| 7208           | Meter #4 Last Month Flow Time      | Read       |
| 7209           | Meter #4 Last Month Gross Total    | Read       |
| 7210<br>7211   | Meter #4 Last Month Net Total      | Read       |
| 7211           | Meter #4 Last Month Mass Total     | Read       |
| 7212           | Spare                              | Dood       |
| 7213           | Meter #3 Yesterday Flowing Time    | Read       |
| 7214<br>7215   | Meter #3 Average DP                | Read       |
| 7215           | Meter #3 Average Temperature       | Read       |
| 7216           | Meter #3 Average Pressure          | Read       |
| 7217           | Meter #3 Average DP_EXT            | Read       |
| 7218           | Meter #3 Yesterday Gross           | Read       |
| 7219           | Meter #3 Yesterday Net             | Read       |
| 7220           | Meter #3 Yesterday Mass            | Read       |
| 7221           | Spare                              | Dand       |
| 7222           | Meter #4 Yesterday Flowing Time    | Read       |
| 7223           | Meter #4 Average DP                | Read       |
| 7224           | Meter #4 Average Temperature       | Read       |
| 7225           | Meter #4 Average Pressure          | Read       |
| 7226           | Meter #4 DP_EXT                    | Read       |
| 7227           | Meter #4 Yesterday Gross           | Read       |
| 7228           | Meter #4 Yesterday Net             | Read       |
| 7229           | Meter #4 Yesterday Mass            | Read       |
| 7230           | Spare                              |            |
| 7231           | Spare #1 Data                      | Read       |
| 7232           | Spare #2 Data                      | Read       |
| 7233           | Spare #3 Data                      | Read       |
| 7234           | Spare #4 Data                      | Read       |
| 7235           | Spare #5 Data                      | Read       |
| 7236           | Spare #6 Data                      | Read       |

| <b>ADDRESS</b> | DESCRIPTION                            | READ/WRITE |
|----------------|----------------------------------------|------------|
| 7237           | Spare #7 Data                          | Read       |
| 7238           | Spare #8 Data                          | Read       |
| 7239           | Spare #9 Data                          | Read       |
| 7240           | Battery Voltage                        | Read       |
| 7241           | Meter #1 Last Hour Flow Time           | Read       |
| 7242           | Meter #1 Last Hour Gross Total         | Read       |
| 7243           | Meter #1 Last Hour Net Total           | Read       |
| 7244           | Meter #1 Last Hour Average Temperature | Read       |
| 7245           | Meter #1 Last Hour Average Pressure    | Read       |
| 7246           | Meter #1 Last Hour Average DP          | Read       |
| 7247           | Meter #1 Last Hour Average DP/EXT      | Read       |
| 7248           | Meter #2 Last Hour Flow Time           | Read       |
| 7249           | Meter #2 Last Hour Gross Total         | Read       |
| 7250           | Meter #2 Last Hour Net Total           | Read       |
| 7251           | Meter #2 Last Hour Average Temperature | Read       |
| 7252           | Meter #2 Last Hour Average Pressure    | Read       |
| 7253           | Meter #2 Last Hour Average DP          | Read       |
| 7254           | Meter #2 Last Hour Average DP/EXT      | Read       |
| 7255-7256      | Spare                                  |            |
| 7257           | Meter #1 Last Month Flow Time          | Read       |
| 7258           | Meter #1 Last Month Gross Total        | Read       |
| 7259           | Meter #1 Last Month Net Total          | Read       |
| 7260           | Meter #1 Last Month Mass Total         | Read       |
| 7261           | Spare                                  |            |
| 7262           | Last Hour Program Variable #1          | Read       |
| 7263           | Last Hour Program Variable #2          | Read       |
| 7264           | Last Hour Program Variable #3          | Read       |
| 7265           | Last Hour Program Variable #4          | Read       |
| 7266           | Last Hour Program Variable #5          | Read       |
| 7267-7270      | Reserved                               |            |
| 7271           | Meter #1 Yesterday Flow Time           | Read       |
| 7272           | Meter #1 Yesterday Average DP          | Read       |
| 7273           | Meter #1 Yesterday Average Temperature | Read       |
| 7274           | Meter #1 Yesterday Average Pressure    | Read       |
| 7275           | Meter #1 Yesterday Average DP/EXT      | Read       |
| 7276           | Meter #1 Yesterday Gross Total         | Read       |
| 7277           | Meter #1 Yesterday Net Total           | Read       |
| 7278           | Meter #1 Yesterday Mass Total          | Read       |
| 7279           | Spare                                  |            |
| 7280           | Spare                                  |            |
| 7281           | Spare                                  |            |

| <u>ADDRESS</u> | DESCRIPTION                        | READ/WRITE |
|----------------|------------------------------------|------------|
| 7301           | Spare                              | Read       |
| 7302           | Spare                              | Read       |
| 7303           | Meter#2 FWACTPL                    | Read       |
| 7304           | Meter#2 Daily Gross Total          | Read       |
| 7305           | Meter#2 Daily Net Total            | Read       |
| 7306           | Meter#2 Daily Mass Total           | Read       |
| 7307           | Meter#2 CTPL                       | Read       |
| 7308           | Meter#2 Density                    | Read       |
| 7309           | Meter#2 FWA Density                | Read       |
| 7310           | Meter#2 Batch Gross Total          | Read       |
| 7311           | Meter#2 Batch Net Total            | Read       |
| 7312           | Meter#2 Batch Mass Total           | Read       |
| 7313           | Meter#2 Gross Flow Rate            | Read       |
| 7314           | Meter#2 Net Flow Rate              | Read       |
| 7315           | Meter#2 Mass Flow Rate             | Read       |
| 7316           | Meter #2 FWA DP                    | Read       |
| 7317           | Meter #2 FWA Temperature           | Read       |
| 7318           | Meter #2 FWA Pressure              | Read       |
| 7319           | Meter #2 FWA Observed Density      | Read       |
| 7320           | Meter #2 FWA Base Density          | Read       |
| 7321           | Meter #2 FWA SG                    | Read       |
| 7322           | Meter #2 FWA Base SG               | Read       |
| 7323           | Meter #2 FWA K/CD/LMF              | Read       |
| 7324           | Meter #2 FWA CTL                   | Read       |
| 7325           | Meter #2 FWA CPL                   | Read       |
| 7326           | Meter #2 FWA DP_EXT                | Read       |
| 7327           | Meter #2 FWA BS&W                  | Read       |
| 7328           | Meter #2 DP                        | Read       |
| 7329           | Meter #2 Temperature               | Read       |
| 7330           | Meter #2 Pressure                  | Read       |
| 7331           | Meter #2 Observed Density          | Read       |
| 7332           | Meter #2 Base Density              | Read       |
| 7333           | Meter #2 SG                        | Read       |
| 7334           | Meter #2 Base SG                   | Read       |
| 7335           | Meter #2 K/CD/LMF                  | Read       |
| 7336           | Meter #2 CTL                       | Read       |
| 7337           | Meter #2 CPL                       | Read       |
| 7338           | Meter #2 DP_EXT                    | Read       |
| 7339           | Meter #2 BS&W                      | Read       |
| 7340           | Meter #2 Y                         | Read       |
| 7341           | Meter #2 Densitometer Temperature  | Read       |
| 7342           | Meter #2 Densitometer Pressure     | Read       |
| 7343           | Meter #2 Equilibrium Pressure      | Read       |
| 7344           | Meter #2 Pipe ID                   | Read       |
| 7345           | Meter #2 Orifice ID                | Read       |
| 7346           | Meter #2 Density Correction Factor | Read       |
| 7347           | Meter #2 K Factor                  | Read       |
| 7348           | Meter #2 Day Flow Time             | Read       |
| 7349           | Meter #2 Hour Flow Time            | Read       |

| ADDRESS      | DESCRIPTION                           | READ/WRITE   |
|--------------|---------------------------------------|--------------|
| 7350         | Meter #4 Day Flow Time                | Read         |
| 7351         | Meter #4 Hour Flow Time               | Read         |
| 7352         | Spare                                 | Read         |
| 7353         | Spare                                 | Read         |
| 7354         | Meter#4 FWA CTPL                      | Read         |
| 7355         | Meter#4 Daily Gross Total             | Read         |
| 7356         | Meter#4 Daily Net Total               | Read         |
| 7357         | Meter#4 Daily Mass Total              | Read         |
| 7358         | Meter#4 CTPL                          | Read         |
| 7359         | Meter#4 Density                       | Read         |
| 7360         | Meter#4 FWA Density                   | Read         |
| 7361         | Meter#4 Batch Gross Total             | Read         |
| 7362         | Meter#4 Batch Net Total               | Read         |
| 7363         | Meter#4 Batch Mass Total              | Read         |
| 7364         | Meter#4 Gross Flow Rate               | Read         |
| 7365         | Meter#4 Net Flow Rate                 | Read         |
| 7366         | Meter#4 Mass Flow Rate                | Read         |
| 7367         | Meter #4 FWA DP                       | Read         |
| 7368         | Meter #4 FWA Temperature              | Read         |
| 7369         | Meter #4 FWA Pressure                 | Read         |
| 7370         | Meter #4 FWA Observed Density         | Read         |
| 7371         | Meter #4 FWA Base Density             | Read         |
| 7372         | Meter #4 FWA SG                       | Read         |
| 7373         | Meter #4 FWA Base SG                  | Read         |
| 7374         | Meter #4 FWA K/CD/LMF                 | Read         |
| 7375         | Meter #4 FWA CTL                      | Read         |
| 7376         | Meter #4 FWA CPL                      | Read         |
| 7377         | Meter #4 FWA DP_EXT                   | Read         |
| 7378         | Meter #4 FWA BS&W                     | Read         |
| 7379         | Meter #1 DP                           | Read         |
| 7379         | Meter #1 Temperature                  | Read         |
| 7381         | Meter #1 Pressure                     | Read         |
| 7382         |                                       | Read         |
| 7383         | Meter #1 Observed Density             |              |
| 7384         | Meter #1 Base Density Meter #1 SG     | Read         |
|              |                                       | Read         |
| 7385<br>7386 | Meter #1 Base SG<br>Meter #1 K/CD/LMF | Read<br>Read |
|              |                                       |              |
| 7387         | Meter #1 CTL                          | Read         |
| 7388         | Meter #1 CPL                          | Read         |
| 7389         | Meter #1 DP_EXT                       | Read         |
| 7390         | Meter #1 BS&W                         | Read         |
| 7391         | Meter #1 Y                            | Read         |
| 7392         | Meter #1 Densitometer Temperature     | Read         |
| 7393         | Meter #1 Densitometer Pressure        | Read         |
| 7394         | Meter #1 Equilibrium Pressure         | Read         |
| 7395         | Meter #1 Pipe ID                      | Read         |
| 7396         | Meter #1 Orifice ID                   | Read         |
| 7397         | Meter #1 Density Correction Factor    | Read         |
| 7398         | Meter #1 K Factor                     | Read         |
| 7399         | Spare                                 |              |

| <u>ADDRESS</u> | DESCRIPTION                            | READ/WRITE |
|----------------|----------------------------------------|------------|
| 7401           | Multi.Var DP                           | Read       |
| 7402           | Multi.Var Pressure                     | Read       |
| 7403           | Multi.Var Temperature                  | Read       |
| 7404           | Analog Input #1 mA Value               | Read       |
| 7405           | Analog Input #2 mA Value               | Read       |
| 7406           | Analog Input #3 mA Value               | Read       |
| 7407           | Analog Input #4 mA Value               | Read       |
| 7408           | Multi. Var. Flag                       | Read       |
| 7409           | Slave#1 DP                             | Read       |
| 7410           | Slave#1 Pressure                       | Read       |
| 7411           | Slave#1 Temperature                    | Read       |
| 7412           | Slave#1 Spare Auxiliary I/O #1         | Read       |
| 7413           | Slave#1 Spare Auxiliary I/O #2         | Read       |
| 7414           | Slave#1 Spare Auxiliary I/O #3         | Read       |
| 7415           | Slave#1 Spare Auxiliary I/O #4         | Read       |
| 7416           | Slave#1 Multi.Var.Flag                 | Read       |
| 7417-7425      | Reserved                               |            |
| 7426-7433      | Spare                                  |            |
| 7434           | Yesterday Program Variable #1          | Read       |
| 7435           | Yesterday Program Variable #2          | Read       |
| 7436           | Yesterday Program Variable #3          | Read       |
| 7437           | Yesterday Program Variable #4          | Read       |
| 7438           | Yesterday Program Variable #5          | Read       |
| 7439           | Reserved                               |            |
| 7440           | Reserved                               |            |
| 7441           | Meter #3 Last Hour Flow Time           | Read       |
| 7442           | Meter #3 Last Hour Gross Total         | Read       |
| 7443           | Meter #3 Last Hour Net Total           | Read       |
| 7444           | Meter #3 Last Hour Average Temperature | Read       |
| 7445           | Meter #3 Last Hour Average Pressure    | Read       |
| 7446           | Meter #3 Last Hour Average DP          | Read       |
| 7447           | Meter #3 Last Hour Average DP/EXT      | Read       |
| 7448           | Meter #4 Last Hour Flow Time           | Read       |
| 7449           | Meter #4 Last Hour Gross Total         | Read       |
| 7450           | Meter #4 Last Hour Net Total           | Read       |
| 7451           | Meter #4 Last Hour Average Temperature | Read       |
| 7452           | Meter #4 Last Hour Average Pressure    | Read       |
| 7453           | Meter #4 Last Hour Average DP          | Read       |
| 7454           | Meter #4 Last Hour Average DP/EXT      | Read       |
| 7455           | Spare                                  |            |
| 7456           | Spare                                  |            |
| 7457           | Meter#2 Last Month Flow Time           | Read       |
| 7458           | Meter#2 Last Month Gross Total         | Read       |
| 7459           | Meter#2 Last Month Net Total           | Read       |
| 7460           | Meter#2 Last Month Mass Total          | Read       |
| 7461           | Spare                                  |            |
| 7462-7465      | Spare                                  |            |
|                | •                                      |            |

