MicroMS4/Micro100 GAS OPERATORS MANUAL

Flow Computer Gas Version

11104 W.Airport Blvd, Suite 108 Stafford, Texas 77477 USA (281) 565-1118 Fax (281) 565-1119

WARRANTY

Dynamic Flow Computers warrants to the owner of the Smart Flow Computer that the product delivered will be free from defects in material and workmanship for one (1) year following the date of purchase.

This warranty does not cover the product if it is damaged in the process of being installed or damaged by abuse, accident, misuse, neglect, alteration, repair, disaster, or improper testing.

If the product is found otherwise defective, Dynamic Flow Computers will replace or repair the product at no charge, provided that you deliver the product along with a return material authorization (RMA) number from Dynamic Flow Computers.

Dynamic Flow Computers will not assume any shipping charge or be responsible for product damage due to improper shipping.

THE ABOVE WARRANTY IS IN LIEU OF ANY OTHER WARRANTY EXPRESS IMPLIED OR STATUTORY. BUT NOT LIMITED TO ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE, OR ANY WARRANTY ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE. LIMITATION OF LIABILITY:

DYNAMIC FLOW COMPUTERS SHALL HAVE NO LIABILITY FOR ANY INDIRECT OR SPECULATIVE DAMAGES (INCLUDING, WITHOUT LIMITING THE FOREGOING, CONSEQUENTIAL, INCIDENTAL AND SPECIAL DAMAGES) ARISING FROM THE USE OF, OR INABILITY TO USE THIS PRODUCT. WHETHER ARISING OUT OF CONTRACT, OR UNDER ANY WARRANTY, IRRESPECTIVE OF WHETHER DFM HAS ADVANCED NOTICE OF THE POSSIBILITY OF ANY SUCH DAMAGE INCLUDING, BUT NOT LIMITED TO LOSS OF USE, BUSINESS INTERRUPTION, AND LOSS OF PROFITS. NOTWITHSTANDING THE FOREGOING, DFM'S TOTAL LIABILITY FOR ALL CLAIMS UNDER THIS AGREEMENT SHALL NOT EXCEED THE PRICE PAID FOR THE PRODUCT. THESE LIMITATIONS ON POTENTIAL LIABILITY WERE AN ESSENTIAL ELEMENT IN SETTING THE PRODUCT PRICE. DFM NEITHER ASSUMES NOR AUTHORIZES ANYONE TO ASSUME FOR IT ANY OTHER LIABILITIES

CHAPTER 1: QUICK START	1-1
Introduction:	
Quick Start Up	1-2
Technical Data	
Parts List	
Micro MV Flow Computer: Dimensions	. 1-10
Window Software Minimum Requirements:	
System Minimum Requirements	. 1-11
What is a configuration file?	
Downloading a configuration file to the flow computer.	. 1-12
What is an Image File?	
How to download an Image File	. 1-13
How to force a board into download mode	. 1-14
Website - DFC Configuration Software	. 1-15
Website – Image File (Firmware)	. 1-17
Getting acquainted with the flow computer wiring:	
Back terminal wiring:	
INPUT/OUTPUT: Assigning and Ranging Inputs	
Input/Output Assignment	
How to assign a transmitter to an I/O point:	
Ranging the Transmitter Inputs:	
WIRING:	
Wiring of Analog Inputs: Version 2 Board	
Wiring of Analog Inputs: Version 1 Board	
Wiring of RTD	
Rosemount RTD Connection	
Wiring of Analog Output:	
Additional Analog Outputs or Analog Inputs – Board Installation	
Back Panel - Additional Analog Outputs	
Back Panel - Additional Analog Inputs	
Turbine Input Wiring	
Turbine Input Wiring	
RS-232 Connection:	
RS-485 Connection:	
Wiring of Status Inputs:	
Wiring of Switch/Pulse Outputs:	
Switch Output to Relay Wiring Diagram	
Density Input Wiring	
CALIBRATION	
Analog Input 4-20mA or 1-5 volt Signal	
RTD Calibration:	
Calibration of Analog Output:	
Multi-Variable Transmitters(Model 205) – DP and Pressure	
Multi-Variable Transmitters (Model 205) – Dr and Fressure	
Data Verification	
Verifying Digital Inputs and Outputs	
CHAPTER 2: Data Entry Introduction to the Micro M.V. Computer Software	
*	
Configuration File Configuration File Menu	
Open a File	
Open a New File	
•	
Save As Save	
Exit	2-2

VIEW	
View Drawings	
TOOLS	
Communication Port Settings	
Meter Configuration	
Download Firmare/Image File	
Security Codes	
Connect to Device	
Go Offline	
Modbus Driver	
PID OPERATING	
CALIBRATION	
View Diagnostic Data	
Calibrate Mode	
Calibration	
Parameter Overrides:	
Temperature Override	
Pressure Override	
Heating Value Override	
Orifice ID Override	
FPV Override	
Base Density Override	
Venturi C Override	
BS&W Override	
Multi-variables Input Override	
Analog Input Override	
RTD Input Override	
SYSTEM	
Meter Test	
Well Number	
Test Period in Minutes	
Test Request	
View Meter Test	
Previous Test Reports	
Gas Chromatograph Communcation Set up(RS485 Master Port)	
Gas Chromatograph Unit ID	2-5
Gas Chromatograph Stream Address	2-5
Meter Stream ID.	
GC Floating Register Settings	
DEST - Destination Address	
ADDR - Source Address	
HISTORICAL DATA	
VIEW, CAPTURE AND STORE	
Viewing previously captured reports	
Exporting or Printing Reports	
SCHEDULED AUTO POLLING	
Historical Data	
CHAPTER 3: Data Entry	
MAIN MENU	
Security Code	
Calibrate /1=M.Var	
Enable Calibrate Mode	
Calibrate Analog Input, RTD	
Calibrate Analog Output Calibrate Multivariable	
Override Meter No	

Date/Time	
Configuration	
Configue Meter	
Flow Equation Type (0-10)	
New AGA3/ISO5167/V-Cone/Natural Gas @20 Deg.C/Venturi	3-11
AGA7	
Configure I/O	
Analog Output	
Meter I/O	
Status Input /Switch Output Assignment	
Flow Computer Display Assignment	
Pulse Output	
Others	
CHAPTER 4: FLOW EQUATIONS	
Common Terms	
API 14.3	
ISO5167	
AGA7	
Cone/SMART Cone	
Verabar – Gas	
Verabar – Liquid	
Venturi	
Accelabar	
DENSITY EQUATIONS	
Sarasota Density(GM/CC-US Unit, KG/M3-Metric Unit)	
UGC Density(GM/CC-US Unit, KG/M3-Metric Unit)	
Solartron Density (GM/CC-US Unit, KG/M3-Metric Unit)	
AGA8 Gross Method 1- Gas Meter	
AGA8 Gross Method 2 – Gas Meter	
AGA8 Detail Method – Gas Meter	
Table 24A/ Chapter 11.2.1 - Liquid Meter	
NIST10 Superheated Steam – Gas Meter	
CHAPTER 5: MODBUS DATA	
MODBUS PROTOCOL	
TRANSMISSION MODE	
ASCII FRAMING	
RTU FRAMING	
FUNCTION CODE	
ERROR CHECK	
EXCEPTION RESPONSE	
BROADCAST COMMAND	
MODBUS EXAMPLES	
FUNCTION CODE 03 (Read Single or Multiple Register Points)	
Modbus Address Table – 16 Bits Integer	
Modbus Address Table – 2x16 Bits Integer	
Snapshot Test Data Area	
Previous Test Data	
Current Data Area	
Modbus Address Table – Float Point	
Test Snapshot Data Area	
History Test Data Area	
Alarms, Audit Trail, and Calibration Data	
Previous Data Alarm Area	5-47
Previous Audit Data Area	5-49
Previous Calibration/Verification Data Area	5-52
Current Alarm Status	5-53

Data Packet	5-59
Previous Hourly Data Packet (101-184)	5-59
Previous Daily Data Packet – 35 Days	5-63
Previous Month Data Packet	5-66
Previous Month Data Packet (412-414)	5-68
Previous Month Data Packet (415)	5-69
Report by Exception:	5-70
Number of active meters/Spare I/O 1-4 Assignments	5-71
Hourly Data (Last Day - 24 Hours)	5-73
Snapshot Report	5-74
CHAPTER 6: Installation Drawings	6-1
Explosion-Proof Installation Drawings	6-1
Manifold Installation Drawings	

CHAPTER 1: QUICK START

Introduction:

The micro MV Gas Multi-Stream Flow Computer was designed after careful listening to our customers in all sectors of the oil and gas industry. It was built to address the different needs for refineries, chemical plants, gas processing plants, offshore platforms, pipeline and transmission, remote gas wells, and storage caverns. The focus has been to bring the different needs and requirements of these specialized industries into one hardware platform and therefore reducing the spare parts requirements, the training process, calibration, and overall cost of ownership. We believe the Micro MV Gas Flow Computer has delivered and met the design intentions.

The Micro MV Gas Flow Computer combines the following features:

- User Friendly
- ♦ Flexible
- Easy to understand and configure
- Rugged
- Economical to install and maintain
- ♦ Accurate

We hope that your experience with the Micro MV Gas Flow Computer will be a simple pleasant experience, not intimidating in any way.

The Micro MV Gas Flow computer handles up to four-meter runs capabilities. It includes the following mass flow equations: New API14.3, ISO 5167, and turbine (AGA7). Additionally, it can perform density calculations per these standard procedures: AGA8, other tables are added constantly, call our main office for current software

One Rosemount multi-variable digital transducers can be connected to each Micro MV flow computer for temperature, pressure (up to 3626 PSIG), and DP (up to 830 inches H_2O). Other Rosemount multi variable

transmitters can be connected to the Micro MV Gas Flow Computer via RS485 serial interface. Up to four meter runs can be stored and calculated in a single Micro MV Gas flow computer. The 2nd RS485 is used as Modbus port for data acquisition and other serial functions.

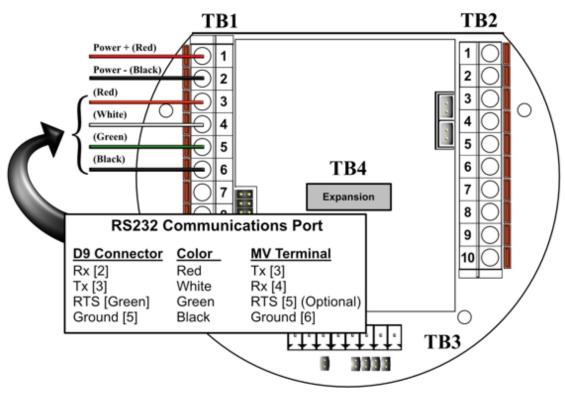
The Micro MV Gas flow Computer has a host of inputs and outputs beyond the built in Rosemount Multi Variable transmitter.

Three turbine inputs (Sine or Square wave), 70 mV peak to peak or sine wave 6 volts, or lighter on square wave

Four additional analog inputs, or two analog inputs and one three wire RTD inputs

One analog output expandable to four, or five additional analog inputs, one RS232, two RS485 with Modbus protocol, and one additional serial printer output.

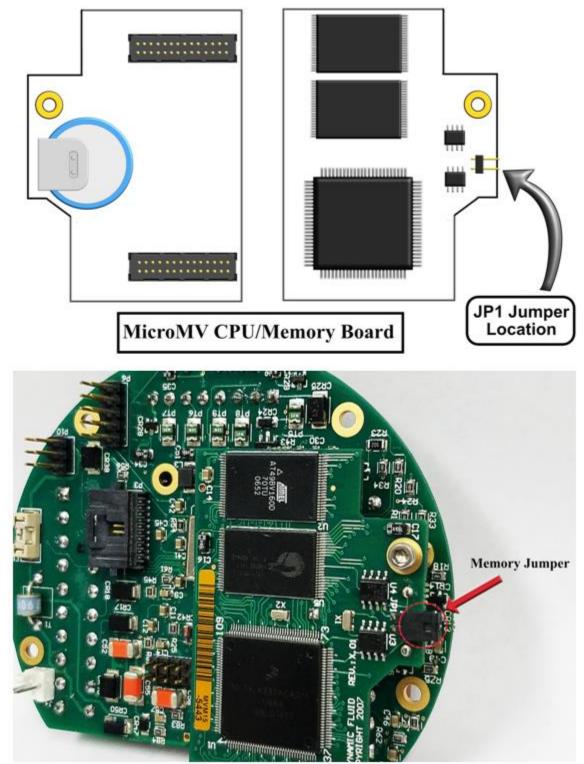
Three status inputs or digital outputs are user configurable. The fourth digital I/O is optional.


Additionally, each Micro MV Gas Flow Computer can store up to 35 days of hourly and daily data. Optional expandable memory (Virtual Hard Drive) up to 132 Megs, combined with our customized data storage allows almost any type data logging task to become possible.

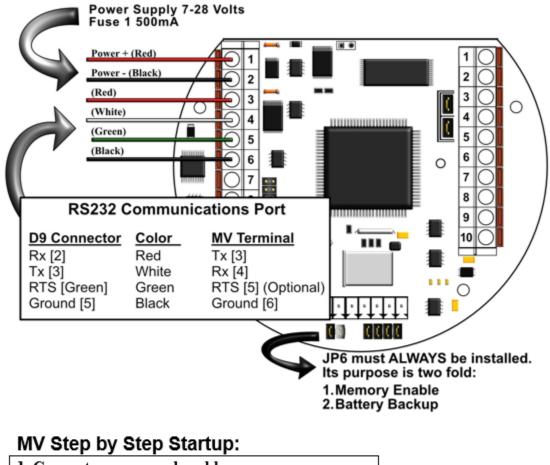
Note: Flow equations used are continuously upgraded and new equations are added. Call factory for current software library.

Quick Start Up

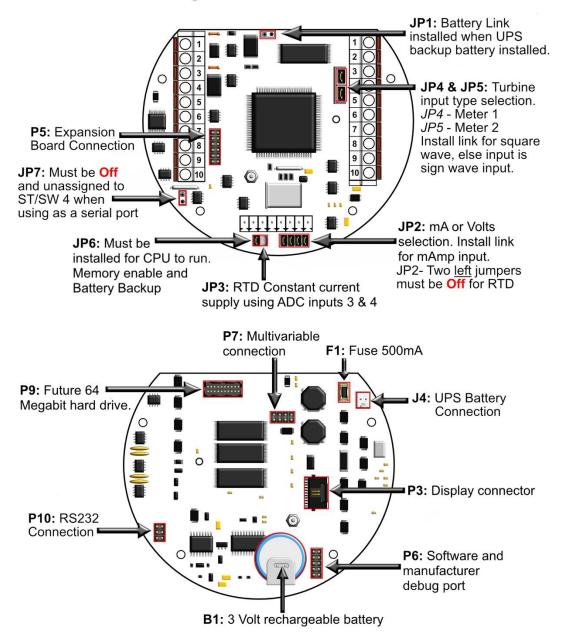
Version 2 - MicroMV Main/Memory Boards (Micro2009 and Later Model)


Main Board

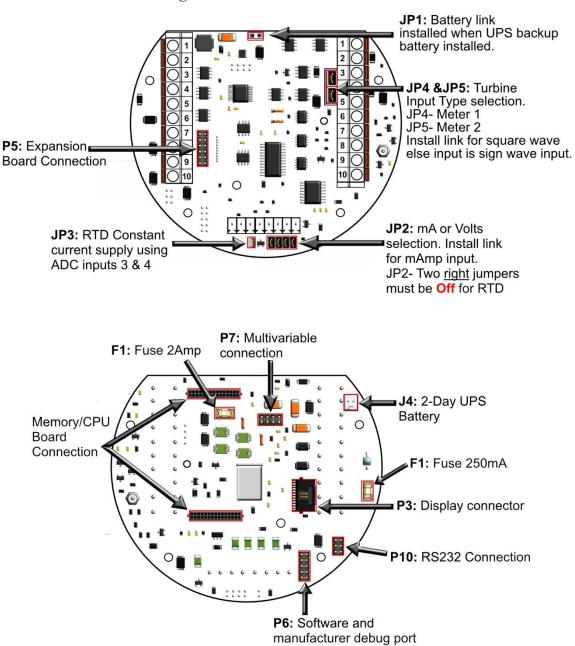
MV Step by Step Startup:


- 1. Connect power supply cable
- 2. Connect RS-232 Communications
- 3. Ensure jumper JP1 is installed on memory board
- 4. Energize power supply (24 Volts Recommended)
- 5. Verify display comes on
- 6. Run DFC Software
- 7. Configure the Micro MV device

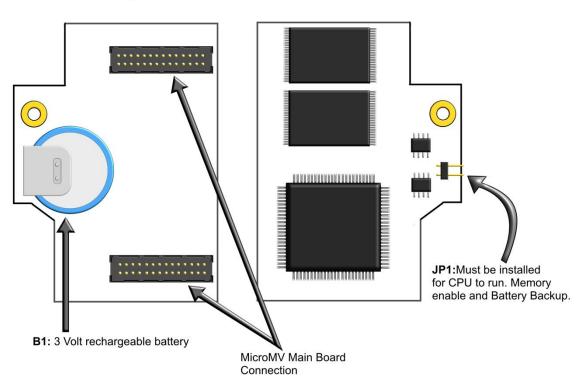
Version 2 - MicroMV Main/Memory Boards (Micro2009 and Later Model) Memory/CPU Board


Version 1 - MicroMV Board (Older MicroMV Models)

MicroMV Quick Start


- 1. Connect power supply cable
- 2. Connect RS-232 Communications
- 3. Ensure jumper JP6 is installed
- 4. Energize voltage (24 Volts Recommended)
- 5. Verify DynacomTM Software
- 6. Run DynacomTM Software
- 7. Configure the Micro MV unit
- 8. Consult the Faultfinding if a problem is incurred

Version 1 - MicroMV Board (<u>Older MicroMV Models</u>)

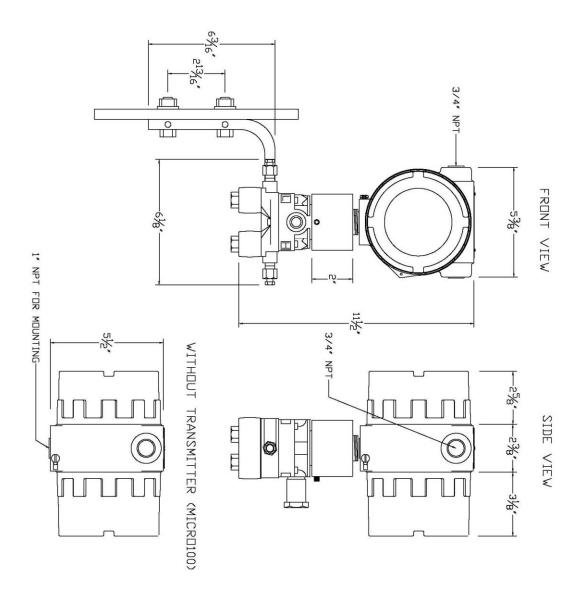

Berg Links and Connections

Version 2 - MicroMV Main Board (Micro2009 and Later Model)