| <b>ADDRESS</b> | DESCRIPTION                            | READ/WRITE |
|----------------|----------------------------------------|------------|
| 7466           | Last Month Program Variable #1         | Read       |
| 7467           | Last Month Program Variable #2         | Read       |
| 7468           | Last Month Program Variable #3         | Read       |
| 7469           | Last Month Program Variable #4         | Read       |
| 7470           | Last Month Program Variable #5         | Read       |
|                |                                        |            |
| 7471           | Meter #2 Yesterday Flow Time           | Read       |
| 7472           | Meter #2 Yesterday Average DP          | Read       |
| 7473           | Meter #2 Yesterday Average Temperature | Read       |
| 7474           | Meter #2 Yesterday Average Pressure    | Read       |
| 7475           | Meter #2 Yesterday Average DP/EXT      | Read       |
| 7476           | Meter #2 Yesterday Gross Total         | Read       |
| 7477           | Meter #2 Yesterday Net Total           | Read       |
| 7478           | Meter #2 Yesterday Mass Total          | Read       |
| 7479           | Meter #1 Last Batch Gross Total        | Read       |
| 7480           | Meter #1 Last Batch Net Total          | Read       |
| 7481           | Meter #1 Last Batch Mass Total         | Read       |
| 7400           | Mater #0 Last Datab Cursa Tatal        | Daad       |
| 7482           | Meter #2 Last Batch Gross Total        | Read       |
| 7483           | Meter #2 Last Batch Net Total          | Read       |
| 7484           | Meter #2 Last Batch Mass Total         | Read       |
| 7483           | Meter #3 Last Batch Gross Total        | Read       |
| 7484           | Meter #3 Last Batch Net Total          | Read       |
| 7485           | Meter #3 Last Batch Mass Total         | Read       |
| 7486           | Meter #4 Last Batch Gross Total        | Read       |
| 7487           | Meter #4 Last Batch Net Total          | Read       |
| 7488           | Meter #4 Last Batch Mass Total         | Read       |

| <u>ADDRESS</u> | DESCRIPTION                       | READ/WRITE |
|----------------|-----------------------------------|------------|
| 7601           | Analog Input #5 @4mA              | Read/Write |
| 7602           | Analog Input #5 @20mA             | Read/Write |
| 7603           | Analog Input #5 Low Limit         | Read/Write |
| 7604           | Analog Input #5 High Limit        | Read/Write |
| 7605           | Analog Input #5 Maintenance       | Read/Write |
| 7606           | Analog Input #6 @4mA              | Read/Write |
| 7607           | Analog Input #6 @20mA             | Read/Write |
| 7608           | Analog Input #6 Low Limit         | Read/Write |
| 7609           | Analog Input #6 High Limit        | Read/Write |
| 7610           | Analog Input #6 Maintenance       | Read/Write |
| 7611           | Analog Input #7 @4mA              | Read/Write |
| 7612           | Analog Input #7 @20mA             | Read/Write |
| 7613           | Analog Input #7 Low Limit         | Read/Write |
| 7614           | Analog Input #7 High Limit        | Read/Write |
| 7615           | Analog Input #7 Maintenance       | Read/Write |
| 7616           | Analog Input #8 @4mA              | Read/Write |
| 7617           | Analog Input #8 @20mA             | Read/Write |
| 7618           | Analog Input #8 Low Limit         | Read/Write |
| 7619           | Analog Input #8 High Limit        | Read/Write |
| 7620           | Analog Input #8 Maintenance       | Read/Write |
| 7621           | Analog Input #9 @4mA              | Read/Write |
| 7622           | Analog Input #9 @20mA             | Read/Write |
| 7623           | Analog Input #9 Low Limit         | Read/Write |
| 7624           | Analog Input #9 High Limit        | Read/Write |
| 7625           | Analog Input #9 Maintenance       | Read/Write |
| 7626           | Analog Input #5 Override          | Read/Write |
| 7627           | Analog Input #6 Override          | Read/Write |
| 7628           | Analog Input #7 Override          | Read/Write |
| 7629           | Analog Input #8 Override          | Read/Write |
| 7630           | Analog Input #9 Override          | Read/Write |
| 7631           | Spare Auxiliary I/O #1 @4mA       | Read/Write |
| 7632           | Spare Auxiliary I/O #1 @20mA      | Read/Write |
| 7633           | Spare Auxiliary I/O #1 Low Limit  | Read/Write |
| 7634           | Spare Auxiliary I/O #1 High Limit | Read/Write |
| 7635           | Spare Auxiliary I/O #2 @4mA       | Read/Write |
| 7636           | Spare Auxiliary I/O #2 @20mA      | Read/Write |
| 7637           | Spare Auxiliary I/O #2 Low Limit  | Read/Write |
| 7638           | Spare Auxiliary I/O #2 High Limit | Read/Write |
| 7639           | Spare Auxiliary I/O #3 @4mA       | Read/Write |
| 7640           | Spare Auxiliary I/O #3 @20mA      | Read/Write |
| 7641           | Spare Auxiliary I/O #3 Low Limit  | Read/Write |
| 7642           | Spare Auxiliary I/O #3 High Limit | Read/Write |
| 7643           | Spare Auxiliary I/O #4 @4mA       | Read/Write |
| 7644           | Spare Auxiliary I/O #4 @20mA      | Read/Write |
| 7645           | Spare Auxiliary I/O #4 Low Limit  | Read/Write |
| 7646           | Spare Auxiliary I/O #4 High Limit | Read/Write |
| 7647           | Spare Auxiliary I/O #5 @4mA       | Read/Write |

| <u>ADDRESS</u> | DESCRIPTION                        | READ/WRITE |
|----------------|------------------------------------|------------|
| 7648           | Spare Auxiliary I/O #5 @20mA       | Read/Write |
| 7649           | Spare Auxiliary I/O #5 Low Limit   | Read/Write |
| 7650           | Spare Auxiliary I/O #5 High Limit  | Read/Write |
| 7651           | Spare Auxiliary I/O #6 @4mA        | Read/Write |
| 7652           | Spare Auxiliary I/O #6 @20mA       | Read/Write |
| 7653           | Spare Auxiliary I/O #6 Low Limit   | Read/Write |
| 7654           | Spare Auxiliary I/O #6 High Limit  | Read/Write |
| 7655           | Spare Auxiliary I/O #7 @4mA        | Read/Write |
| 7656           | Spare Auxiliary I/O #7 @20mA       | Read/Write |
| 7657           | Spare Auxiliary I/O #7 Low Limit   | Read/Write |
| 7658           | Spare Auxiliary I/O #7 High Limit  | Read/Write |
| 7659           | Spare Auxiliary I/O #8 @4mA        | Read/Write |
| 7660           | Spare Auxiliary I/O #8 @20mA       | Read/Write |
| 7661           | Spare Auxiliary I/O #8 Low Limit   | Read/Write |
| 7662           | Spare Auxiliary I/O #8 High Limit  | Read/Write |
| 7663           | Spare Auxiliary I/O #9 @4mA        | Read/Write |
| 7664           | Spare Auxiliary I/O #9 @20mA       | Read/Write |
| 7665           | Spare Auxiliary I/O #9 Low Limit   | Read/Write |
| 7666           | Spare Auxiliary I/O #9 High Limit  | Read/Write |
| 7667           | Spare Auxiliary I/O #10 @4mA       | Read/Write |
| 7668           | Spare Auxiliary I/O #10 @20mA      | Read/Write |
| 7669           | Spare Auxiliary I/O #10 Low Limit  | Read/Write |
| 7670           | Spare Auxiliary I/O #10 High Limit | Read/Write |
| 7671           | Spare Auxiliary I/O #11 @4mA       | Read/Write |
| 7672           | Spare Auxiliary I/O #11 @20mA      | Read/Write |
| 7673           | Spare Auxiliary I/O #11 Low Limit  | Read/Write |
| 7674           | Spare Auxiliary I/O #11 High Limit | Read/Write |
| 7675           | Spare Auxiliary I/O #12 @4mA       | Read/Write |
| 7676           | Spare Auxiliary I/O #12 @20mA      | Read/Write |
| 7677           | Spare Auxiliary I/O #12 Low Limit  | Read/Write |
| 7678           | Spare Auxiliary I/O #12 High Limit | Read/Write |
| 7679-7690      | Spare                              | Read/Write |
| 7691           | Slave#1 DP Override                | Read/Write |
| 7692           | Slave#1 Pressure Override          | Read/Write |
| 7693           | Slave#1 Temperature Override       | Read/Write |
| 7694           | Slave#2 DP Override                | Read/Write |
| 7695           | Slave#2 Pressure Override          | Read/Write |
| 7696           | Slave#2 Temperature Override       | Read/Write |
| 7697           | Slave#3 DP Override                | Read/Write |
| 7698           | Slave#3 Pressure Override          | Read/Write |
| 7699           | Slave#3 Temperature Override       | Read/Write |
| 7700           | Spare                              |            |

| <b>ADDRESS</b> | DESCRIPTION                      | READ/WRITE |
|----------------|----------------------------------|------------|
| 7701           | Slave #1 DP Low Limit            | Read/Write |
| 7702           | Slave #1 DP High Limit           | Read/Write |
| 7703           | Slave #1 DP Maintenance          | Read/Write |
| 7704           | Slave #1 Pressure Low Limit      | Read/Write |
| 7705           | Slave #1 Pressure High Limit     | Read/Write |
| 7706           | Slave #1 Pressure Maintenance    | Read/Write |
| 7707           | Slave #1 Temperature Low Limit   | Read/Write |
| 7708           | Slave #1 Temperature High Limit  | Read/Write |
| 7709           | Slave #1 Temperature Maintenance | Read/Write |
| 7710           | Slave #2 DP Low Limit            | Read/Write |
| 7711           | Slave #2 DP High Limit           | Read/Write |
| 7712           | Slave #2 DP Maintenance          | Read/Write |
| 7713           | Slave #2 Pressure Low Limit      | Read/Write |
| 7714           | Slave #2 Pressure High Limit     | Read/Write |
| 7715           | Slave #2 Pressure Maintenance    | Read/Write |
| 7716           | Slave #2 Temperature Low Limit   | Read/Write |
| 7717           | Slave #2 Temperature High Limit  | Read/Write |
| 7718           | Slave #2 Temperature Maintenance | Read/Write |
| 7719           | Slave #3 DP Low Limit            | Read/Write |
| 7720           | Slave #3 DP High Limit           | Read/Write |
| 7721           | Slave #3 DP Maintenance          | Read/Write |
| 7722           | Slave #3 Pressure Low Limit      | Read/Write |
| 7723           | Slave #3 Pressure High Limit     | Read/Write |
| 7724           | Slave #3 Pressure Maintenance    | Read/Write |
| 7725           | Slave #3 Temperature Low Limit   | Read/Write |
| 7726           | Slave #3 Temperature High Limit  | Read/Write |
| 7727           | Slave #3 Temperature Maintenance | Read/Write |

| <b>ADDRESS</b> | DESCRIPTION                 | READ/WRITE |
|----------------|-----------------------------|------------|
| 7901           | Analog Input #1 @4mA        | Read/Write |
| 7902           | Analog Input #2 @20mA       | Read/Write |
| 7903           | Analog Input #1 Low Limit   | Read/Write |
| 7904           | Analog Input #1 High Limit  | Read/Write |
| 7905           | Analog Input #1 Maintenance | Read/Write |
| 7906           | Analog Input #2 @4mA        | Read/Write |
| 7907           | Analog Input #2 @20mA       | Read/Write |
| 7908           | Analog Input #2 Low Limit   | Read/Write |
| 7909           | Analog Input #2 High Limit  | Read/Write |
| 7910           | Analog Input #2 Maintenance | Read/Write |
| 7911           | Analog Input #3 @4mA        | Read/Write |
| 7912           | Analog Input #3 @20mA       | Read/Write |
| 7913           | Analog Input #3 Low Limit   | Read/Write |
| 7914           | Analog Input #3 High Limit  | Read/Write |
| 7915           | Analog Input #3 Maintenance | Read/Write |
| 7916           | Analog Input #4 @4mA        | Read/Write |
| 7917           | Analog Input #4 @20mA       | Read/Write |
| 7918           | Analog Input #4 Low Limit   | Read/Write |
| 7919           | Analog Input #4 High Limit  | Read/Write |
| 7920           | Analog Input #4 Maintenance | Read/Write |
| 7921           | Spare                       | Read/Write |
| 7922           | Spare                       | Read/Write |
| 7923           | RTD Input Low Limit         | Read/Write |
| 7924           | RTD Input High Limit        | Read/Write |
| 7925           | RTD Input Maintenance       | Read/Write |
| 7926           | Analog Input#1 Override     | Read/Write |
| 7927           | Analog Input#2 Override     | Read/Write |
| 7928           | Analog Input#3 Override     | Read/Write |
| 7929           | Analog Input#4 Override     | Read/Write |
| 7930           | RTD Input Override          | Read/Write |
| 7931           | Analog Output #1 @4mA       | Read/Write |
| 7932           | Analog Output #1 @20mA      | Read/Write |
| 7933           | Analog Output #2 @4mA       | Read/Write |
| 7934           | Analog Output #2 @20mA      | Read/Write |
| 7935           | Analog Output #3 @4mA       | Read/Write |
| 7936           | Analog Output #3 @20mA      | Read/Write |
| 7937           | Analog Output #4 @4mA       | Read/Write |
| 7938           | Analog Output #4 @20mA      | Read/Write |
| 7938-7951      | Spare                       |            |
|                |                             |            |

| ADDRESS | DESCRIPTION                                           | READ/WRITE |
|---------|-------------------------------------------------------|------------|
| 7952    | Analog Input #1 Live Value (for checking alarms only) | Read       |
| 7953    | Analog Input #2 Live Value (for checking alarms only) | Read       |
| 7954    | Analog Input #3 Live Value (for checking alarms only) | Read       |
| 7955    | Analog Input #4 Live Value (for checking alarms only) | Read       |
| 7956    | RTD Live Value (for checking alarms only)             | Read       |
| 7957    | Analog Input #1 Value (used in the calculation)       | Read       |
| 7958    | Analog Input #2 Value (used in the calculation)       | Read       |
| 7959    | Analog Input #3 Value (used in the calculation)       | Read       |
| 7960    | Analog Input #4 Value (used in the calculation)       | Read       |
| 7961    | RTD Value (used in the calculation)                   | Read       |
| 7962    | Analog Output #1 Value                                | Read       |
| 7963    | Analog Output #2 Value                                | Read       |
| 7964    | Analog Output #3 Value                                | Read       |
| 7965    | Analog Output #4 Value                                | Read       |
|         |                                                       |            |
| 7966    | Analog Input #5 Live Value (checking alarms only)     | Read       |
| 7967    | Analog Input #6 Live Value (checking alarms only)     | Read       |
| 7968    | Analog Input #7 Live Value (checking alarms only)     | Read       |
| 7969    | Analog Input #8 Live Value (checking alarms only)     | Read       |
| 7970    | Analog Input #9 Live Value (checking alarms only)     | Read       |
| 7971    | Analog Input #5 Value (used in the calculation)       | Read       |
| 7972    | Analog Input #6 Value (used in the calculation)       | Read       |
| 7973    | Analog Input #7 Value (used in the calculation)       | Read       |
| 7974    | Analog Input #8 Value (used in the calculation)       | Read       |
| 7975    | Analog Input #9 Value (used in the calculation)       | Read       |
| 7976    | Spare #1 Data                                         | Read       |
| 7977    | Spare #2 Data                                         | Read       |
| 7978    | Spare #3 Data                                         | Read       |
| 7979    | Spare #4 Data                                         | Read       |
| 7980    | Spare #5 Data                                         | Read       |
| 7981    | Spare #6 Data                                         | Read       |
| 7982    | Spare #7 Data                                         | Read       |
| 7983    | Spare #8 Data                                         | Read       |
| 7984    | Spare #9 Data                                         | Read       |
| 7985    | Spare Auxiliary I/O #1 Data                           | Read       |
| 7986    | Spare Auxiliary I/O #2 Data                           | Read       |
| 7987    | Spare Auxiliary I/O #3 Data                           | Read       |
| 7988    | Spare Auxiliary I/O #4 Data                           | Read       |
| 7989    | Spare Auxiliary I/O #5 Data                           | Read       |
| 7990    | Spare Auxiliary I/O #6 Data                           | Read       |
| 7991    | Spare Auxiliary I/O #7 Data                           | Read       |
| 7992    | Spare Auxiliary I/O #8 Data                           | Read       |
| 7993    | Spare Auxiliary I/O #9 Data                           | Read       |
| 7994    | Spare Auxiliary I/O #10 Data                          | Read       |
| 7995    | Spare Auxiliary I/O #11 Data                          | Read       |
| 7996    | Spare Auxiliary I/O #12 Data                          | Read       |
| . 000   | epaid . William in the balla                          | 11044      |

#### Alarm, Audit Trail, and Calibration Data

#### Previous Data Alarm Area

Set last alarm status request (3030, 16 bits Integer, Write only) to 1.

4001-4005 (2x16 bits Integers, Read only) 4001 last alarm date mmddyy 4003 last alarm time hhmmss

4005 last alarm flag - IDx1000000 + CODE x10000 +ACODEx100 +STATUS

Last Alarm Flag

| ID CODE | Not used | STATUS |
|---------|----------|--------|
|---------|----------|--------|

ID

| ,  |                        |    |                         |
|----|------------------------|----|-------------------------|
| 0  | Analog Input #1        | 41 | Analog Input #5         |
| 1  | Analog Input #2        | 42 | Analog Input #6         |
| 2  | Analog Input #3        | 43 | Analog Input #7         |
| 3  | Analog Input #4        | 44 | Analog Input #8         |
| 4  | RTD Input              | 45 | Analog Input #9         |
| 5  | Analog Output #1       |    |                         |
| 6  | Analog Output #2       | 51 | Spare Auxiliary I/O #1  |
| 7  | Analog Output #3       | 52 | Spare Auxiliary I/O #2  |
| 8  | Analog Output #4       | 53 | Spare Auxiliary I/O #3  |
| 9  | Density                | 54 | Spare Auxiliary I/O #4  |
| 10 | Density                | 55 | Spare Auxiliary I/O #5  |
| 11 | Meter #1               | 56 | Spare Auxiliary I/O #6  |
| 12 | Meter #2               | 57 | Spare Auxiliary I/O #7  |
| 13 | Meter #3               | 58 | Spare Auxiliary I/O #8  |
| 14 | Meter #4               | 59 | Spare Auxiliary I/O #9  |
| 17 | Event Status           | 60 | Spare Auxiliary I/O #10 |
| 18 | Calibration Mode       | 61 | Spare Auxiliary I/O #11 |
|    |                        | 62 | Spare Auxiliary I/O #12 |
| 20 | Multi.Var. DP          | 71 | Slave#1 DP              |
| 21 | Multi.Var. Pressurer   | 72 | Slave#2 DP              |
| 22 | Multi.Var. Temperature | 73 | Slave#3 DP              |
|    |                        | 74 | Slave#1 Pressure        |
| 30 | MPU1200 Alarm          | 75 | Slave#2 Pressure        |
| 31 |                        | 76 | Slave#3 Pressure        |
| 32 | Slave#1 Communication  | 77 | Slave#1 Temperature     |
| 33 | Slave#2 Communication  | 78 | Slave#2 Temperature     |
| 34 | Slave#3 Communication  | 79 | Slave#3 Temperature     |
|    |                        | 80 | Battery Alarm           |

#### **CODE** (Only For ID=Meter#1,2,3,4)

| 1 | Flow Rate                      |
|---|--------------------------------|
| 2 | Table Gravity Out of Range     |
| 3 | Table Temperature Out of Range |
| 4 | Table Alpha T Out of Range     |

| 7 | Down  |
|---|-------|
| 8 | Start |

# **STATUS**

| 0      | ID = 10:   | FAILED OK    |
|--------|------------|--------------|
|        | ID = 5 -8: | OVERRANGE OK |
|        | ID=17,18   | OFF          |
|        | ID=Others  | OK           |
| Others | Not Used   |              |

| 1 | ID=17,18,30    | ON   |
|---|----------------|------|
|   | ID=Others      | HI   |
|   | ID=31,32,33,34 | FAIL |
| 2 | LO             |      |
| 4 | FAILED         |      |
| 5 | OVERRANGE      |      |
| 6 | FAIL OK        |      |
| 7 | FAIL           |      |

Example: Last Alarm Flag – (Hex:A8EA33, Decimal:11070003) ID= 11, CODE=7,ACODE=0,STATUS=3 -> METER #1 DOWN

Previous Alarm Data Area Ends

# Previous Audit Data Area

Set last audit data request (3031,16 bits Integer, Write only) to 1.

8101-8109 (2x16 bits Integers, Read only) 8101 Last Audit Date mmddyy 8103 Last Audit Time hhmmss

Old Value (Decimal Inferred in the 4<sup>th</sup> byte of 8109) 8105 New Vaule (Decimal Inferred in the 4th byte of 8109) 8107

Code Flag-Given in four hexadecimal bytes (no, audit code, dec) 8109

## **Code Flag**

| No.  | Audit Code | Old/New Value Decimal Inferred |
|------|------------|--------------------------------|
| 140. | Addit Code | Old/New Value Decimal inferred |

#### NO.

Value 0: this field is not used.

| 1   | Meter #1 ID               |
|-----|---------------------------|
| 2   | Meter #2 ID               |
| 3   | Meter #3 ID               |
| 4   | Meter #4 ID               |
|     |                           |
| 191 | Analog Input #5 TAG       |
| 192 | Analog Input #6 TAG       |
| 193 |                           |
| 194 | Analog Input #8 TAG       |
| 195 | Analog Input #9 TAG       |
| 201 | Analog Input #1 TAG       |
| 202 | Analog Input #2 TAG       |
| 203 | Analog Input #3 TAG       |
| 204 | Analog Input #4 TAG       |
| 205 | RTD TAG                   |
|     |                           |
| 211 | Multi.Var.DP TAG          |
| 212 | Multi.Var.Pressure TAG    |
| 213 | Multi.Var.Temperature TAG |
|     |                           |

| 221 | Spare Aux.I/O#1 TAG     |
|-----|-------------------------|
| 222 | Spare Aux.I/O#2 TAG     |
| 223 | Spare Aux.I/O#3 TAG     |
| 224 | Spare Aux.I/O#4 TAG     |
| 225 | Spare Aux.I/O#5 TAG     |
| 226 | Spare Aux.I/O#6 TAG     |
| 227 | Spare Aux.I/O#7 TAG     |
| 228 | Spare Aux.I/O#8 TAG     |
| 229 | Spare Aux.I/O#9 TAG     |
| 230 | Spare Aux.I/O#10 TAG    |
| 231 | Spare Aux.I/O#11 TAG    |
| 232 | Spare Aux.I/O#12 TAG    |
|     |                         |
| 236 | Slave#1 DP TAG          |
| 237 | Slave#1 Pressure TAG    |
| 238 | Slave#1 Temperature TAG |
| 239 | Slave#2 DP TAG          |
| 240 | Slave#2 Pressure TAG    |
| 241 | Slave#2 Temperature TAG |
| 242 | Slave#3 DP TAG          |
| 243 | Slave#3 Pressure TAG    |
| 244 | Slave#3 TemperatureTAG  |