Berg Links and Connections

Version 2 - MicroMV Memory/CPU Board

Berg Links and Connections


Technical Data

VOLTAGE RANGE7-28 VDCPOWER CONSUMPTION0.5 WATTOPERATING CONDITIONSTEMPERATURE- 40 TO 185 °FHUMIDITY100%HOUSINGNEMA 4X CLASS 1 DIV. 1FEATURESDISPLAYPROCESSOR32-BIT MOTOROLA 68332 @ 16.7 MHZFLASH ROM4 MBITS @ 70 NANO SECONDSRAM2 MBITSFREQUENCY INPUT3 CHANNELS 1 & 2 ARE SINE/SQUARE WAVE CAPABLE CHANNELS 1 & 2 ARE SINE/SQUARE WAVE CAPABLE CHANNELS 1 & 2 ARE SINE WAVE ONLY SQUARE WAVE RANGE 0 - 6000 HZ SIGNAL > 3 VOLTS AND < 12 VOLTS FOR SQUARE WAVE - CHANNELS 1 & 2ANALOG INPUT4 INPUTS STANDARD EXPANDABLE UP TO 9 ANALOG INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD.MULTIVARIABLEBUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS.ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL INPUTS OR OUTPUTS. DIGITAL INPUTS ARAPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUTCOMMUNICATION PROTOCOLMODBUS	POWER	
OPERATING CONDITIONS TEMPERATURE - 40 TO 185 °F HUMIDITY 100% HOUSING NEMA 4X CLASS 1 DIV. 1 FEATURES DISPLAY PLASMA 4 LINES 20 CHARACTERS BACKLIT DISPLAY WITH 4 INFRARED REFLECTIVE SENSORS PROCESSOR 32-BIT MOTOROLA 68332 @ 16.7 MHZ FLASH ROM 4 MBITS @ 70 NANO SECONDS RAM 2 MBITS FREQUENCY INPUT 3 CHANNELS CHANNELS CHANNELS CHANNEL 3 IS SQUARE WAVE CAPABLE CHANNEL 3 IS SQUARE WAVE SIGNAL > 40 mV FOR SINE WAVE MULTIVARIABLE BUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER WITH DIRECT SPI IDGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE <td>VOLTAGE RANGE</td> <td>7-28 VDC</td>	VOLTAGE RANGE	7-28 VDC
TEMPERATURE- 40 TO 185 °FHUMIDITY100%HOUSINGNEMA 4X CLASS 1 DIV. 1FEATURESDISPLAYPLASMA 4 LINES 20 CHARACTERS BACKLIT DISPLAY WITH 4 INFRARED REFLECTIVE SENSORSPROCESSOR32-BIT MOTOROLA 68332 @ 16.7 MHZFLASH ROM4 MBITS @ 70 NANO SECONDSRAM2 MBITSFREQUENCY INPUT3 CHANNELSCHANNELS 1 & 2 ARE SINE/SQUARE WAVE CAPABLE CHANNELS 1 SQUARE WAVE ONLY SQUARE WAVE RANGE 0 - 1200 HZ SIGNAL > 3 VOLTS AND < 12 VOLTS FOR SQUARE WAVE - CHANNELS 1 & 2ANALOG INPUT4 INPUTS STANDARD EXPANDABLE UP TO 9 ANALOG INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD.MULTIVARIABLEBUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS.ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT	POWER CONSUMPTION	0.5 WATT
TEMPERATURE- 40 TO 185 °FHUMIDITY100%HOUSINGNEMA 4X CLASS 1 DIV. 1FEATURESDISPLAYPLASMA 4 LINES 20 CHARACTERS BACKLIT DISPLAY WITH 4 INFRARED REFLECTIVE SENSORSPROCESSOR32-BIT MOTOROLA 68332 @ 16.7 MHZFLASH ROM4 MBITS @ 70 NANO SECONDSRAM2 MBITSFREQUENCY INPUT3 CHANNELSCHANNELS 1 & 2 ARE SINE/SQUARE WAVE CAPABLE CHANNELS 1 SQUARE WAVE ONLY SQUARE WAVE RANGE 0 - 1200 HZ SIGNAL > 3 VOLTS AND < 12 VOLTS FOR SQUARE WAVE - CHANNELS 1 & 2ANALOG INPUT4 INPUTS STANDARD EXPANDABLE UP TO 9 ANALOG INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD.MULTIVARIABLEBUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS.ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT		
HUMIDITY 100% HOUSING NEMA 4X CLASS 1 DIV. 1 FEATURES DISPLAY PLASMA 4 LINES 20 CHARACTERS BACKLIT DISPLAY WITH 4 INFRARED REFLECTIVE SENSORS PROCESSOR 32-BIT MOTOROLA 68332 @ 16.7 MHZ FLASH ROM 4 MBITS @ 70 NANO SECONDS RAM 2 MBITS FREQUENCY INPUT 3 CHANNELS CHANNELS 1 & 2 ARE SINE/SQUARE WAVE CAPABLE CHANNELS 1 & 2 ARE SINE/SQUARE WAVE CAPABLE CHANNELS 1 & 2 ARE SINE/SQUARE WAVE CAPABLE CHANNELS 1 & 2 OLTS AND C 1200 HZ SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 3 VOLTS AND C 12 VOLTS FOR SQUARE WAVE - CHANNELS 1 & 2 ANALOG INPUT 4 INPUTS STANDARD EXPANDABLE UP TO 9 ANALOG INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD. MULTIVARIABLE BUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS. ANALOG OUTPUT ONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4) DIGITAL I/O 4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING. SERIAL 2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT	OPERATING CONDITIONS	
HOUSING NEMA 4X CLASS 1 DIV. 1 FEATURES PLASMA 4 LINES 20 CHARACTERS BACKLIT DISPLAY WITH 4 INFRARED REFLECTIVE SENSORS WITH 4 INFRARED REFLECTIVE SENSORS PROCESSOR 32-BIT MOTOROLA 68332 @ 16.7 MHZ FLASH ROM 4 MBITS @ 70 NANO SECONDS RAM 2 MBITS FREQUENCY INPUT 3 CHANNELS CHANNELS CHANNELS 1 & 2 ARE SINE/SQUARE WAVE CAPABLE CHANNEL 3 IS SQUARE WAVE ONLY SQUARE WAVE RANGE 0 - 6000 HZ SINE WAVE RANGE 0 - 1200 HZ SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 3 VOLTS AND < 12 VOLTS FOR SQUARE	TEMPERATURE	- 40 TO 185 °F
FEATURES DISPLAY PLASMA 4 LINES 20 CHARACTERS BACKLIT DISPLAY WITH 4 INFRARED REFLECTIVE SENSORS PROCESSOR 32-BIT MOTOROLA 68332 @ 16.7 MHZ FLASH ROM 4 MBITS @ 70 NANO SECONDS RAM 2 MBITS FREQUENCY INPUT 3 CHANNELS CHANNELS 1 & 2 ARE SINE/SQUARE WAVE CAPABLE CHANNEL 3 IS SQUARE WAVE ONLY SQUARE WAVE RANGE 0 - 6000 HZ SINE WAVE RANGE 0 - 1200 HZ SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 3 VOLTS AND < 12 VOLTS FOR SQUARE	HUMIDITY	100%
DISPLAYPLASMA 4 LINES 20 CHARACTERS BACKLIT DISPLAY WITH 4 INFRARED REFLECTIVE SENSORSPROCESSOR32-BIT MOTOROLA 68332 @ 16.7 MHZFLASH ROM4 MBITS @ 70 NANO SECONDSRAM2 MBITSFREQUENCY INPUT3 CHANNELS CHANNELS 1 & 2 ARE SINE/SQUARE WAVE CAPABLE CHANNELS 1 SQUARE WAVE ONLY SQUARE WAVE RANGE 0 - 6000 HZ SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 3 VOLTS AND < 12 VOLTS FOR SQUARE WAVE - CHANNELS 1 & 2ANALOG INPUT4 INPUTS STANDARD EXPANDABLE UP TO 9 ANALOG INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD.MULTIVARIABLEBUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS.ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT	HOUSING	NEMA 4X CLASS 1 DIV. 1
DISPLAYPLASMA 4 LINES 20 CHARACTERS BACKLIT DISPLAY WITH 4 INFRARED REFLECTIVE SENSORSPROCESSOR32-BIT MOTOROLA 68332 @ 16.7 MHZFLASH ROM4 MBITS @ 70 NANO SECONDSRAM2 MBITSFREQUENCY INPUT3 CHANNELS CHANNELS 1 & 2 ARE SINE/SQUARE WAVE CAPABLE CHANNELS 1 SQUARE WAVE ONLY SQUARE WAVE RANGE 0 - 6000 HZ SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 3 VOLTS AND < 12 VOLTS FOR SQUARE WAVE - CHANNELS 1 & 2ANALOG INPUT4 INPUTS STANDARD EXPANDABLE UP TO 9 ANALOG INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD.MULTIVARIABLEBUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS.ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT		
WITH 4 INFRARED REFLECTIVE SENSORSPROCESSOR32-BIT MOTOROLA 68332 @ 16.7 MHZFLASH ROM4 MBITS @ 70 NANO SECONDSRAM2 MBITSFREQUENCY INPUT3 CHANNELS CHANNELS 1 & 2 ARE SINE/SQUARE WAVE CAPABLE CHANNEL 3 IS SQUARE WAVE ONLY SQUARE WAVE RANGE 0 - 6000 HZ SINE WAVE RANGE 0 - 1200 HZ SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 3 VOLTS AND < 12 VOLTS FOR SQUARE WAVE - CHANNELS 1 & 2ANALOG INPUT4 INPUTS STANDARD EXPANDABLE UP TO 9 ANALOG INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD.MULTIVARIABLEBUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS.ANALOG OUTPUT0NE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT	FEATURES	
PROCESSOR32-BIT MOTOROLA 68332 @ 16.7 MHZFLASH ROM4 MBITS @ 70 NANO SECONDSRAM2 MBITSFREQUENCY INPUT3 CHANNELS CHANNELS 1 & 2 ARE SINE/SQUARE WAVE CAPABLE CHANNELS 1 SQUARE WAVE ONLY SQUARE WAVE RANGE 0 - 6000 HZ SINE WAVE RANGE 0 - 1200 HZ SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 3 VOLTS AND < 12 VOLTS FOR SQUARE WAVE - CHANNELS 1 & 2ANALOG INPUT4 INPUTS STANDARD EXPANDABLE UP TO 9 ANALOG INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD.MULTIVARIABLEBUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS.ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT	DISPLAY	PLASMA 4 LINES 20 CHARACTERS BACKLIT DISPLAY
FLASH ROM4 MBITS @ 70 NANO SECONDSRAM2 MBITSFREQUENCY INPUT3 CHANNELSGRADUENCY INPUT3 CHANNELS 1 & 2 ARE SINE/SQUARE WAVE CAPABLE CHANNEL 3 IS SQUARE WAVE ONLY SQUARE WAVE RANGE 0 - 6000 HZ SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 3 VOLTS AND < 12 VOLTS FOR SQUARE WAVE - CHANNELS 1 & 2ANALOG INPUT4 INPUTS STANDARD EXPANDABLE UP TO 9 ANALOG INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD.MULTIVARIABLEBUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS.ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT		WITH 4 INFRARED REFLECTIVE SENSORS
RAM2 MBITSFREQUENCY INPUT3 CHANNELS CHANNELS 1 & 2 ARE SINE/SQUARE WAVE CAPABLE CHANNELS 1 & 2 ARE SINE/SQUARE WAVE CAPABLE CHANNEL 3 IS SQUARE WAVE ONLY SQUARE WAVE RANGE 0 - 6000 HZ SINE WAVE RANGE 0 - 1200 HZ SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 3 VOLTS AND < 12 VOLTS FOR SQUARE WAVE - CHANNELS 1 & 2ANALOG INPUT4 INPUTS STANDARD EXPANDABLE UP TO 9 ANALOG INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD.MULTIVARIABLEBUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS.ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT	PROCESSOR	32-BIT MOTOROLA 68332 @ 16.7 MHZ
FREQUENCY INPUT3 CHANNELS CHANNELS 1 & 2 ARE SINE/SQUARE WAVE CAPABLE CHANNEL 3 IS SQUARE WAVE ONLY SQUARE WAVE RANGE 0 - 6000 HZ SINE WAVE RANGE 0 - 1200 HZ SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 3 VOLTS AND < 12 VOLTS FOR SQUARE WAVE - CHANNELS 1 & 2ANALOG INPUT4 INPUTS STANDARD EXPANDABLE UP TO 9 ANALOG INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD.MULTIVARIABLEBUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS.ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT	FLASH ROM	4 MBITS @ 70 NANO SECONDS
CHANNELS 1 & 2 ARE SINE/SQUARE WAVE CAPABLE CHANNEL 3 IS SQUARE WAVE ONLY SQUARE WAVE RANGE 0 - 6000 HZ SINE WAVE RANGE 0 - 1200 HZ SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 3 VOLTS AND < 12 VOLTS FOR SQUARE WAVE - CHANNELS 1 & 2ANALOG INPUT4 INPUTS STANDARD EXPANDABLE UP TO 9 ANALOG INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD.MULTIVARIABLEBUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS.ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT	RAM	2 MBITS
CHANNELS 1 & 2 ARE SINE/SQUARE WAVE CAPABLE CHANNEL 3 IS SQUARE WAVE ONLY SQUARE WAVE RANGE 0 - 6000 HZ SINE WAVE RANGE 0 - 1200 HZ SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 3 VOLTS AND < 12 VOLTS FOR SQUARE WAVE - CHANNELS 1 & 2ANALOG INPUT4 INPUTS STANDARD EXPANDABLE UP TO 9 ANALOG INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD.MULTIVARIABLEBUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS.ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT	FREQUENCY INPUT	3 CHANNELS
SQUARE WAVE RANGE 0 - 6000 HZ SINE WAVE RANGE 0 - 1200 HZ SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 3 VOLTS AND < 12 VOLTS FOR SQUARE WAVE - CHANNELS 1 & 2ANALOG INPUT4 INPUTS STANDARD EXPANDABLE UP TO 9 ANALOG INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD.MULTIVARIABLEBUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS.ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT	-	CHANNELS 1 & 2 ARE SINE/SQUARE WAVE CAPABLE
SINE WAVE RANGE 0 - 1200 HZ SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 3 VOLTS AND < 12 VOLTS FOR SQUARE WAVE - CHANNELS 1 & 2ANALOG INPUT4 INPUTS STANDARD EXPANDABLE UP TO 9 ANALOG INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD.MULTIVARIABLEBUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS.ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT		CHANNEL 3 IS SQUARE WAVE ONLY
SIGNAL > 40 mV FOR SINE WAVE SIGNAL > 3 VOLTS AND < 12 VOLTS FOR SQUARE WAVE - CHANNELS 1 & 2ANALOG INPUT4 INPUTS STANDARD EXPANDABLE UP TO 9 ANALOG INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD.MULTIVARIABLEBUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS.ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT		
SIGNAL > 3 VOLTS AND < 12 VOLTS FOR SQUARE WAVE - CHANNELS 1 & 2ANALOG INPUT4 INPUTS STANDARD EXPANDABLE UP TO 9 ANALOG INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD.MULTIVARIABLEBUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS.ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT		
WAVE - CHANNELS 1 & 2ANALOG INPUT4 INPUTS STANDARD EXPANDABLE UP TO 9 ANALOG INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD.MULTIVARIABLEBUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS.ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT		
ANALOG INPUT4 INPUTS STANDARD EXPANDABLE UP TO 9 ANALOG INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD.MULTIVARIABLEBUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS.ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT		
INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD.MULTIVARIABLEBUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS.ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT		
MULTIVARIABLEBUILT-IN ROSEMOUNT MULTIVARIABLE TRANSMITTER WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS.ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT	ANALOG INPUT	
TRANSMITTER WITH DIRECT SPI DIGITAL CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS.ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT		INPUTS OR 7 WITH ADDITIONAL 3 WIRE RTD.
CONNECTION. MAXIMUM UPDATE SPEED ONCE EVERY 109 MILLISECONDS.ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT	MULTIVARIABLE	BUILT-IN ROSEMOUNT MULTIVARIABLE
EVERY 109 MILLISECONDS.ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT		TRANSMITTER WITH DIRECT SPI DIGITAL
ANALOG OUTPUTONE (1) OPTICALLY ISOLATED 16 BITS EXPANDABLE TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT		CONNECTION. MAXIMUM UPDATE SPEED ONCE
TO FOUR (4)DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT		
DIGITAL I/O4 DIGITAL INPUTS OR OUTPUTS. DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.SERIAL2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT	ANALOG OUTPUT	
DIGITAL OUTPUTS HAVE 0.25 AMPS RATING. SERIAL 2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT		
SERIAL 2 RS485 @ 9600 BAUDS VARIABLE 1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT	DIGITAL I/O	
1 RS232 @ 9600 BAUDS VARIABLE 1 PRINTER OUTPUT		DIGITAL OUTPUTS HAVE 0.25 AMPS RATING.
1 PRINTER OUTPUT	SERIAL	2 RS485 @ 9600 BAUDS VARIABLE
		1 RS232 @ 9600 BAUDS VARIABLE
COMMUNICATION PROTOCOL MODBUS		1 PRINTER OUTPUT
	COMMUNICATION PROTOCOL	MODBUS