# **Audit Codes**

| 1  | DP Cut Off                             |  |  |
|----|----------------------------------------|--|--|
| 2  | DP High Switch Percentage              |  |  |
| 3  | DP Low Assignment                      |  |  |
|    | DP High Assignment                     |  |  |
| 5  |                                        |  |  |
| 6  | <u> </u>                               |  |  |
| 7  | Orifice ID                             |  |  |
|    |                                        |  |  |
| 8  | Temperature Override Pressure Override |  |  |
|    |                                        |  |  |
| 10 |                                        |  |  |
| 11 | Equilibrium Pressure Override          |  |  |
| 12 | Ratio of Heat                          |  |  |
| 13 | Viscosity                              |  |  |
| 14 | Pipe Thermal Expansion E-6             |  |  |
|    | Orifice Thermal Expansion E-6          |  |  |
| 16 | Reference Temperature of Pipe          |  |  |
| 17 |                                        |  |  |
| 18 | Kd2 Override                           |  |  |
|    | FA Override                            |  |  |
| 20 | Meter Factor                           |  |  |
| 21 | K Factor                               |  |  |
|    | Flow Cut Off Hertz                     |  |  |
|    | Use Stack DP 0=No, 1=Yes               |  |  |
|    | Densitometer Type                      |  |  |
| 25 |                                        |  |  |
| 26 | Calculation Type                       |  |  |
|    | Y Factor Select                        |  |  |
| 28 | Temperature Assignment                 |  |  |
| 29 | Pressure Assignment                    |  |  |
| 30 | Densitometer Assignment                |  |  |
| 31 | Flow Rate Threshold #1                 |  |  |
| 32 | Flow Rate Threshold #2                 |  |  |
| 33 | Flow Rate Threshold #3                 |  |  |
| 34 | Flow Rate Threshold #4                 |  |  |
| 35 | Linearization Factor #1                |  |  |
| 36 | Linearization Factor #2                |  |  |
|    | Linearization Factor #3                |  |  |
|    | Linearization Factor #4                |  |  |
| 39 | Venturi C Factor Override              |  |  |
| 40 | SG Override                            |  |  |
| 41 | Density Override                       |  |  |
|    | 9                                      |  |  |

|     | <u> </u>                       |  |  |
|-----|--------------------------------|--|--|
| 60  | Base Temperature               |  |  |
| 61  | Base Pressure                  |  |  |
| 62  | Atmospheric Pressure           |  |  |
| 63  | Pulse Output #1 Volume         |  |  |
| 64  | Pulse Output #2 Volume         |  |  |
| 65  | Density Correction Factor      |  |  |
| 66  | Number of Meters               |  |  |
| 67  | Pressure Unit                  |  |  |
| 68  | Flow Unit                      |  |  |
| 69  | Common Temperature             |  |  |
| 70  | Common Pressure                |  |  |
| 71  | Common Density                 |  |  |
| 72  | Flow Rate Display              |  |  |
| 73  | Day Start Hour                 |  |  |
| 74  | Disable Alarms                 |  |  |
| 75  | Frequency Device K Factor Unit |  |  |
|     |                                |  |  |
| 76  | @4mA/1-5V                      |  |  |
| 77  | @20mA/1-5V                     |  |  |
| 78  | Maintenance                    |  |  |
| 79  | Override                       |  |  |
| 80  | Fail Code                      |  |  |
| 81  | DP Unit                        |  |  |
| 82  | Product #1 Table               |  |  |
| 83  | Product #2 Table               |  |  |
| 84  | Product #3 Table               |  |  |
| 85  | Product #4 Table               |  |  |
| 86  | Product #5 Table               |  |  |
| 87  | Product #6 Table               |  |  |
| 88  | Product #7 Table               |  |  |
| 89  | Product #8 Table               |  |  |
| 90  | Mass Pulse Selection           |  |  |
|     |                                |  |  |
|     |                                |  |  |
|     |                                |  |  |
|     |                                |  |  |
|     |                                |  |  |
|     |                                |  |  |
|     |                                |  |  |
|     |                                |  |  |
| 180 | ***SEE NOTE (next page)        |  |  |

8101 Last Audit Date mmddyy

00 00 C8 C8 (Hex), 051400 (Digit) - May 14, 2000

8103 Last Audit Time hhmmss

00 03 0d 40 (Hex), 200000(Digit) - 8 PM

8105 Old Value (Decimal Inferred in the 4th byte of 8109)

00 01 86 a0 (Hex) 100000 (Digit) 4<sup>th</sup> byte of 8113 = 5 (Decimal Places)

result = 1.00000

8107 New Vaule(Decimal Inferred in the 4<sup>th</sup> byte of 8109)

00 01 ad b0 (Hex) 110000 (Digit) 4<sup>th</sup> byte of 8113 = 5 (Decimal Places)

Rsult = 1.10000

8109 Code Flag

00 00 41 05 in Hex

1st Byte

 $2^{nd}$  Byte -0,

3<sup>rd</sup> Byte – Audit Code – 41(Hex) 65 (Digit) – Density Correction Factor

4<sup>th</sup> Byte – Decimal Places – 05(Hex) – 5 Decimal Places

#### **NOTE:**

When Audit Code = 180, then the following Modbus Addresses store the parameters indicated.

8501 System Start Date 8503 System Start Time

8505 System Failed Date8507 System Failed Time

8509 Not Used

#### Previous Audit Data Area Ends

# Previous Calibration/Verification Data Area

3129 (16 bits Integer, Write only) Last Calib./Verification Rpt Req.(1=Latest,20=Oldest)

#### 8101-8109 (2x16 bits Integers, Read only)

8101 Last Calibration/Verification Date mmddyy 8103 Last Calibration/Verification Time hhmmss

As Found / Verification Point (Decimal Inferred in the 4<sup>th</sup> byte of 8109)

As Left (Decimal Inferred in the 4<sup>th</sup> byte of 8109)

8109 Code Flag-Given in four hexadecimal bytes (ID,Code,Decimal Inferreed)

## **Code Flag**

| I.D. | 0.1. | Walana Danakara I kaɗa ana d |
|------|------|------------------------------|
| ID   | Code | Value Decimal Inferred       |

#### **Calibration ID**

|                | Master | Slave #1 | Slave#2 | Slave#3 |
|----------------|--------|----------|---------|---------|
| DP             | 1      | 21       | 31      | 41      |
| Pressure       | 2      | 22       | 32      | 42      |
| Temperature    | 3      | 23       | 33      | 43      |
| Analog Input#1 | 4      | 24       | 34      | 44      |
| Analog Input#2 | 5      | 25       | 35      | 45      |
| Analog Input#3 | 6      | 26       | 36      | 46      |
| Analog Input#4 | 7      | 27       | 37      | 47      |
| Analog Input#5 | 8      |          |         |         |
| Analog Input#6 | 9      |          |         |         |
| Analog Input#7 | 10     |          |         |         |
| Analog Input#8 | 11     |          |         |         |
| Analog Input#9 | 12     |          |         |         |
| RTD            | 13     |          |         |         |

### Code

| 0 | Calibration  |
|---|--------------|
| 1 | Verification |

### **Decimal Inferred**

| 4 | 4 Decimal Inferred |
|---|--------------------|
| 3 | 3 Decimal Inferred |
| 2 | 2 Decimal Inferred |

# **Current Alarm Status**

4 Bytes in Hex - FF FF FF FF

METER#1: MODBUS ADDRESS 9533

METER#2: MODBUS ADDRESS 9535

METER#3: MODBUS ADDRESS 9537

METER#4: MODBUS ADDRESS 9539

The Current Alarm Status is a 4-byte string that resides at **Modbus address 9533 for Meter #1, 9535 for Meter #2, 9537 for Meter #3, and 9539 for Meter #4.** The alarm status codes are the same for all meters.

| 1st byte | 2 <sup>nd</sup> byte | 3 <sup>rd</sup> byte | 4 <sup>th</sup> byte |                                |
|----------|----------------------|----------------------|----------------------|--------------------------------|
| 01       | 00                   | 00                   | 00                   | Meter Down                     |
| 02       | 00                   | 00                   | 00                   | Table Gravity Out of Range     |
| 04       | 00                   | 00                   | 00                   | Net Flow Rate High             |
| 08       | 00                   | 00                   | 00                   | Net Flow Rate Low              |
| 10       | 00                   | 00                   | 00                   | Table Temperature Out of Range |
| 20       | 00                   | 00                   | 00                   | Table Alpha-T Out of Range     |

# <u>OTHER ALARMS (MODBUS ADDRESS 9517)</u> 4 Bytes in Hex - FF FF FF

| 01 | 00 | 00 | 00 | Slave#1 DP High          |
|----|----|----|----|--------------------------|
| 02 | 00 | 00 | 00 | Slave#1 DP Low           |
| 04 | 00 | 00 | 00 | Slave#1 Pressure High    |
| 80 | 00 | 00 | 00 | Slave#1 Pressure Low     |
| 10 | 00 | 00 | 00 | Slave#1 Temperature High |
| 20 | 00 | 00 | 00 | Slave#1 Temperature Low  |
| 00 | 01 | 00 | 00 | Slave#2 DP High          |
| 00 | 02 | 00 | 00 | Slave#2 DP Low           |
| 00 | 04 | 00 | 00 | Slave#2 Pressure High    |
| 00 | 80 | 00 | 00 | Slave#2 Pressure Low     |
| 00 | 10 | 00 | 00 | Slave#2 Temperature High |
| 00 | 20 | 00 | 00 | Slave#2 Temperature Low  |
| 00 | 00 | 01 | 00 | Slave#3 DP High          |
| 00 | 00 | 02 | 00 | Slave#3 DP Low           |
| 00 | 00 | 04 | 00 | Slave#3 Pressure High    |
| 00 | 00 | 08 | 00 | Slave#3 Pressure Low     |
| 00 | 00 | 10 | 00 | Slave#3 Temperature High |
| 00 | 00 | 20 | 00 | Slave#3 Temperature Low  |

# <u>OTHER ALARMS (MODBUS ADDRESS 9527)</u> 4 Bytes in Hex - FF FF FF

| 01 | 00 | 00 | 00 | Spare Auxiliary I/O#1 High  |
|----|----|----|----|-----------------------------|
| 02 | 00 | 00 | 00 | Spare Auxiliary I/O#1 Low   |
| 04 | 00 | 00 | 00 | Spare Auxiliary I/O#2 High  |
| 08 | 00 | 00 | 00 | Spare Auxiliary I/O#2 Low   |
| 10 | 00 | 00 | 00 | Spare Auxiliary I/O#3 High  |
| 20 | 00 | 00 | 00 | Spare Auxiliary I/O#3 Low   |
| 40 | 00 | 00 | 00 | Spare Auxiliary I/O#4 High  |
| 80 | 00 | 00 | 00 | Spare Auxiliary I/O#4 Low   |
| 00 | 01 | 00 | 00 | Spare Auxiliary I/O#5 High  |
| 00 | 02 | 00 | 00 | Spare Auxiliary I/O#5 Low   |
| 00 | 04 | 00 | 00 | Spare Auxiliary I/O#6 High  |
| 00 | 08 | 00 | 00 | Spare Auxiliary I/O#6 Low   |
| 00 | 10 | 00 | 00 | Spare Auxiliary I/O#7 High  |
| 00 | 20 | 00 | 00 | Spare Auxiliary I/O#7 Low   |
| 00 | 40 | 00 | 00 | Spare Auxiliary I/O#8 High  |
| 00 | 80 | 00 | 00 | Spare Auxiliary I/O#8 Low   |
| 00 | 00 | 01 | 00 | Spare Auxiliary I/O#9 High  |
| 00 | 00 | 02 | 00 | Spare Auxiliary I/O#9 Low   |
| 00 | 00 | 04 | 00 | Spare Auxiliary I/O#10 High |
| 00 | 00 | 08 | 00 | Spare Auxiliary I/O#10 Low  |
| 00 | 00 | 10 | 00 | Spare Auxiliary I/O#11 High |
| 00 | 00 | 20 | 00 | Spare Auxiliary I/O#11 Low  |
| 00 | 00 | 40 | 00 | Spare Auxiliary I/O#12 High |
| 00 | 00 | 80 | 00 | Spare Auxiliary I/O#12 Low  |
| 00 | 00 | 00 | 01 | Analog Input #5 Failed      |
| 00 | 00 | 00 | 02 | Analog Input #6 Failed      |
| 00 | 00 | 00 | 04 | Analog Input #7 Failed      |
| 00 | 00 | 00 | 80 | Analog Input #8 Failed      |
| 00 | 00 | 00 | 10 | Analog Input #9 Failed      |

# <u>OTHER ALARMS (MODBUS ADDRESS 9529)</u> 4 Bytes in Hex - FF FF FF

| 01 | 00 | 00 | 00 |                             |
|----|----|----|----|-----------------------------|
| 02 | 00 | 00 | 00 | Slave#1 Communcation Failed |
| 04 | 00 | 00 | 00 | Slave#2 Communcation Failed |
| 08 | 00 | 00 | 00 | Slave#3 Communcation Failed |
| 10 | 00 | 00 | 00 | MPU –1200 Alarm             |
| 00 | 01 | 00 | 00 | Analog Input#5 High         |
| 00 | 02 | 00 | 00 | Analog Input#5 Low          |
| 00 | 04 | 00 | 00 | Analog Input#6 High         |
| 00 | 08 | 00 | 00 | Analog Input#6 Low          |
| 00 | 10 | 00 | 00 | Analog Input#7 High         |
| 00 | 20 | 00 | 00 | Analog Input#7 Low          |
| 00 | 40 | 00 | 00 | Analog Input#8 High         |
| 00 | 80 | 00 | 00 | Analog Input#8 Low          |
| 00 | 00 | 01 | 00 | Analog Input#9 High         |
| 00 | 00 | 02 | 00 | Analog Input#9 Low          |

# <u>OTHER ALARMS (MODBUS ADDRESS 9531)</u> 4 Bytes in Hex - FF FF FF

|    |    |    |    | T                          |
|----|----|----|----|----------------------------|
| 01 | 00 | 00 | 00 | Analog Input #1 High       |
| 02 | 00 | 00 | 00 | Analog Input #1 Low        |
| 04 | 00 | 00 | 00 | Analog Input #2 High       |
| 08 | 00 | 00 | 00 | Analog Input #2 Low        |
| 10 | 00 | 00 | 00 | Analog Input #3 High       |
| 20 | 00 | 00 | 00 | Analog Input #3 Low        |
| 40 | 00 | 00 | 00 | Analog Input #4 High       |
| 80 | 00 | 00 | 00 | Analog Input #4 Low        |
| 00 | 01 | 00 | 00 | RTD Input High             |
| 00 | 02 | 00 | 00 | RTD Input Low              |
| 00 | 04 | 00 | 00 | Calibration Mode ON        |
| 00 | 80 | 00 | 00 | Battery Low                |
| 00 | 10 | 00 | 00 | Analog Output #1 Overrange |
| 00 | 20 | 00 | 00 | Analog Output #2 Overrange |
| 00 | 40 | 00 | 00 | Analog Output #3 Overrange |
| 00 | 80 | 00 | 00 | Analog Output #4 Overrange |
| 00 | 00 | 01 | 00 | Analog Input #1 Failed     |
| 00 | 00 | 02 | 00 | Analog Input #2 Failed     |
| 00 | 00 | 04 | 00 | Analog Input #3 Failed     |
| 00 | 00 | 80 | 00 | Analog Input #4 Failed     |
| 00 | 00 | 10 | 00 | RTD Input Failed           |
| 00 | 00 | 20 | 00 | Densitometer Failed        |
| 00 | 00 | 40 | 00 | Densitometer High          |
| 00 | 00 | 80 | 00 | Densitometer Low           |
| 00 | 00 | 00 | 01 | Multi.Var.DP High          |
| 00 | 00 | 00 | 02 | Multi.Var.DP Low           |
| 00 | 00 | 00 | 04 | Multi.Var.Pressure High    |
| 00 | 00 | 00 | 80 | Multi.Var.Pressure Low     |
| 00 | 00 | 00 | 10 | Multi.Var.Temperature High |
| 00 | 00 | 00 | 20 | Multi.Var.Temperature Low  |

**Current Alarms Status Section Ends** 

# INPUT ASSIGNMENTS 1 - Analog Input #1 2 - Analog Input #2 3 - Analog Input #3 4 - Analog Input #4

5 - RTD

10 - Multi.Variable

21 - Analog Input #5

22 - Analog Input #6

23 – Analog Input #7

24 - Analog Input #8 25 - Analog Input #9

#### **ADDRESS DESCRIPTION**

| Assignment  | Meter#1 | Meter#2 | Meter#3 | Meter#4 |
|-------------|---------|---------|---------|---------|
| DP          | 2664    | 2684    | 2704    | 2724    |
| Temperature | 2665    | 2685    | 2705    | 2725    |
| Pressure    | 2666    | 2686    | 2706    | 2726    |
| Density     | 2667    | 2687    | 2707    | 2727    |
| DP High     | 2668    | 2688    | 2708    | 2728    |

| 2861-2864<br>2865-2868<br>2869-2872<br>2873-2876<br>2877-2880                                                                                                         | Analog Input #5 TAG ID Analog Input #6 TAG ID Analog Input #7 TAG ID Analog Input #8 TAG ID Analog Input #9 TAG ID                                                                                                                                                                                                   | 8 Chars.<br>8 Chars<br>8 Chars<br>8 Chars<br>8 Chars                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 2891-2894<br>2895-2898<br>2899-2902<br>2903-2906<br>2907-2910<br>2911-2914<br>2915-2918<br>2919-2922<br>2923-2926<br>2927-2930<br>2931-2934<br>2935-2938<br>2939-2942 | Analog Input #1 TAG ID Analog Input #2 TAG ID Analog Input #3 TAG ID Analog Input #4 TAG ID RTD TAG ID Densitometer TAG ID Analog Output #1 TAG ID Analog Output #2 TAG ID Analog Output #3 TAG ID Analog Output #4 TAG ID Analog Output #4 TAG ID Multi.Var DP TAG Multi.Var Pressure TAG Multi.Var Temperature TAG | 8 Chars. |
| 4701-4703<br>4705-4707<br>4709-4711<br>4713-4715<br>4717-4719<br>4721-4723<br>4725-4727<br>4729-4731<br>4733-4735<br>4737-4739<br>4741-4743<br>4745-4747              | Spare Auxiliary I/O #1 Spare Auxiliary I/O #2 Spare Auxiliary I/O #3 Spare Auxiliary I/O #4 Spare Auxiliary I/O #5 Spare Auxiliary I/O #6 Spare Auxiliary I/O #7 Spare Auxiliary I/O #8 Spare Auxiliary I/O #9 Spare Auxiliary I/O #10 Spare Auxiliary I/O #11 Spare Auxiliary I/O #12                               | 8 Chars.                   |

## **Previous Hourly Data Packet (101-184)**

Set Meter Number to 1, 2, 3, or 4 (Address 3028)

Hourly archive flow data 101, 102, .. 184 are fixed length arrays. The data field is used to address a 10 hours individual group record.(101=Latest, 184=Oldest)

#### RTU MODE -

| ADDR | FUNC |    |    | # OF POINTS |    | CRC   |    |
|------|------|----|----|-------------|----|-------|----|
|      | CODE | HI | LO | HI          | LO | CHECK | CK |
| 01   | 03   | 00 | 65 | 00          | 01 | 94    | 15 |

#### Response

| ADDR  | FUNC<br>CODE | BYTE<br>COUNTS | DATA(<br>Tim | CRC |       |
|-------|--------------|----------------|--------------|-----|-------|
| 7,001 |              |                | HI           | LO  | CHECK |
| 01    | 03           | F0             | 00           | 01  |       |

### RESPONSE DATA MESSAGE - STANDARD

| DECCRIPTION (Ctondond)                    | Desimal    | HOUR        |
|-------------------------------------------|------------|-------------|
| DESCRIPTION (Standard)                    | Decimal    |             |
| Date (3 bytes)/Hour (one byte)            | 0 Inferred | First Hour  |
| Flowing Time (4 bytes)                    | 2 Inferred | First Hour  |
| Gross Total (4 bytes)                     | 1 Inferred | First Hour  |
| Net Total (4 bytes)                       | 1 Inferred | First Hour  |
| Pressure (2 bytes)/ Temperature (2 bytes) | 0 Inferred | First Hour  |
| DP EXT (2 bytes)/DP (2 bytes)             | 1 Inferred | First Hour  |
| Date (3 bytes)/Hour (one byte)            | 0 Inferred | Second Hour |
| Flowing Time (4 bytes)                    | 2 Inferred | Second Hour |
| Gross Total (4 bytes)                     | 1 Inferred | Second Hour |
| Net Total (4 bytes)                       | 1 Inferred | Second Hour |
| Pressure (2 bytes)/ Temperature (2 bytes) | 0 Inferred | Second Hour |
| DP EXT (2 bytes)/DP (2 bytes)             | 1 Inferred | Second Hour |
|                                           |            | •••         |
| •••                                       |            | •••         |
| •••                                       | •••        | •••         |
| Date (3 bytes)/Hour (one byte)            | 0 Inferred | Ninth Hour  |
| Flowing Time (4 bytes)                    | 2 Inferred | Ninth Hour  |
| Gross Total (4 bytes)                     | 1 Inferred | Ninth Hour  |
| Net Total (4 bytes)                       | 1 Inferred | Ninth Hour  |
| Pressure (2 bytes)/ Temperature (2 bytes) | 0 Inferred | Ninth Hour  |
| DP EXT (2 bytes)/DP (2 bytes)             | 1 Inferred | Ninth Hour  |
| Date (3 bytes)/Hour (one byte)            | 0 Inferred | Tenth Hour  |
| Flowing Time (4 bytes)                    | 2 Inferred | Tenth Hour  |
| Gross Total (4 bytes)                     | 1 Inferred | Tenth Hour  |
| Net Total (4 bytes)                       | 1 Inferred | Tenth Hour  |
| Pressure (2 bytes)/ Temperature (2 bytes) | 0 Inferred | Tenth Hour  |
| DP EXT (2 bytes)/DP (2 bytes)             | 1 Inferred | Tenth Hour  |

# RESPONSE DATA MESSAGE - PROGRAM VARIABLE

| DESCRIPTION                    | DATA TYPE | HOUR        |
|--------------------------------|-----------|-------------|
| Date (3 bytes)/Hour (one byte) | Integer   | First Hour  |
| Variable #1                    | Float     | First Hour  |
| Variable #2                    | Float     | First Hour  |
| Variable #3                    | Float     | First Hour  |
| Variable #4                    | Float     | First Hour  |
| Variable #5                    | Float     | First Hour  |
| Date (3 bytes)/Hour (one byte) | Float     | Second Hour |
| Variable #1                    | Float     | Second Hour |
| Variable #2                    | Float     | Second Hour |
| Variable #3                    | Float     | Second Hour |
| Variable #4                    | Float     | Second Hour |
| Variable #5                    | Float     | Second Hour |
| •••                            | •••       | •••         |
| •••                            |           | •••         |
| •••                            |           | •••         |
| Date (3 bytes)/Hour (one byte) | Float     | Ninth Hour  |
| Variable #1                    | Float     | Ninth Hour  |
| Variable #2                    | Float     | Ninth Hour  |
| Variable #3                    | Float     | Ninth Hour  |
| Variable #4                    | Float     | Ninth Hour  |
| Variable #5                    | Float     | Ninth Hour  |
| Date (3 bytes)/Hour (one byte) | Float     | Tenth Hour  |
| Variable #1                    | Float     | Tenth Hour  |
| Variable #2                    | Float     | Tenth Hour  |
| Variable #3                    | Float     | Tenth Hour  |
| Variable #4                    | Float     | Tenth Hour  |
| Variable #5                    | Float     | Tenth Hour  |

# Previous Hourly Data Packet

| Number | Hour    |
|--------|---------|
| 101    | 1-10    |
| 102    | 11-20   |
| 103    | 21-30   |
| 104    | 31-40   |
| 105    | 41-50   |
| 106    | 51-60   |
| 107    | 61-70   |
| 108    | 71-80   |
| 109    | 81-90   |
| 110    | 91-100  |
| 111    | 101-110 |
| 112    | 111-120 |
| 113    | 121-130 |
| 114    | 131-140 |
| 115    | 141-150 |
| 116    | 151-160 |
| 117    | 161-170 |
| 118    | 171-180 |
| 119    | 181-190 |
| 120    | 191-200 |
| 121    | 201-210 |
| 122    | 211-220 |
| 123    | 221-230 |
| 124    | 231-240 |
| 125    | 241-250 |
| 126    | 251-260 |
| 127    | 261-270 |
| 128    | 271-280 |
| 129    | 281-290 |
| 130    | 291-300 |

| Number | Hour    |
|--------|---------|
| 131    | 301-310 |
| 132    | 311-320 |
| 133    | 321-330 |
| 134    | 331-340 |
| 135    | 341-350 |
| 136    | 351-360 |
| 137    | 361-370 |
| 138    | 371-380 |
| 139    | 381-390 |
| 140    | 391-400 |
| 141    | 401-410 |
| 142    | 411-420 |
| 143    | 421-430 |
| 144    | 431-440 |
| 145    | 441-450 |
| 146    | 451-460 |
| 147    | 461-470 |
| 148    | 471-480 |
| 149    | 481-490 |
| 150    | 491-500 |
| 151    | 501-510 |
| 152    | 511-520 |
| 153    | 521-530 |
| 154    | 531-540 |
| 155    | 541-550 |
| 156    | 551-560 |
| 157    | 561-570 |
| 158    | 571-580 |
| 159    | 581-590 |
| 160    | 591-600 |
|        |         |

| Number | Hour    |
|--------|---------|
| 161    | 601-610 |
| 162    | 611-620 |
| 163    | 621-630 |
| 164    | 631-640 |
| 165    | 641-650 |
| 166    | 651-660 |
| 167    | 661-670 |
| 168    | 671-680 |
| 169    | 681-690 |
| 170    | 691-700 |
| 171    | 701-710 |
| 172    | 711-720 |
| 173    | 721-730 |
| 174    | 731-740 |
| 175    | 741-750 |
| 176    | 751-760 |
| 177    | 761-770 |
| 178    | 771-780 |
| 179    | 781-790 |
| 180    | 791-800 |
| 181    | 801-810 |
| 182    | 811-820 |
| 183    | 821-830 |
| 184    | 831-840 |

### **Previous Daily Data Packet**

Set Meter Number to 1, 2, 3, or 4 (Address 3028)

Daily archive flow data 431,432, 433,434 (240 bytes) are fixed length arrays. The data field is used to address a 10 days individual group record.431=Latest, 434=Oldest)

Set Meter Number to 1, 2, 3, or 4 (Address 3028)

#### RTU MODE –

|   | ADDR | FUNC | STARTING POINT |    | ARTING POINT # OF POINTS |    | CR    |  |
|---|------|------|----------------|----|--------------------------|----|-------|--|
|   |      | CODE | HI             | LO | HI                       | LO | CHECK |  |
| I | 01   | 03   | 01 AF 00 01    |    | 01                       |    |       |  |

#### Response

| ADDR | FUNC        | BYTE | DATA(<br>Tim | Repeat n<br>nes) | CR  |    |
|------|-------------|------|--------------|------------------|-----|----|
|      | CODE COUNTS |      | HI           | LO               | CHE | CK |
| 01   | 03          | F0   | 00           | 01               |     |    |