Parts List

Spare Parts - Micro MV			
<u>Part #</u>	Description		
MVC	Micro MV CPU Main Board Only		
MVM	Micro MV CPU Mempry Board Only		
MVD	Micro MV Display Board		
MVI	Micro MV Analog In Board		
MVO	Micro MV Analog Out Board		
MVP	Micro MV Prover Board		
MVR	Micro MV Rosemount Board		
S6920	Explosion Proof Housing Unit for Micro MV Flow Computer		
Adapter A	Adapter for 0205 Rosemount Transmitter (Accommodates Micro MV Flow Computer)		
Bracket-MVD	Bracket for Micro MV Display		
Bracket-MVC A	Bracket for Micro MV CPU (Without Analog)		
Bracket-MVC B	Bracket for Micro MV CPU (With Analog)		
MVD Cable	Micro MV Display Ribbon Cable		
O-Ring A	O-Ring Gasket for Micro MV Housing		
Fuse A	250 mA Fuse		
Fuse B	500 mA Fuse		
Fuse C	2 Amp Fuse		
Battery A	Replacement Battery for Micro MV Flow Computer (Board Mounted)		

Micro MV Flow Computer: Dimensions

Window Software Minimum Requirements:

Please make sure your computer has the minimum requirements to install Dynamic's Dynacom software.

System Minimum Requirements

In order to install this software product the following requirements must be met:

- Windows Operating System (Vista, Windows 7, Windows 10)
- For Windows Vista: Administrator level access to create an ODBC system DNS.
- Minimum disk space available: 16 MB.
- 1 Serial Communication Port

If your computer meets these requirements, you can run the setup file downloaded from our website

What is a configuration file?

The configuration file is an archive that contains the data used by the flow computer to determine calculation settings (Pipe ID, Flow Equation, Meter ID, etc.) and input/output assignments.

Downloading a configuration file to the flow computer.

- Open the configuration file using the **Configuration File | Open...** option on the main menu or pressing the open button in the toolbar. Once the file is open the file name will appear on the upper left corner of the window, so you can verify that the desired file was open.
- Connect to the Flow Computer either by using the Tools | Connect to Device option on

the main menu, the button on the vertical toolbar, or by pressing the **[F5]** key on the keyboard. Once you are connected the application it will show an ONLINE status on the upper right corner of the main window. Failure to communicate can occur because of a communication wiring problem, wrong PC port selection, communication parameter mismatch between PC and MicroMV (Modbus type, parity, baud rate, etc.) or lack of power to the MicroMV Flow Computer. To use **"Tools | Com Settings | Auto Detect Settings"** option, the user must insure that **only one MicroMV** computer is connected to the PC. More than one MicroMV Flow Computer in the loop will cause data collisions and unintelligible responses.

• Go to the configure device option either by using the Tools | Meter Configuration

1
Configure

option, the Device button on the vertical toolbar, or by pressing the **[F10]** key on the keyboard.

- Because you are connected to a device, a window will appear asking you if you want to read the configuration from the connected meter, Press **NO** since what we want is to write the PC file to the flow computer.
- A configuration window will now appear showing you the information in the configuration file, you can check these values to make sure this is the file you want to send to the flow computer. Once you have checked that the configuration is correct, press the **[Download]** button. A blue bar indicating the progress of the download will appear at the bottom of the application window, after that the information in the configuration file will be in the flow computer.

Note: In case the flow computer is a liquid application, remember to End Batch after the configuration in downloaded for the changes to take effect.

What is an Image File?

An image file is an EPROM code for a certain purpose (liquid, gas, prover, etc.) **The image file is** only done when an application upgrade is needed.

When an image file is downloaded to the flow computer, all the information in the computer is lost (configuration and historical data), so make sure to retrieve all the important information before changing the image file.

How to download an Image File

- Download an image file through **RS232 port** only.
- To Download an Image File to the Flow Computer select the **Tools | Download Program** option form the main menu or press the button in the toolbar.
- A small dialog will appear asking for the file name of the image file (Image file have the extension .img). Type it in or use the **Browse** button to locate it.
- Once the file name is in place press **Download**.
- If a retry message of small dialog appears, try to use "Tools | Com Settings | Auto Detect Settings" option, the user must insure that only one MicroMV computer is connected to the PC. More than one MicroMV Flow Computer in the loop will cause data collisions and unintelligible responses. Failure to communicate can occur because of a communication wiring problem, wrong PC port selection, communication parameter mismatch between PC and MicroMV (Modbus type, parity, baud rate, etc.) or lack of power to the MicroMV Flow Computer. After the device is detected, then you can follow steps described above.

Warning messages will remind you that this action will erase **ALL** the information in the flow computer.

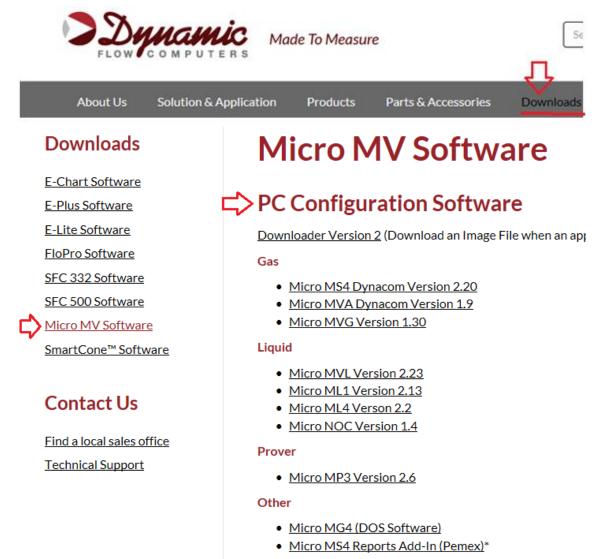
The download task will take about 7 minutes to be completed. Once the image file is in place, the flow computer is ready to be configured (enter calculation parameters and I/O assignments).

How to force a board into download mode

First, try to recycle the power and reload the image if the error message is displayed while downloading a new image file. Download an image file only through **RS-232 port**. MicroMS4 Windows Software version 2.18 or higher is required. Contact technical support for old boards loaded with downloader v1. Forcing download mode could be required if a wrong type of application image was loaded or other issues. Call our main office for more information

ERROR				
⊗	Unable to download	firmware, Unable to pl	ace the SFC in downloa	ad mode.
		OK		
(1) Remov	orce the board into c ve Power umper on P6 as sho			
	unper on Po as sho			

(3) Power up the board


- (4) Board is in download mode
- (5) Download image
- (6) Remove power and jumper on P6 after a new image is loaded

(7) Board is ready

Website - DFC Configuration Software

Step 1. Go to our website <u>WWW.DYNAMICFLOWCOMPUTERS.COM</u>

Step 2 Click on the "Downloads"

Step 3. Select application software based on Step 2.

Step 4. On the new screen presented to you click on the application that you are trying to download. Once you hit the link it will ask you if you want to run or save the file in your computer. Select **SAVE.** (See illustration 1)

File Dow	nload	A DESCRIPTION OF THE OWNER.	×
?		our computer. If the file inform ou do not fully trust the source	
	File name: echar	rt.exe	
	File type: Applid	cation	
	From: www.	.dynamicflowcomputers.com	
	Would you like to oper	n the file or save it to your co	mputer?
	<u>O</u> pen	Save Cancel	<u>M</u> ore Info
	Always ask before	opening this type of file	

ownload comp	lete	Step 5.
Saved:	nload Complete e from www.dynamicflowcomputers.com	downloa Internet type of downloa
		Stop 6
Downloaded:	792 KB in 14 sec	Step 6.
Download to:	C:\Downloads\Mic\microms4.testexe	finish. P
Transfer rate:	56.5 KB/Sec	start th
Close this dia	alog box when download completes	Illustrati
		Step 7.
	Open Open Folder Close	applicati

Step 5. The file will start to transfer to your computer. The download time depends on your Internet connection speed and the type of application that being downloaded.