### RESPONSE DATA MESSAGE - STANDARD

| DESCRIPTION                              | DECIMAL    | DAY       |
|------------------------------------------|------------|-----------|
| Day Start Hour (1 byte) /Date (3 byte)   | 0 Inferred | First Day |
| Flowing Time (4 bytes)                   | 2 Inferred | First Day |
| Gross Total (4 bytes)                    | 1 Inferred | First Day |
| Net Total (4 bytes)                      | 1 Inferred | First Day |
| Pressure (2 bytes)/Temperature (2 bytes) | 0 Inferred | First Day |
| DP EXT (2 bytes)/DP (2 bytes)            | 1 Inferred | First Day |
| •••                                      | •••        |           |
| •••                                      | •••        | •••       |
| •••                                      | •••        |           |
| Day Start Hour (1 byte) /Date (3 byte)   | 0 Inferred | Ninth Day |
| Flowing Time                             | 2 Inferred | Ninth Day |
| Gross Total                              | 1 Inferred | Ninth Day |
| Net Total                                | 1 Inferred | Ninth Day |
| Pressure (2 bytes)/Temperature (2 bytes) | 0 Inferred | Ninth Day |
| DP EXT (2 bytes)/DP (2 bytes)            | 2 Inferred | Ninth Day |
| Day Start Hour (1 byte) /Date (3 byte)   | 0 Inferred | Tenth Day |
| Flowing Time                             | 2 Inferred | Tenth Day |
| Gross Total                              | 1 Inferred | Tenth Day |
| Net Total                                | 1 Inferred | Tenth Day |
| Pressure (2 bytes)/Temperature (2 bytes) | 0 Inferred | Tenth Day |
| DP EXT (2 bytes)/DP (2 bytes)            | 1 Inferred | Tenth Day |

#### **Previous Daily Data Packet**

| Number | Day   |
|--------|-------|
| 431    | 1-10  |
| 432    | 11-20 |
| 433    | 21-30 |
| 434    | 31-35 |

# RESPONSE DATA MESSAGE - PROGRAM VARIABLE

| DESCRIPTION                            | DATA TYPE    | DAY       |
|----------------------------------------|--------------|-----------|
| Day Start Hour (1 byte) /Date (3 byte) | Long Integer | First Day |
| Variable #1                            | Float        | First Day |
| Variable #2                            | Float        | First Day |
| Variable #3                            | Float        | First Day |
| Variable #4                            | Float        | First Day |
| Variable #5                            | Float        | First Day |
| •••                                    | •••          | •••       |
| •••                                    | •••          | •••       |
| •••                                    | •••          | •••       |
| Day Start Hour (1 byte) /Date (3 byte) | Long Integer | Ninth Day |
| Variable #1                            | Float        | Ninth Day |
| Variable #2                            | Float        | Ninth Day |
| Variable #3                            | Float        | Ninth Day |
| Variable #4                            | Float        | Ninth Day |
| Variable #5                            | Float        | Ninth Day |
| Day Start Hour (1 byte) /Date (3 byte) | Long Integer | Tenth Day |
| Variable #1                            | Float        | Tenth Day |
| Variable #2                            | Float        | Tenth Day |
| Variable #3                            | Float        | Tenth Day |
| Variable #4                            | Float        | Tenth Day |
| Variable #5                            | Float        | Tenth Day |

#### **Previous Daily Data Packet**

| Number | Day   |
|--------|-------|
| 431    | 1-10  |
| 432    | 11-20 |
| 433    | 21-30 |
| 434    | 31-35 |

# **Previous Month Data Packet (411)**

Set Meter Number to 1, 2, 3, or 4 (Address 3028)

Monthly archive flow data 411 (72 bytes) is a fixed length array. The data field is used to address month configuration and month totals record.

#### **RTU MODE -**

| A | ADDR | FUNC CODE | STARTING POINT |    | ARTING POINT # OF POINTS |    | CRC C | HECK |
|---|------|-----------|----------------|----|--------------------------|----|-------|------|
|   |      |           | HI             | LO | HI                       | LO |       |      |
| - | 01   | 03        | 01             | 9b | 00                       | 01 |       |      |

Response

| 4555 | ELINIO 000E      | BYTE | DATA(Rep | eat n Times) | 0000  |      |
|------|------------------|------|----------|--------------|-------|------|
| ADDR | FUNC CODE COUNTS |      | HI       | LO           | CRC C | HECK |
| 01   | 03               | 9C   | 00       | 01           |       |      |

RESPONSE DATA MESSAGE - STANDARD

| DESCRIPTION                                                             | DECIMAL    |
|-------------------------------------------------------------------------|------------|
| Base Temperature                                                        | 2 Inferred |
| Base Pressure                                                           | 4 Inferred |
| Atmospheric Pressure                                                    | 4 Inferred |
| Base SG                                                                 | 6 Inferred |
| Heating Value                                                           | 3 Inferred |
| Pipe ID                                                                 | 5 Inferred |
| Orifice ID                                                              | 5 Inferred |
| DP Cut Off                                                              | 4 Inferred |
| Flowing Hour                                                            | 2 Inferred |
| Month Total – Net                                                       | 0 Inferred |
| Month Total – Energy                                                    | 0 Inferred |
| Month Averaged Pressure (2 bytes)/ Month Averaged Temperature (2 bytes) | 0 Inferred |
| Month Averaged DP EXT (2 bytes)/ Month Averaged DP (2 bytes)            | 1 Inferred |
| Spare                                                                   | 0 Inferred |
| Total Day                                                               | 0 Inferred |
| Month                                                                   | 0 Inferred |
| Year                                                                    | 0 Inferred |
| Spare                                                                   | 0 Inferred |

RESPONSE DATA MESSAGE - PROGRAM VARIABLE

| DESCRIPTION TO CHARACTER TO CHA | DECIMAL    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Base Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 Inferred |
| Base Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 Inferred |
| Atmospheric Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 Inferred |
| Base SG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6 Inferred |
| Heating Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 Inferred |
| Pipe ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 Inferred |
| Orifice ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 Inferred |
| DP Cut Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 Inferred |
| Variable #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Float      |
| Variable #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Float      |
| Variable #3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Float      |
| Variable #4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Float      |
| Variable #5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Float      |
| Spare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 Inferred |
| Total Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 Inferred |
| Month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 Inferred |
| Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 Inferred |
| Spare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 Inferred |

# Previous Month Data Packet (412-414)

Monthly archive flow data 412-414 (240 bytes) are fixed length arrays. The data field is used to address an 10 days individual group record RTU MODE -

| ADDR | FUNC CODE | STARTING POINT |    | # OF POINTS |    | CRC CHECK |  |
|------|-----------|----------------|----|-------------|----|-----------|--|
|      |           | HI             | LO | HI          | LO |           |  |
| 01   | 03        | 01             | 9f | 00          | 01 |           |  |

Response

|      |               | BYTE   | DATA(Rep | eat n Times) |       |      |
|------|---------------|--------|----------|--------------|-------|------|
| ADDR | DDR FUNC CODE | COUNTS | HI       | LO           | CRC C | HECK |
| 01   | 03            | F0     | 00       | 01           |       |      |

| Number | Day   |
|--------|-------|
| 412    | 1-10  |
| 413    | 11-20 |
| 414    | 21-30 |

| DESCRIPTION                              | DECIMAL    | Days      |
|------------------------------------------|------------|-----------|
| Day Start Hour (1 byte) /Date (3 byte)   | 0 Inferred | First Day |
| Flowing Time                             | 2 Inferred | First Day |
| Daily Total – Gross Total                | 1 Inferred | First Day |
| Daily Total – Net Total                  | 1 Inferred | First Day |
| Pressure (2 bytes)/Temperature (2 bytes) | 0 Inferred | First Day |
| DP EXT (2 bytes)/DP (2 bytes)            | 1 Inferred | First Day |
| •••                                      |            |           |
|                                          |            |           |
| Day Start Hour (1 byte) /Date (3 byte)   | 0 Inferred | 10th Day  |
| Flowing Time                             | 2 Inferred | 10th Day  |
| Daily Total – Gross Total                | 1 Inferred | 10th Day  |
| Daily Total – Net Total                  | 1 Inferred | 10th Day  |
| Pressure (2 bytes)/Temperature (2 bytes) | 0 Inferred | 10th Day  |
| DP EXT (2 bytes)/DP (2 bytes)            | 0 Inferred | 10th Day  |

# **Previous Month Data Packet (415)**

Monthly archive flow data 415 (48 bytes) is a fixed length array. The data field is used to address a 2 days individual group record.

| Number | Day   |
|--------|-------|
| 415    | 31-32 |

#### **RTU MODE -**

| ADDR | FUNC | STARTIN | G POINT | # OF P | OINTS | CF  |     |
|------|------|---------|---------|--------|-------|-----|-----|
|      | CODE | HI      | LO      | HI     | LO    | CHE | :CK |
| 01   | 03   | 01      | A0      | 00     | 01    |     |     |

#### Response

| ADDR  | FUNC | BYTE   | DATA(Repeat n<br>Times) |    | CRC   |  |
|-------|------|--------|-------------------------|----|-------|--|
| ADDIX | CODE | COUNTS | HI                      | LO | CHECK |  |
| 01    | 03   | 30     | 00                      | 01 |       |  |

#### Report by Exception:

When a new alarm is occurred, the MicroML4 will send out an alarm message through RS232.

| Unit ID | <b>Function Code</b> | CRC |    |
|---------|----------------------|-----|----|
| 1       | 99 (63 Hex)          | XX  | XX |

```
32 bits Integer - 3329
00000001 Analog Input #1 Alarm
00000002 Analog Input #2 Alarm
00000004 Analog Input #3 Alarm
00000008 Analog Input #4 Alarm
00000010 Analog Input #5 Alarm
00000020 Analog Input #6 Alarm
00000040 Analog Input #7 Alarm
00000080 Analog Input #8 Alarm
00000100 Analog Input #9 Alarm
00000200 Multi.Var DP Alarm
00000400 Multi.Var Pressure Alarm
00000800 Multi.Var Temperature Alarm
00001000 Battery Alarm
00002000 Slave Comm. Failed
00004000
00088000
00010000 Slave#1 Multi.Var DP Alarm
00020000 Slave#1 Multi.Var Pressure Alarm
00040000 Slave#1 Multi.Var Temperature Alarm
00080000 Spare Auxiliary#1 Alarm
00100000 Spare Auxiliary#2 Alarm
00200000 Spare Auxiliary#3 Alarm
00400000 Spare Auxiliary#4 Alarm
01000000 Slave#2 Multi.Var DP Alarm
02000000 Slave#2 Multi.Var Pressure Alarm
04000000 Slave#2 Multi.Var Temperature Alarm
08000000 Spare Auxiliary#5 Alarm
10000000 Spare Auxiliary#6 Alarm
20000000 Spare Auxiliary#7 Alarm
40000000 Spare Auxiliary#8 Alarm
32 bits Integer - 3325
00000001 Slave#3 Multi.Var DP Alarm
00000002 Slave#3 Multi.Var PF Alarm
00000004 Slave#3 Multi.Var TF Alarm
00000008 Spare Auxiliary#9 Alarm
00000010 Spare Auxiliary#10 Alarm
00000020 Spare Auxiliary#11 Alarm
00000040 Spare Auxiliary#12 Alarm
```

#### Number of active meters/Spare I/O 1-4 Assignments

Spare I/Os are built in master unit-modbus address 3331,3332

| Spare I/O  | #2 | #1 |   | Active Aux.Spare | Active Spare | <b>Active Meter</b> |
|------------|----|----|---|------------------|--------------|---------------------|
| Bits       | 8  | 8  | 4 | 4                | 4            | 4                   |
| Assignment |    |    |   | 1-12             | 1-9          | 1-4                 |

#### Spare I/O Assignments 3-6: Modbus address 3333,3334

| Spare I/O  | #6 | #5 | #4 | #3 |
|------------|----|----|----|----|
| Bits       | 8  | 8  | 8  | 8  |
| Assignment |    |    |    |    |

#### Spare I/O Assignments 7,8: Modbus address 3327,3328

|   | Spare I/O  | #8 | #7 |
|---|------------|----|----|
| Ī | Bits       | 8  | 8  |
|   | Assignment |    |    |

#### Spare Auxiliary I/O Assignments 1-4: Modbus address 3335,3336

| Spare Auxiliary I/O | #4 | #3 | #2 | #1 |
|---------------------|----|----|----|----|
| Bits                | 8  | 8  | 8  | 8  |
| Assignment          |    |    |    |    |

#### Spare Auxiliary I/O Assignments 5-8: Modbus address 3337,3338

| Spare Auxiliary I/O | #8 | #7 | #6 | #5 |
|---------------------|----|----|----|----|
| Bits                | 8  | 8  | 8  | 8  |
| Assignment          |    |    |    |    |

#### Spare Auxiliary I/O Assignments 9-12: Modbus address 3339,3340

| Spare Auxiliary I/O | #12 | #11 | #10 | #9 |
|---------------------|-----|-----|-----|----|
| Bits                | 8   | 8   | 8   | 8  |
| Assignment          |     |     |     |    |

#### Assignments: (2 digits – 1<sup>st</sup> digit: Meter Number, 2<sup>nd</sup> digit: Selection) Selection

- 0. Not Used
- 1. Tubing Pressure
- 2. Casing Pressure
- 3. Oil Tank
- 4. Water Tank
- 5. Compressor Suction
- 6. Compressor Discharge
- 7. Compressor Temperature