Step 6. When the download if finish. Press the **OPEN** button to start the setup process. (See Illustration)

Step 7. Follow the steps in the application setup.

Website – Image File (Firmware)

Check the version number of image file. The image file is only done when an application upgrade is needed.

Step 1. Go to our website WWW.DYNAMICFLOWCOMPUTERS.COM

Step 2. Click on the "Downloads"

Step 3. On the new screen presented to you click on the application firmware that you are trying to download. Once you hit the link it will ask you the location and file name to be saved.

Downloads

E-Chart Software E-Plus Software E-Lite Software FloPro Software SFC 332 Software SFC 500 Software Micro MV Software SmartCone™ Software

Contact Us

Find a local sales office Technical Support

Micro MV Software

PC Configuration Software

Downloader Version 2 (Download an Image File when an application upgrade is needed)

Gas

- Micro MS4 Dynacom Version 2.20
- <u>Micro MVA Dynacom Version 1.9</u>
- Micro MVG Version 1.30

Liquid

- Micro MVL Version 2.23
- Micro ML1 Version 2.13
- Micro ML4 Verson 2.2
- Micro NOC Version 1.4

> Firmware

What is an Image File? How to Download an Image File.

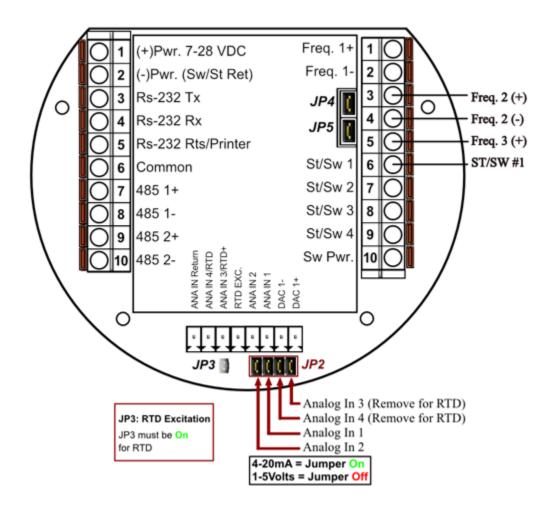
- Micro ML1 Version 6.03.14 (Windows Software 2.11 or higher is required)
- Micro MVG Version 6.09.15 (Windows Software 1.27 or higher is required)
- <u>Micro MVL Version 6.11.20</u> (Windows Software 2.18 or higher is required)
- <u>Micro ML4 Version 6.01.09</u> (Windows Software 2.1 or higher is required)
- Micro MS4 Version 6.04.21 (Windows Software 2.18 or higher is required)
- Micro MVA Version 6.04.03
- Micro MP3 Version 12.11.07
- Micro NOC Version 6.00.04

Step 4. The file will start to transfer to your computer. The download time depends on your Internet connection speed and the type of application that being downloaded.

Step 5. After the download is finished, follow the steps in the image downloading setup.

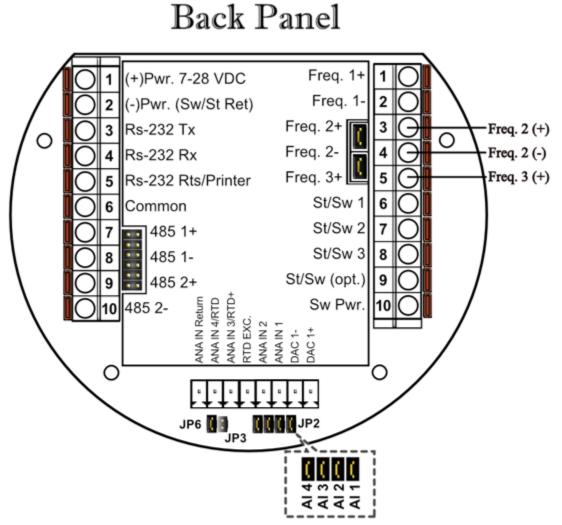
Getting acquainted with the flow computer wiring:

Back terminal wiring:


The back terminal wiring indicates the overall positions of the terminal plugs and their functions. Though the back panel's jumpers are also shown, refer to the next drawing, "Back Panel Jumpers", for information on their settings and functions.

The MicroMV receives its power via the .top two pins on Terminal P1, on the left of the board. Also on Terminal P1 from top to bottom are inputs to the four serial connections

To the right (P4), from top to bottom, are two turbine inputs, density frequency input, and switch/status inputs and output.


Terminal P3, at the lower bottom, handles analog inputs/RTD and analog output.

VERSION 2 - MICROMV MAIN/MEMORY BOARDS (MICRO2009 AND LATER MODEL)

JP4: When ON Meter 1 Uses Square Wave. When OFF Meter 1 Uses Sine Wave JP5: When ON Meter 2 Uses Square Wave. When OFF Meter 2 Uses Sine Wave

<u> Version 1 - MicroMV Board (Older MicroMV Models)</u>

- **JP2:** Must be installed for 4-20mA inputs. When removed, the analog input is used as 1 to 2.5 Volts Input. JP2 consists of 4 links, each link corresponds to one analog input.
- JP3: Is RTD Excitation and should never be installed when Analog 3 & 4 are used as Analog inputs (See RTD Connection for details).
- JP4: When ON, Meter 1 Uses Square wave. When OFF, Meter 1 Uses Sine wave
- JP5: When ON, Meter 2 Uses Square Wave. When OFF, Meter 2 Uses Sine Wave
- JP6: Always installed. It can be removed after power is removed to clear RAM memory.

INPUT/OUTPUT: Assigning and Ranging Inputs

Input/Output Assignment

We will now configure your MicroMS4 Flow Computer's inputs and outputs. The flow computer allows the user to configure the inputs and outputs. (I.e. Analog #1 is pressure for Meter #1). The flow computer does not use unassigned inputs.

How to assign a transmitter to an I/O point:

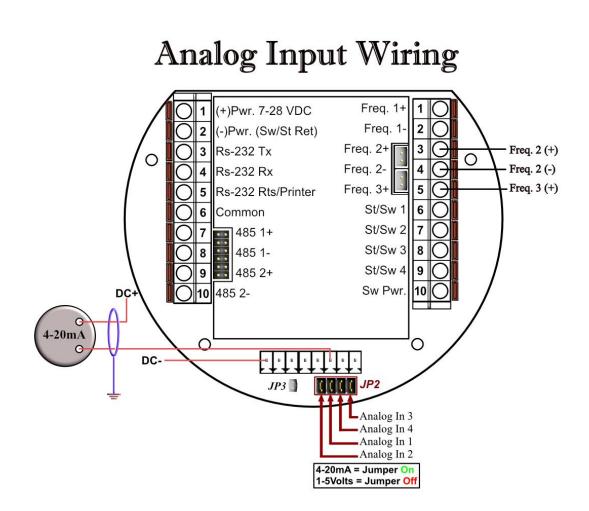
- 1 Click "Configure Device", configuration menu is prompted
- 2 On configuration menu, click "Input Assignment"
- 3 Enter assignments for DP, temperature, pressure, density and spare inputs.
- 4 Assignment (1-n). Assignments 1-4 are analog inputs attached to terminal of the back panel. These inputs accept 4-20mA or 1-5 volts input and are suitable for temperature, pressure, density, or spare inputs. An assignment 5 is strictly RTD (temperature) input only for the meter, densitometer or spare. Assignment 7 indicates a density frequency input; it is assigned automatically once you choose live density frequency input in the setup menu at density type Assignment 10 (module 1) is for Rosemount multi-variable module only. DP, pressure, and temperature for the meter can be assigned. When a frequency type primary element is hooked to the flow computer, the Multi Variable pressure and temperature can be used and the DP becomes a spare input that could be assigned for strainer differential.

Ranging the Transmitter Inputs:

- 1. Enter the range values for analog inputs: after assigning the analog inputs, click square box next to the assignment to scale the 4-20mA. Enter the value at @4mA and @20mA. Enter both values similar to the way the transmitter is ranged. 1-5 volts are equivalent to 4-20mA. Enter the 1 Volt value at the 4mA, and 5 volt value at 20mA. When the Multi Variable is used the 4-20 ma scale has no effect on anything and does not need to be configured for that input. The reason is simply that the flow computer gets the data via digital communication from the transmitter in engineering units, and therefore a scale is not needed. Normal pressure range is 0-3626, temperature -40 to 1200, DP -250 to 250, or -830 to 830 inches of water.
- 2. Enter the high and low limits: high limits and low limits are simply the alarm points in which you would like the flow computer to flag as an alarm condition. Enter these values with respect to the upper and lower range conditions. Try to avoid creating alarm log when conditions are normal. For example: If the line condition for the pressure is between 0 to 500 PSIG. Then you should program less than zero for low-pressure alarm, and 500 or more for high-pressure alarm. High limits are also used in the SCALE for the Modbus variables. The high limit is equivalent to 32767 or 4095. The low limit is not used for calculating the scale. The scale starts at zero to wherever the high limit value. High limit must be set greater than 1
- 3. Set up the fail code: Maintenance and Failure Code values tell the flow computer to use a default value in the event the transmitter fails. The default value is stored in Maintenance. There are three outcomes: the transmitter value is always used, no matter what (Failure Code = 0); the Maintenance value is always used, no matter what (Failure Code = 1); and the Maintenance value is used only when the transmitter's value indicates that the transmitter has temporarily failed (Failure Code = 2). Failed condition for analog inputs is less than 3.25mA or greater than 21.mA. Alarm high limit must be greater than 1 to enable using the maintenance value if failed.

RTD inputs will skip 4-20 mA assignment because RTD is a raw signal of 50Ω (ohms) to 156Ω . Readings beyond that range require a 4-20 mA signal to the flow computer or using the built in Rosemount Multi Variable transmitter. The Rosemount Multivariable has a range of -40-1200 degrees Fahrenheit.

Density coefficients for raw frequency inputs are programmed in this menu. The menu will only show parameters relevant to the live density selected (i.e., Solartron or UGC, etc.).

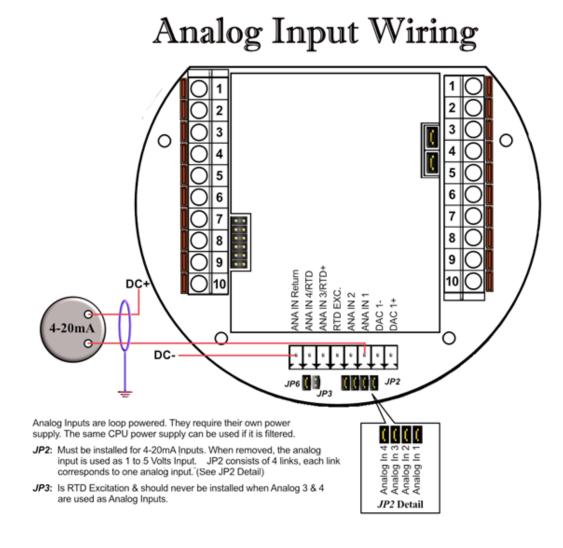

WIRING:

Wiring to the flow computer is very straightforward and simple. But still it is very important to get familiar with the wiring diagram.

<u>Wiring of Analog Inputs: Version 2 Board</u> MicroMV Main/Memory Boards (Micro2009 and Later Model)

Typical wiring for analog inputs 2 and 1 are shown in the drawing. Analog inputs 4 and 3 are to the left of analog 2 and 1 separated by the RTD excitation. Note that the analog input has only one common return that is the -Ve signal of power supply powering the transmitters.

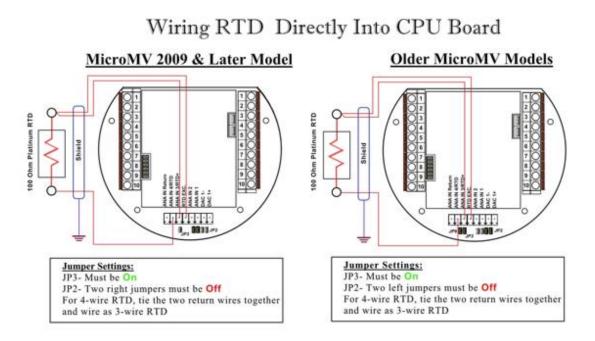
When wiring **1-5 volts**, **make sure to calibrate** the flow computer for the 1-5 volt signal because the flow computer calibration defaults for the 4-20 ma, which is different from the 1-5 volts. JP2 must be removed for 1-5 volt inputs. Signal line impedance provided by our flow computer is 250Ω .

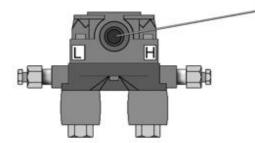


Wiring of Analog Inputs: Version 1 Board

MicroMV Board (Older MicroMV Models)

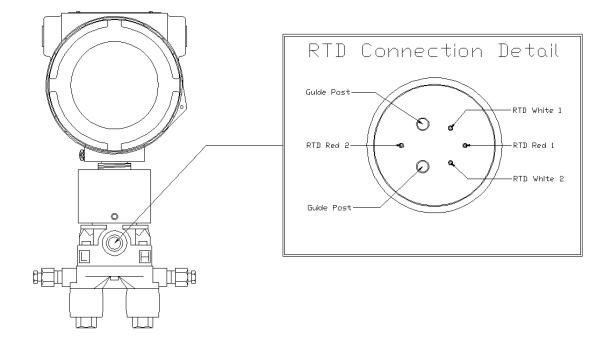
Typical wiring for analog inputs 1 and 2 are shown in the drawing. Analog inputs 3 and 4 are to the left of analog 1 and 2 separated by the RTD excitation. Note that the analog input has only one common return that is the -Ve signal of power supply powering the transmitters.

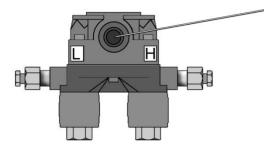

When wiring **1-5 volts**, **make sure to calibrate** the flow computer for the 1-5 volt signal because the flow computer calibration defaults for the 4-20 ma, which is different from the 1-5 volts. JP2 must be removed for 1-5 volt inputs. Signal line impedance provided by our flow computer is 250Ω .


NOTE: The 4-20mA or 1-5 volt DOES NOT source power to the transmitters. You can use the DC power feeding the flow computer to power the 4-20mA loops IF that power supply is FILTERED.

Wiring of RTD

 100Ω platinum **must** be used; a temperature range of -43° F to $+300^{\circ}$ F can be measured. RTD is to the left of analog in 1&2. The RTD excitation jumper (JP3) has to be installed for the RTD to function. In the figure below, notice that the RTD requires a three wire connections. Internal excitation current source generated is in the micro AMP range.

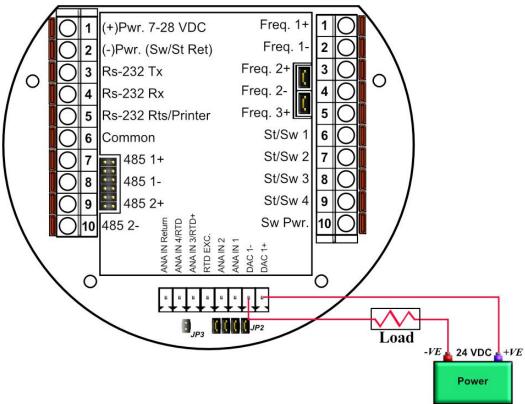

Wiring RTD Into Rosemount Multivariable


Plug the custom RTD plug into the RTD port located on the front of the multivariable sensor.

To use your own RTD instead of Rosemount's armored assembly, you can order the custom plug with wire ends.

Rosemount RTD Connection

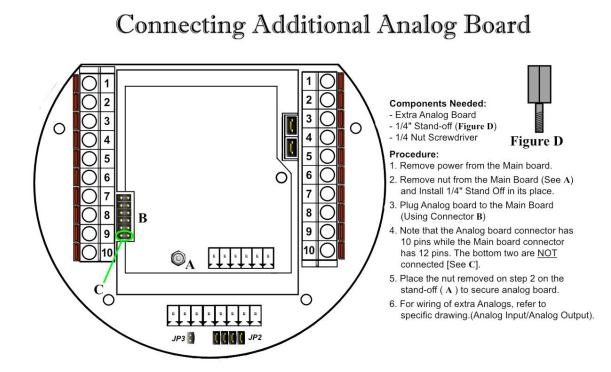
Wiring RTD Into Rosemount Multivariable


Plug the custom RTD plug into the RTD port located on the front of the multivariable sensor.

To use your own RTD instead of Rosemount's armored assembly, you can order the custom plug with wire ends.

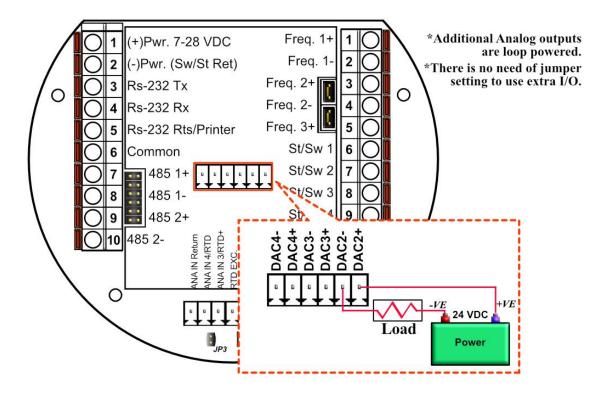
Wiring of Analog Output:

Wiring diagram shows typical Analog output wiring. Notice that analog outputs will regulate 4-20 mA current loops but DOES NOT source the power for it. External power is required.


Analog Output Wiring

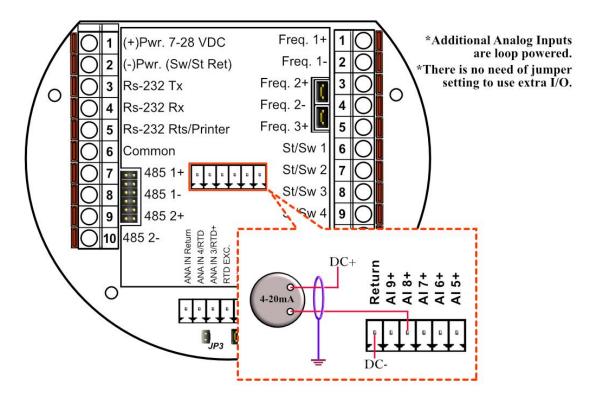
Assigning/Ranging the 4-20mA Analog Outputs:

Go to the **I/O** assignment main menu and click **Analog Output Assignment**. A selection menu is prompted. Select the analog output number, and then enter what the 4 mA output will indicate and the 20 mA. Make sure that the 20 mA assignment value exceeds the upper range limit of what you assigned the Analog output for, otherwise the analog output will not update beyond 20 mA.

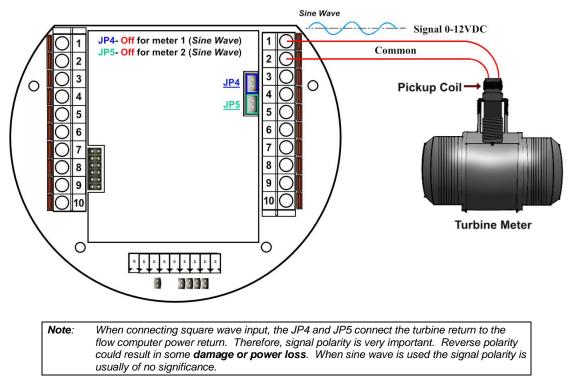

Additional Analog Outputs or Analog Inputs – Board Installation

Back Panel - Additional Analog Outputs

Additional analog output board is required for three additional analog outputs.


Back Panel w/ Extra Analog Out Board

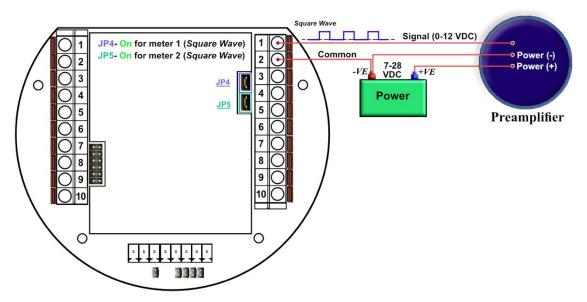
Back Panel - Additional Analog Inputs


Additional analog input board is required for five additional analog inputs.

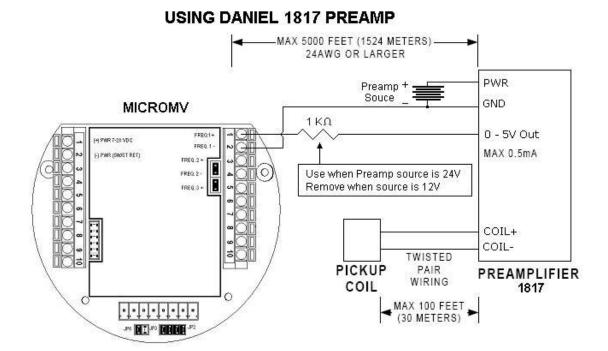
Back Panel w/ Extra Analog Input Board

Turbine Input Wiring

Go to view main menu, click turbine under Wiring Drawings. Two drawings above each other will show typical wiring for turbine meter 1 and turbine meter 2. When connecting sine wave directly from the pickup coil make sure the distance from the pickup coil to the flow computer is very short-less than 50 feet with shielded cable. In the event there is presence of noise, the distance must be shortened. When connecting sine wave signal, the JP4 jumper for meter 1 must not be installed and JP5 jumper for meter 2 must not be installed. (*JP4 and JP5 must be off when using sine wave*). On the other hand, when using square wave, the square wave signal can be sinusoidal but has to be above 5 volts peak to peak with less than 0.4 volts offset in order for the flow computer to read it. The JP4 jumper for meter 1 must be installed and JP5 jumper for meter 2 must be installed and JP5 jumper for meter 2 must be installed and JP5 jumper for meter 2 must be installed and JP5 jumper for meter 2 must be installed and JP5 jumper for meter 2 must be installed and JP5 jumper for meter 2 must be installed and JP5 jumper for meter 2 must be installed when using square wave.