Others - Spare

# **Default Tag Number**

| 11 | TubingP1 | 21 | TubingP2 | 31 | TubingP3 | 41 | TubingP4 |
|----|----------|----|----------|----|----------|----|----------|
| 12 | CasingP1 | 22 | CasingP2 | 32 | CasingP3 | 42 | CasingP4 |
| 13 | OilTank1 | 23 | OilTank2 | 33 | OilTank3 | 43 | OilTank4 |
| 14 | WatTank1 | 24 | WatTank2 | 34 | WatTank3 | 44 | WatTank4 |
| 15 | Suction1 | 25 | Suction2 | 35 | Suction3 | 45 | Suction4 |
| 16 | Dischag1 | 26 | Dischag2 | 36 | Dischag3 | 46 | Dischag4 |
| 17 | CompreT1 | 27 | CompreT2 | 37 | CompreT3 | 47 | CompreT4 |

# Hourly Data (Last Day - 24 Hours)

Address 601:meter#1, 602:meter#2, 603:meter#3, 604:meter#4

| ADDR | FUNC | STARTIN | G POINT | # OF POINTS |     | CF  |  |
|------|------|---------|---------|-------------|-----|-----|--|
| CODE | HI   | LO      | HI      | LO          | CHE | :CK |  |
| 01   | 03   | 02      | 59      | 00          | 01  |     |  |

### Response

| ADDR   | FUNC | BYTE<br>COUNTS |    | FUNC COUNTS DATA |    | ιΤΑ   | CF |  |
|--------|------|----------------|----|------------------|----|-------|----|--|
| 7.55.1 | CODE | HI             | LO | HI               | LO | CHECK | CK |  |
| 01     | 03   | 00             | F0 | 00               | 01 |       |    |  |

### Hourly Data (Last Day - 24 hours and 240 Bytes/Meter)

| Variables               | Bits           | Hour              | Range      | Decimal    |
|-------------------------|----------------|-------------------|------------|------------|
| Flow Time (Hour)        | 8              | 1 <sup>st</sup>   | 0-1.00     | 2 Decimals |
| <b>Hourly Net Total</b> | 16             | 1 <sup>st</sup> . | 0-6553.4   | 1 Decimal  |
| DP                      | 12             | 1 <sup>st</sup> . | 0-409.5    | 1 Decimal  |
| Temperature             | 12             | 1 <sup>st</sup> . | 0-409.5    | 1 Decimal  |
| Pressure                | 12             | 1 <sup>st</sup> . | 0-4095     | None       |
| DP/EXT                  | 20             | 1 <sup>st</sup> . | 0-10485.76 | 2 Decimals |
|                         | Total – 80 Bit | ts (10 Bytes)     |            |            |

| Flow Time (Hour)        | 8  | 2 <sup>nd</sup> . | 0-1.00     | 2 Decimals |
|-------------------------|----|-------------------|------------|------------|
| <b>Hourly Net Total</b> | 16 | 2 <sup>nd</sup> . | 0-6553.4   | 1 Decimal  |
| DP                      | 12 | 2 <sup>nd</sup> . | 0-409.5    | 1 Decimal  |
| Temperature             | 12 | 2 <sup>nd</sup> . | 0-409.5    | 1 Decimal  |
| Pressure                | 12 | 2 <sup>nd</sup> . | 0-4095     | None       |
| DP/EXT                  | 20 | 2 <sup>nd</sup> . | 0-10485.76 | 2 Decimals |

| Flow Time (Hour)        | 8  | 24 <sup>th</sup> | 0-1.00     | 2 Decimals |
|-------------------------|----|------------------|------------|------------|
| <b>Hourly Net Total</b> | 16 | 24 <sup>th</sup> | 0-6553.4   | 1 Decimal  |
| DP                      | 12 | 24 <sup>th</sup> | 0-409.5    | 1 Decimal  |
| Temperature             | 12 | 24 <sup>th</sup> | 0-409.5    | 1 Decimal  |
| Pressure                | 12 | 24 <sup>th</sup> | 0-4095     | None       |
| DP/EXT                  | 20 | 24 <sup>th</sup> | 0-10485.76 | 2 Decimals |

# **Snapshot Report**

Address 605: Spare Auxiliary I/O Address 606: Spare I/O Data Address 607: Meter#1 Address 608: Meter#2 Address 609: Meter#3 Address 610: Meter#4

| ADDR | FUNC | STARTING POINT |    | # OF POINTS |    | CF  | _  |
|------|------|----------------|----|-------------|----|-----|----|
| CODE | CODE | HI             | LO | HI          | LO | CHE | CK |
| 01   | 03   | 02             | 5d | 00          | 01 |     |    |

Response

| ADDR  | FUNC | BYTE<br>COUNTS |    | FUNC COUNTS DATA |    | CR    | _  |
|-------|------|----------------|----|------------------|----|-------|----|
| ABBIK | CODE | HI             | LO | HI               | LO | CHECK | CK |
| 01    | 03   | 00             | F0 | 00               | 01 |       |    |

**Snapshot Meter Data** 

| Variables            | Bits | Range      | Decimal   |
|----------------------|------|------------|-----------|
| Yesterday Net Volume | 24   | 0-167721.5 | 1 Decimal |
| Month Net Volume     | 24   | 0-1677215  | None      |
| Daily Net Volume     | 24   | 0-167721.5 | 1 Decimal |
| Net Flow Rate        | 20   | 0-65535    | None      |
| Line Temperature     | 12   | 0-409.5    | 1 Decimal |
| Line Pressure        | 12   | 0-4095     | None      |
| Line DP              | 12   | 0-409.5    | 1 Decimal |

### Spare I/Os are built in master unit

**Spare Data** 

| Variables     | Bits | Decimal |
|---------------|------|---------|
| Spare #1 Data | 16   | *Note   |
| Spare #2 Data | 16   | *Note   |
| Spare #3 Data | 16   | *Note   |
| Spare #4 Data | 16   | *Note   |
| Spare #5 Data | 16   | *Note   |
| Spare #6 Data | 16   | *Note   |
| Spare #7 Data | 16   | *Note   |
| Spare #8 Data | 16   | *Note   |
| Spare #9 Data | 16   | *Note   |

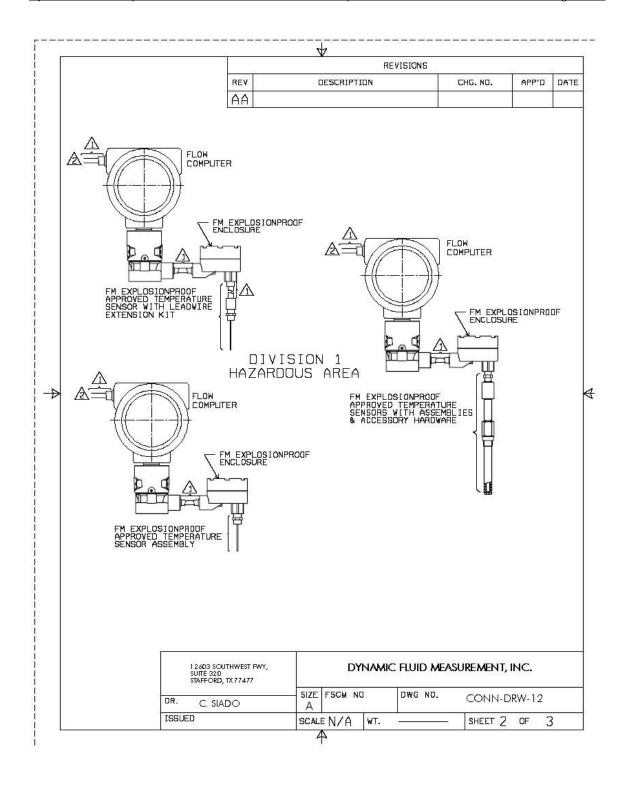
#### \*Note:

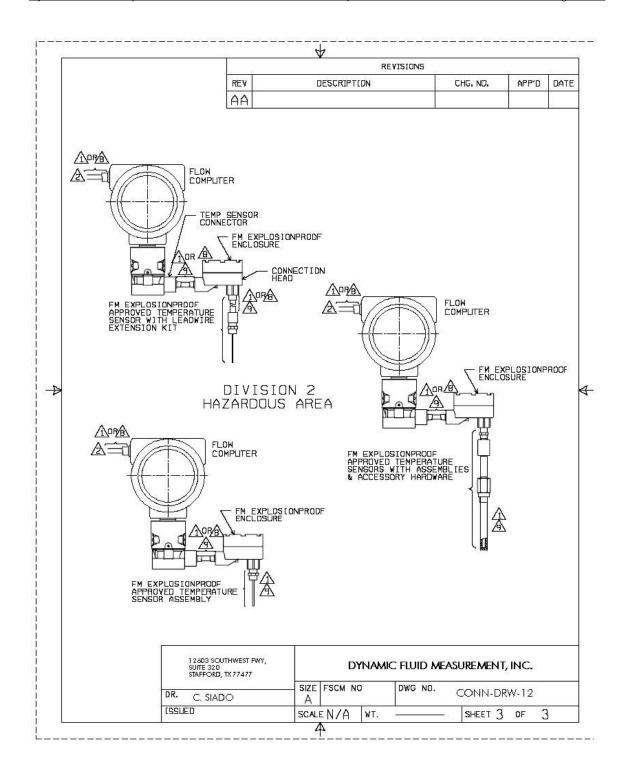
| 11 | TubingP1 | 21 | TubingP2 | 31 | TubingP3 | 41 | TubingP4 |  |
|----|----------|----|----------|----|----------|----|----------|--|
| 12 | CasingP1 | 22 | CasingP2 | 32 | CasingP3 | 42 | CasingP4 |  |
| 13 | OilTank1 | 23 | OilTank2 | 33 | OilTank3 | 43 | OilTank4 |  |
| 14 | WatTank1 | 24 | WatTank2 | 34 | WatTank3 | 44 | WatTank4 |  |
| 15 | Suction1 | 25 | Suction2 | 35 | Suction3 | 45 | Suction4 |  |
| 16 | Dischag1 | 26 | Dischag2 | 36 | Dischag3 | 46 | Dischag4 |  |
| 17 | CompreT1 | 27 | CompreT2 | 37 | CompreT3 | 47 | CompreT4 |  |

Spare auxiliary I/Os are utilized from the slave microml4 unit.

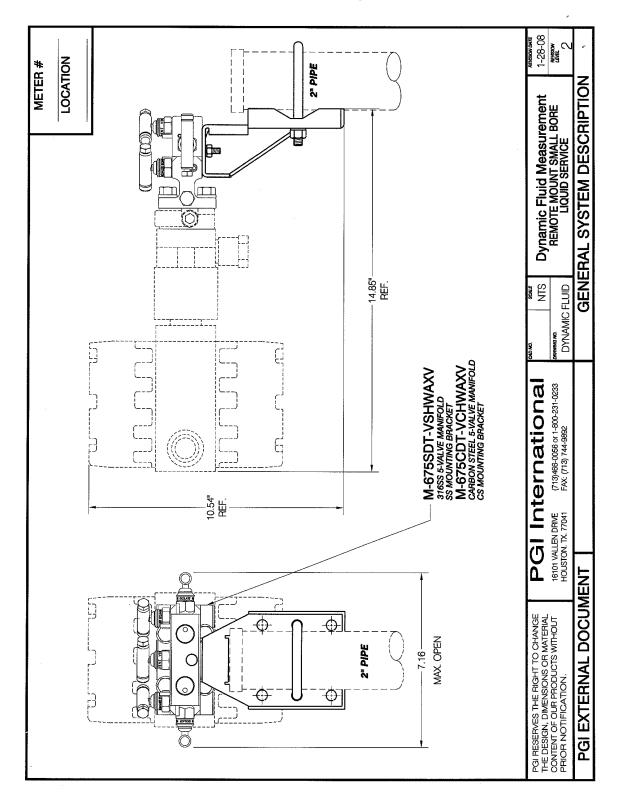
# **Spare Auxiliary Data**

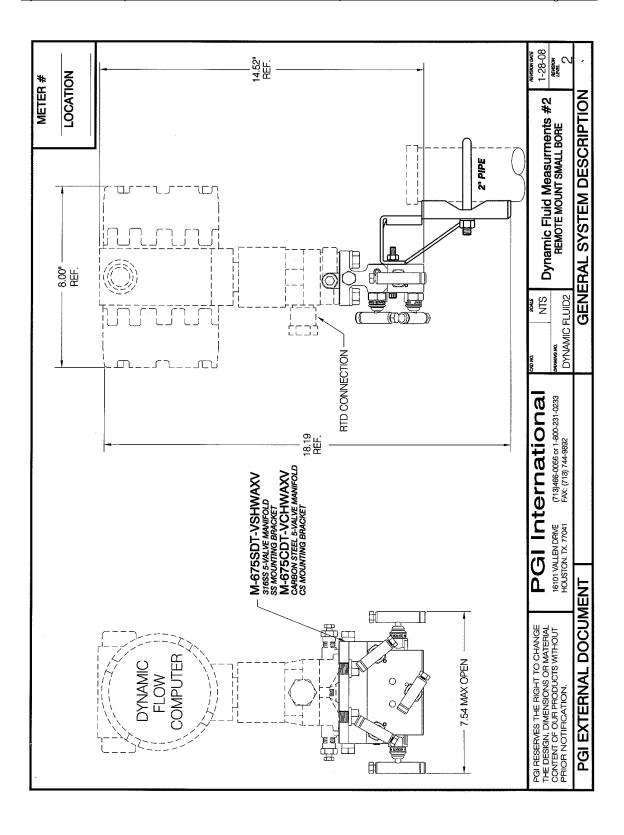
| Variables                | Bits | Decimal |
|--------------------------|------|---------|
| Spare Auxiliary#1 Data   | 16   | *Note   |
| Spare Auxiliary #2 Data  | 16   | *Note   |
| Spare Auxiliary #3 Data  | 16   | *Note   |
| Spare Auxiliary #4 Data  | 16   | *Note   |
| Spare Auxiliary #5 Data  | 16   | *Note   |
| Spare Auxiliary #6 Data  | 16   | *Note   |
| Spare Auxiliary #7 Data  | 16   | *Note   |
| Spare Auxiliary #8 Data  | 16   | *Note   |
| Spare Auxiliary #9 Data  | 16   | *Note   |
| Spare Auxiliary #10 Data | 16   | *Note   |
| Spare Auxiliary #11 Data | 16   | *Note   |
| Spare Auxiliary #12 Data | 16   | *Note   |