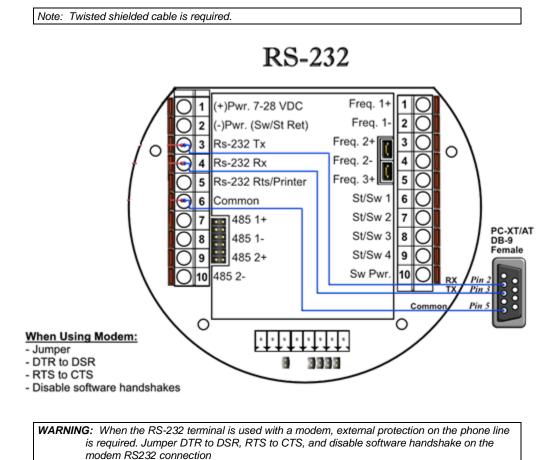


The turbine input is on the top of terminal P3 The third pin down from the top is Turbine/PD input 2 plus and below it is Turbine 2 minus. The third frequency input (fifth pin down) has the positive input and the negative is the power input ground. If a different power supply is used to power the densitometer then the power return for that input needs to be connected to the Micro MV power ground.

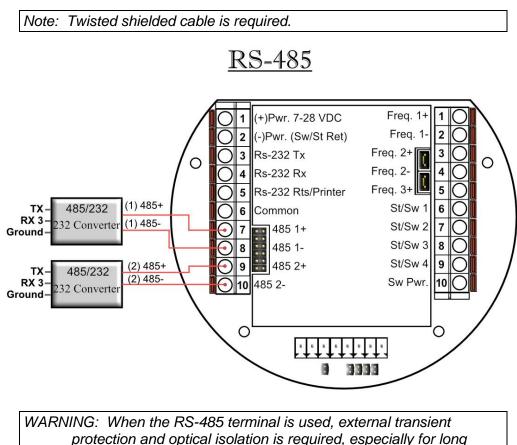

Turbine Input Wiring

For square wave, the voltage is 5 to 12 VDC. Do not exceed 12 VDC (Terminal 1-Frequency#1 input+ and Terminal 3-Frequency#2 input+).

Using Daniel 1818 Preamp


Turbine Input Wiring – Using Daniel 1817 Preamp

Date: 9/28/2022


RS-232 Connection:

The RS-232 is located on the left terminal block. The third, fourth, fifth, and sixth pins of the RS232 are below the power input.

RS-485 Connection:

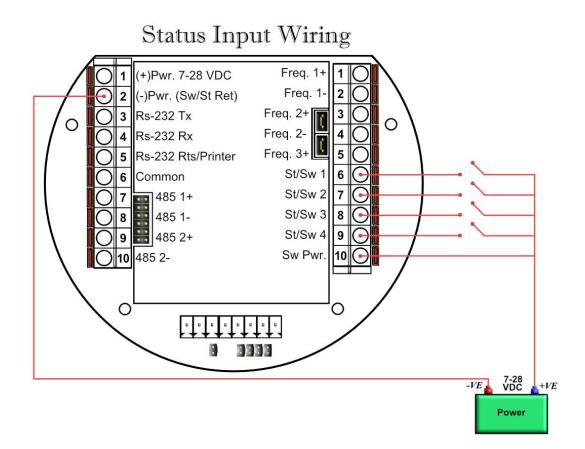
RS-485 wiring is shown in the wiring diagram under **RS-485**. Two Rs485 channels are available for Modbus communication. The second 485 channel is also available as a master to other slave devices. I.e. gas G.C., external Modbus slave devices and token passing ring. The maximum distance when 18-gauge wire is used is 4000 feet.

distance wiring.

RS485/232 Adapter

Dynamic recommends B&B Electronics. We generally use Model 485D9TB, which is a port power converter requiring only a 2-Wire connection. The 485D9TB has a terminal block which makes the wiring more convenient and provides the option of external 12V power for low power serial ports. Model 485SD9R can also be used, but it has a DB9 terminal which requires additional cables. With Model 485SD9R the pins that connect to the flow computer are pin 3 on the DB9 to TX on the flow computer and pin 8 on the DB9 goes to RX on the flow computer. For a USB to RS485 converter, we recommend Model USTL4 which is also port powered and supports half and full duplex networks.

*Note

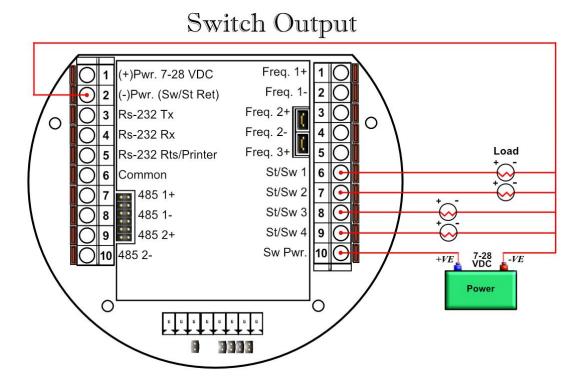

Version 1: MicroMV Board (Older MicroMV Models)

The second RS485 gets disabled if ST/SW#4 is used. They cannot be used at same time. To use ST/SW#4 as a serial port, JP7 must be OFF and no assignment for ST/SW#4, otherwise serial port#3(Second 485 Port) gets burned if voltage is applied.

Version 2: Main/Mem MicroMV Boards (Micro2009 and Later Model) ST/SW#4 and the second RS485 can be used be used at same time.

Wiring of Status Inputs:

There are 4 digital inputs or outputs that are user configurable. The configuration software will configure the input to be a status input or a switch output. The standard status input has 4 volts of noise hysteresis, with on trigger point of 5 volts and an off point of 1 Volt.


*Note

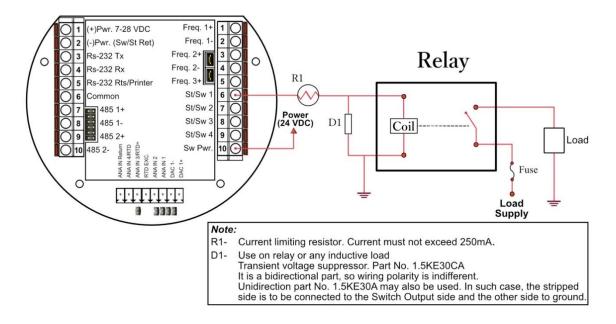
Version 1: MicroMV Board (Older MicroMV Models) The fourth digital I/O is optional and can only be use if the 2nd RS485 is not used. The second RS485 gets disabled if ST/SW#4 is used. They cannot be used at same time. To use Status 4 JP7 Must be ON otherwise OFF

Version 2: Main/Mem MicroMV Boards (Micro2009 and Later Model) ST/SW#4 and the second RS485 can be used be used at same time.

Wiring of Switch/Pulse Outputs:

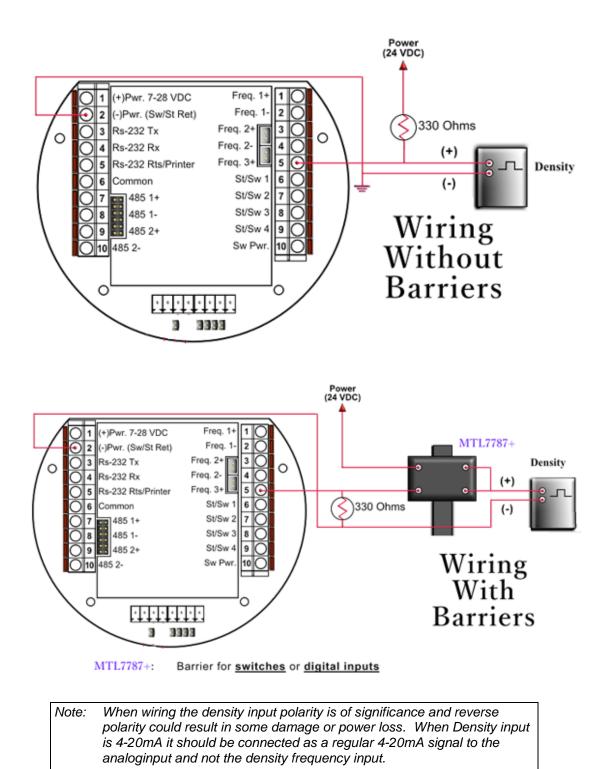
		output up to 125 pulse per second. Notice that en collector type with maximum DC rating of 4 VDC) connections	
1	Status Input /switch output 1	Quitab Maximum ration, 250mA @24.valta	
2	Status Input/switch output 2	Switch - Maximum rating: 350mA @24 volts Switch Output Range: 5-28 VDC	
3	Status Input /switch output 3	Status Input Rating: 6-28 VDC	
4	Status input/ switch output 4	Status input Rating. 0-20 VDC	

*Note Version 1: MicroMV Board (Older MicroMV Models)


The fourth digital I/O is optional and can only be use if the 2nd RS485 is not used. When using ST/SW#4, the second RS485 gets disabled. They cannot be used at same time.

Version 2: Main/Mem MicroMV Boards

ST/SW#4 and the second RS485 can be used be used at same time.


Switch Output to Relay Wiring Diagram

When wiring the Switch Outputs to an inductive load such as a relay, it is better to add transient protection to the flow computer's electronics due to the surge in voltage that inductive loads may create. This protection can be added as shown in the drawing below.

Density Input Wiring

When using a live densitometer input with frequency signal, the signal can be brought into the MicroMV in its raw form. The MicroMV accepts a sine wave or square with or without DC offset.

CALIBRATION

Analog Input 4-20mA or 1-5 volt Signal

Calibrations are performed under **Calibration**. Select inputs to be calibrated, and then select full, single, offset calibration method.

OFFSET CALIBRATION:

For simple offset type calibration simply induce the signal into the analog input and make sure the MicroMV is reading it. After you verify that the MicroMV recognized the analog input, enter the correct mA reading, and then click OK. The offset type calibration is mainly used when a small offset adjustment needs to be changed in the full-scale reading. The offset will apply to the zero and span. Offset is the recommended method for calibrating the temperature input.

FULL CALIBRATION METHOD:

To perform full calibration be prepared to induce zero and span type signal.

- 1. Induce the low-end signal i.e. 4mA in the analog input.
- 2. Click inputs to be calibrated under calibration menu, click full calibration, enter the first point the analog input value i.e. 4mA, and then click OK button.
- 3. Now be ready to enter the full-scale value. Simply induce the analog signal and then enter the second value i.e. 20mA, and then click OK button
- 4. Induce live values to verify the calibration.