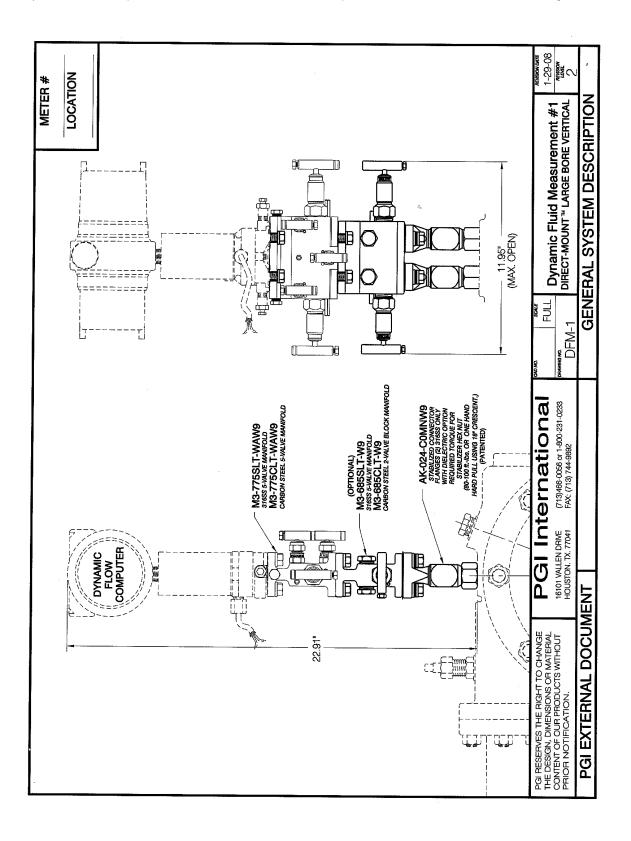

#### \*Note:

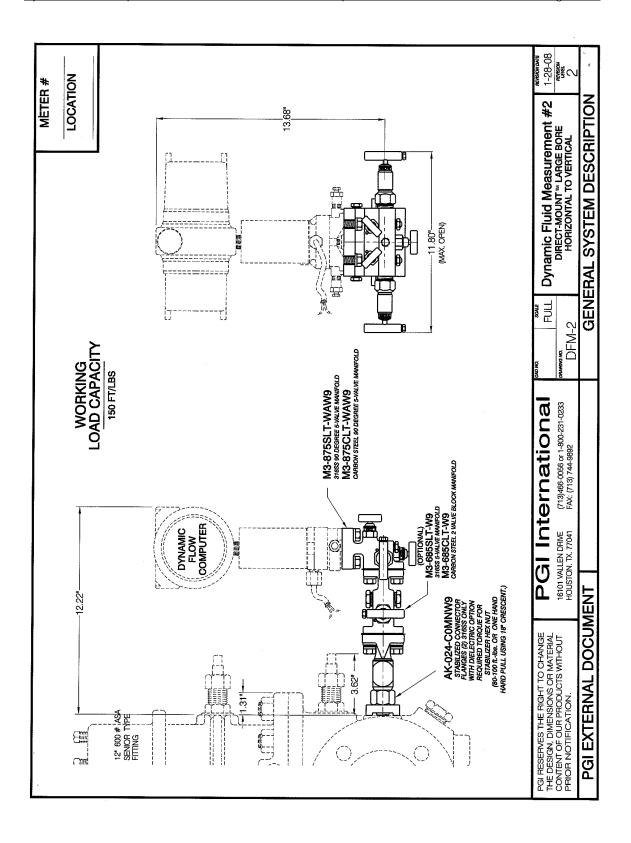

| 11 | TubingP1 | 21 | TubingP2 | 31 | TubingP3 | 41 | TubingP4 |
|----|----------|----|----------|----|----------|----|----------|
| 12 | CasingP1 | 22 | CasingP2 | 32 | CasingP3 | 42 | CasingP4 |
| 13 | OilTank1 | 23 | OilTank2 | 33 | OilTank3 | 43 | OilTank4 |
| 14 | WatTank1 | 24 | WatTank2 | 34 | WatTank3 | 44 | WatTank4 |
| 15 | Suction1 | 25 | Suction2 | 35 | Suction3 | 45 | Suction4 |
| 16 | Dischag1 | 26 | Dischag2 | 36 | Dischag3 | 46 | Dischag4 |
| 17 | CompreT1 | 27 | CompreT2 | 37 | CompreT3 | 47 | CompreT4 |

# **CHAPTER 6: Installation Drawings**


# Explosion-Proof Installation Drawings


|               |                                                                                                                                     |                                                                                                              |                                                                                                                               |                                                                                                                | ¥                                                   |                                                             |                     |         |       |      |      |       |      |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|---------------------|---------|-------|------|------|-------|------|--|
|               |                                                                                                                                     |                                                                                                              | REVISIONS                                                                                                                     |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               |                                                                                                                                     |                                                                                                              |                                                                                                                               | REV                                                                                                            |                                                     | DESCRIPTION CHG. NO.                                        |                     |         |       |      |      | APP'D | DATE |  |
| 1             |                                                                                                                                     |                                                                                                              |                                                                                                                               | AA                                                                                                             |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               |                                                                                                                                     |                                                                                                              |                                                                                                                               | -                                                                                                              |                                                     |                                                             |                     |         |       |      |      |       | 9    |  |
|               |                                                                                                                                     |                                                                                                              |                                                                                                                               |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               |                                                                                                                                     |                                                                                                              |                                                                                                                               |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               |                                                                                                                                     |                                                                                                              |                                                                                                                               |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               |                                                                                                                                     |                                                                                                              |                                                                                                                               |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               |                                                                                                                                     |                                                                                                              |                                                                                                                               |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               | INSTALLATION TO BE IN ACCORDANCE WITH NATIONAL ELECTRICAL CODE.                                                                     |                                                                                                              |                                                                                                                               |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               | A NON-INCENDIVE FIELD WIRING METHODS MAY BE USED FOR CONNECTING                                                                     |                                                                                                              |                                                                                                                               |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               | THE TEMPERATURE SENSING ASSEMBLY. WHEN USING NON-INCENDIVE FIELD                                                                    |                                                                                                              |                                                                                                                               |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               |                                                                                                                                     | NOT BE                                                                                                       | EXPLOSI                                                                                                                       | THE CONNECTION HEAD AND TEMPERATURE SENSOR ASSEMBLY NEED  EXPLOSION PROOF, BUT ALL COMPONENTS CONNECTED TO THE |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               |                                                                                                                                     |                                                                                                              | INSOR CONNECTOR MUST BE CLASSIFIED "SIMPLE APPARATUS". SIMPLE<br>TUS ARE DEVICES WHICH ARE INCAPABLE OF GENERATING OR STORING |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               |                                                                                                                                     |                                                                                                              | THAN 1.2V, 0.1A, 25MW, OR 20W (RTD'S QUALIFY AS SIMPLE APPARATUS).                                                            |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               | Λ                                                                                                                                   |                                                                                                              |                                                                                                                               |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               | <u>/8.\</u>                                                                                                                         | DIVISIO                                                                                                      | N 2 WIRI                                                                                                                      | NG METH                                                                                                        | OD.                                                 |                                                             |                     |         |       |      |      |       |      |  |
| 2             |                                                                                                                                     |                                                                                                              |                                                                                                                               |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
| $\rightarrow$ | CLASS II INSTALLATIONS MUST USE A CSA APPROVED                                                                                      |                                                                                                              |                                                                                                                               |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               | 6.                                                                                                                                  |                                                                                                              | DUST-INGITIONPROOF SENSOR.                                                                                                    |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               | 5. IN AMBIENTS GREATER THAN 40°C, SPRING LOADED TEMPERATURE SENSORS USED WITHOUT AN EXPLOSION PROOF THERMOWELL MUST BE RATED FOR AT |                                                                                                              |                                                                                                                               |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               |                                                                                                                                     |                                                                                                              |                                                                                                                               |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               | LEAST 85°C.  4. COMPONENTS REQUIRED TO BE APPROVED MUST BE FOR GAS GROUP                                                            |                                                                                                              |                                                                                                                               |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
| 94            |                                                                                                                                     |                                                                                                              | PPROPIATE TO AREA CLASSIFICATION.                                                                                             |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               | 3.                                                                                                                                  | 3. ALL CONDUITS THREADS TO BE ASSEMBLED WITH FIVE FULL THREADS MINIMUM.                                      |                                                                                                                               |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               | TRANSMITTER MUST NOT BE CONNECTED TO EQUIPMENT GENERATING                                                                           |                                                                                                              |                                                                                                                               |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               | Z2\ MORE THAN 250VAC.                                                                                                               |                                                                                                              |                                                                                                                               |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               | /1.                                                                                                                                 | WIRING                                                                                                       | METHOD                                                                                                                        | SUITABLE                                                                                                       | FOR CLASS                                           | SI, D                                                       | IV 1, AN            | 1Y LENG | GTH.  |      |      |       |      |  |
|               | 15 <del>151 - 5</del> 2                                                                                                             |                                                                                                              |                                                                                                                               |                                                                                                                |                                                     |                                                             |                     |         |       |      |      |       |      |  |
|               |                                                                                                                                     |                                                                                                              |                                                                                                                               |                                                                                                                | 20                                                  |                                                             |                     |         |       | 199  |      |       |      |  |
| 1             | INIECE ATTENT                                                                                                                       | ICC SOFATION                                                                                                 | T ND.                                                                                                                         | DWIANICELLII                                                                                                   |                                                     |                                                             | 12603 SOUTHWEST PWY |         |       | νγ,  |      |       |      |  |
|               | DIMENSIONS IN I                                                                                                                     | LINLESS OTHERWISE SPECIFIED CONTRACT NO DIMENSIONS IN INCHES (mm). REMOVE ALL BURRS AND SHARP EDGES, MACHINE |                                                                                                                               |                                                                                                                | 8                                                   | DYNAMIC FLUID MEASUREMENT, INC. SURF 320 STAFFORD, TX 77477 |                     |         |       |      |      |       |      |  |
|               | SHARP EDGES, MACHINE<br>SURFACE FINISH 125                                                                                          |                                                                                                              | DR.                                                                                                                           | C. SIADO                                                                                                       | Т                                                   | TITLE MODEL MICROMV AND ECHART                              |                     |         |       |      |      | RT.   |      |  |
|               | -TOLERANCEX • .1 [2.5] .XX • .02 [0.5] .XXX • .09 [0.25] .XXX • .010 [0.25] FRACTIONS ANGLES                                        | CHKID                                                                                                        |                                                                                                                               |                                                                                                                | EXPLOSIONPROOF INSTALLATION DRAWING, FACTORY MUTUAL |                                                             |                     |         |       |      |      |       |      |  |
|               |                                                                                                                                     | APP'D.                                                                                                       | S. HALILAI                                                                                                                    |                                                                                                                |                                                     |                                                             |                     |         |       | -    |      |       |      |  |
|               |                                                                                                                                     |                                                                                                              |                                                                                                                               |                                                                                                                | 9000                                                | SIZE FSCM NO DWG NO. CON                                    |                     |         | NN-DR | W-12 |      |       |      |  |
|               | DO NOT SC                                                                                                                           | 0.000                                                                                                        | APP'D. GOVT.                                                                                                                  |                                                                                                                | 3                                                   |                                                             |                     |         |       |      | OF 3 | 3     |      |  |
| 8             | 200 200 200 300 300 300 300 300 300 300                                                                                             |                                                                                                              |                                                                                                                               |                                                                                                                | 100                                                 | А                                                           | 92                  | 10235/B |       | 15%  |      | 1000  | •    |  |




# Manifold Installation Drawings