To use default calibration

- 1. Select Analog Input
- 2. Select Reset calibration method
- 3. Now verify the live reading against the flow computer reading

RTD Calibration:

RTD Calibration is a 2-step process. The first step is a onetime procedure to verify transducer linearity and is done at the time the meter is being setup. The second step is the routine calibration sequence.

Step 1 – Linearity Verification

- 1- Use a Decade box with 0-150 °F settings.
- 2- Connect RTD cable to this resistive element for verification of linearity. Verify low and high points. It must be within ½ degree.
- 3- Connect the actual RTD element and compare with a certified thermometer.
- 4- If not within ½ degree do a Full Calibration (See Full Calibration below). If problem persists verify other elements such as RTD Probe, connections, shield, conductivity of connectors, etc.

The purpose of the above procedure is to verify zero and span and make sure that the two points fall within the expected tolerance.

Step 2 – Routine Calibration

Once Linearity has been verified through Step 1, the routine calibration procedure is reduced to simply connecting the actual RTD and doing an offset point calibration (see offset calibration below).

Calibration after that will be simple verification for the stability of the transmitter. If it drifts abnormally then you need to verify the other parts involved.

Calibration Procedures through Windows[™] Software

At the top menu, go to Calibration and Select RTD Input.

RESET TO DEFAULT CALIBRATION

- 1. Select Reset calibration method
- 2. Now verify the live reading against the flow computer reading

OFFSET CALIBRATION:

1. Select offset calibration method.

2. Induce a live value and wait for 10 seconds for the reading to stabilize. Then enter the live value. The value entered must be in Ohm only.

3. Now verify the live reading against the flow computer reading

FULL SCALE CALIBRATION:

1. Prepare low range resistive input (i.e., 80 Ohm.) and High range resistive input (i.e., 120. Ohm). 2. Go to the calibration menu and select RTD full calibration method. Induce the low end (80

Ohm.) resistive signal and then wait 10 seconds, enter 80 Ohm, and click OK button.

3. Induce the High range signal (120 Ohm.) and wait 10 seconds, then enter the Ohm and click OK button.

4. Now verify the live reading against the flow computer reading.

Calibration of Analog Output:

To calibrate the analog output against the end device follow the following steps:

- 1. Go to the calibration menu, select analog output, and then select method. Full calibration will cause the flow computer to output the minimum possible signal 4 mA. Enter the live output value reading in the end device i.e. 4 mA and click OK button. Now the flow computer will output full scale 20 mA. Enter the live output i.e. 20 then click OK button.
- 2. Now verify the output against the calibration device.

Multi-Variable Transmitters(Model 205) – DP and Pressure

Calibrations are performed under **Calibration**. Select inputs to be calibrated, and then select full, single, offset calibration method.

OFFSET CALIBRATION

- 1. Induce live value for pressure or DP.
- 2. Select Multivariable DP or pressure.
- 3. Select offset calibration method, enter offset, and click OK button.
- 4. Now read induce live values to verify the calibration.

FULL SCALE CALIBRATION

- 1. Induce live value for pressure or DP.
- 2. Select Multivariable DP or pressure
- 3. Select full calibration method
- 4. Induce the low range signal, enter the first point, and then click OK button.
- 5. Induce the high range signal, enter the second point, and then click OK button.
- 6. Now verify the live reading against the flow computer reading.

To use default calibration

- 1. Select Multivariable DP, temperature, or pressure
- 2. Select Reset calibration method
- 3. Now verify the live reading against the flow computer reading

While doing calibration before downloading any of the calibrated values, it is a good practice to verify that the Micro MV close reading to the induced value.

The DP reading must be re-calibrated for the zero offset after applying line pressure.

Multi-Variable Transmitters (Model 205) – RTD

RTD Calibration is a 2-step process. The first step is a onetime procedure to verify transducer linearity and is done at the time the meter is being setup. The second step is the routine calibration sequence.

Step 1 – Linearity Verification

1. Use a Decade box with 0-150 °F settings.

2. Connect RTD cable to this resistive element for verification of linearity. Verify low and high points. It must be within $\frac{1}{2}$ degree.

3. Connect the actual RTD element and compare with a certified thermometer.

4. If not within ½ degree do a Full Calibration (See Full Calibration below). If problem persists verify other elements such as RTD Probe, connections, shield, conductivity of connectors, etc.

The purpose of the above procedure is to verify zero and span and make sure that the two points fall within the expected tolerance.

Step 2 – Routine Calibration

Once Linearity has been verified through Step 1, the routine calibration procedure is reduced to simply connecting the actual RTD and doing an offset point calibration (see offset calibration below).

Calibration after that will be simple verification for the stability of the transmitter. If it drifts abnormally then you need to verify the other parts involved.

Calibration Procedures through Windows™ Software

At the top menu, go to Calibration and Select RTD Input.

RESET TO DEFAULT CALIBRATION

- 1. Select Reset calibration method
- 2. Now verify the live reading against the flow computer reading

OFFSET CALIBRATION:

1. Select offset calibration method.

2. Induce a live value and wait for 10 seconds for the reading to stabilize. Then enter the live value. The value entered must be in Degrees only.

3. Now verify the live reading against the flow computer reading

FULL SCALE CALIBRATION:

1. Prepare low range resistive input (i.e., 80 Ohm.) and High range resistive input (i.e., 120. Ohm).

2. Go to the calibration menu and select RTD full calibration method. Induce the low end (80 Ohm.) resistive signal and then wait 10 seconds, enter the equivalent temperature in degrees, and click OK button.

3. Induce the High range signal (120 Ohm.) and wait 10 seconds, then enter the temperature degrees equivalent to 120 Ohm and click OK button.

4. Now verify the live reading against the flow computer reading.

3

4

Pressure

DP

Multivariable

Temperature MTF

N/A

N/A

MDP

MPF

None

None

Value

-0.412 Calibrate

-1.26 Calibrate

70 Calibrate

Tag

Example: Screenshots of Full Calibration (Assumption: not flowing)

					gnosti O Raw Values			
Unit ID: 1	L	Frequency 1:	0	Free	quency 2: 0	Densit. F	requency: 0	
Switch Ou	utput D)iagnostic:	OFF	=		Enable/	Disable Diagn	ostic
ST/SW 1	L: OFF	ST/SV	V 2: OFF	=	ST/SW3	: OFF	ST/SW4: O	FF
Analog In		Tag ID	4-2	0 mA	Live Value	Numerical	Fail Code	
1	AIN1			0.011	0	0	() Calibrate
2	AIN2			0.011	0	0	0) Calibrate
3	AIN3			0.011	0	0	() Calibrate
4	AIN4			0.01	0	0	() Calibrate
5	N/A			0.000	0	0	() Calibrate
6	N/A			0.000	0	0	() Calibrate
7	N/A			0.000	0	0	() Calibrate
8	N/A			0.000	0	0	() Calibrate
9	N/A			0.000	0	0) Calibrate
RTD	N/A			0.551	-401.4	-401.4	() Calibrate
Analog Out		Tag ID		Assigm	ent	4-20 mA	Value	
1	N/A	N	one			4	0	Calibrate
2	N/A	N	one			4	0	Calibrate

4

4

🗖 Multivariable Connection: OK

Battery Voltage: 7.2

0 Calibrate 0 Calibrate Select Reset Calibration - Return calibration to manufacturer default DP value

Reset Calibration	Return calibration to manufacturer default values.
Offset Calibration	icroMS4
Full Calibration	Calibration Reset on Multivariable DP Successful.
 None	ОК

Select Full Calibration - To configure zero and span values of the signal

Induce the low range signal, enter the first point, and then click OK button.

Multivariable DP - Full Calibrat	tion	
For a full calibration two references (generally low and high range	ence values must be entered. e).	
	irst reference value in the input. Once e in the induced value and press the	
Live Reading	-0.384	
Calibration Point 1	0	
Calibration Point 2	0	
	uced in the input and the live reading the flow computer's reading value. Point 1 Cancel	

Induce the high range signal, enter the second point, and then click OK button.

Multivariable DP - Full Calibration	0 Calibrate 0 Calibrate
For a full calibration two reference values m (generally low and high range). STEP 2 - Now induce the second reference Once the live reading is steady type in the press the Set Button.	e value.
Live Reading 100.3982 Calibration Point 1 Calibration Point 2	0 100.0000
Set Calibration Point 2	MicroMS4

Now verify the live reading against the flow computer reading.

Data Verification

Data verification will not affect the calibration, but will be documented into calibration and verification report.

Verifying Digital Inputs and Outputs

Use the diagnostic menu. A live input and output is displayed. On the top of the screen pulse inputs and density frequency input are shown. Compare the live value against the displayed value on the screen. Failure to read turbine input could be a result of a bad preamplifier or the jumper selection for sine and square wave input are not in the correct position. Refer to wiring diagram **View | Wiring Drawing| Turbine** for proper turbine input wiring. Density input can be sine or square wave with or without DC offset. Minimum accepted signal has to be greater than 1.2 volt peak to peak. Status input is shown below the frequency input to the left of the screen. When the status input is on, the live diagnostic data will show **ON**. Minimum voltage to activate the status is 6 volts with negative threshold of 2 volts. . To activate the switch outputs to the on and off position, click on "Enable/Disable Diagnostic" button in the diagnostic menu. After the screen freeze, click on "Toggle ON/OFF" button to toggle the switch on/off . To exit, click on "Enable/Disable Diagnostic" button again. The switch outputs are open collector and require external voltage.

CHAPTER 2: Data Entry

and Configuration Menus

Introduction to the Micro M.V. Computer Software

The MicroMS4 software is constructed around a menu-driven organization

Configuration File

We will begin with the DYNACOM PC software menu. Create a new configuration file, and save it.

- The software opens ready for you with a default configuration file. To choose an existing file go to the Configuration File | Open... and provide the configuration file name. If you want to create a new file, select Configuration File | New.
- 2. Now go back to **Configuration File**. Use the down arrow key to move the cursor to **Save** and press ENTER. You have just saved the file you just created. Notice that now the file name will appears in the left top corner of the screen. This indicates the name of the currently active file; if you change parameters and **save** again, the changes will be saved to your file.

Configuration File Menu

Open a File

Use this function to open an existing configuration file. After a file is opened it becomes the currently active file; its contents can be viewed and its parameters can be edited.

When this function is chosen a list of existing configuration files is displayed (files with extension .SFC). Use the cursor arrow keys to move the cursor to your selection. This function also can be reached pressing \overrightarrow{o} on the toolbar.

Open a New File

Create a new file to store all the programmed information for one Micro MV Liquid Flow Computer. You are prompted for the new file's name. If you enter the name of a pre-existing file, the software informs you of this and prompts you if you want to overwrite the old file. After a file is opened it becomes the currently active file; its contents can be viewed and its parameters can be edited. This option can be activated pressing \Box on the toolbar.

Save As

Use Save As to save the parameters in the currently active file (that is, the parameter values currently being edited) to a new file. You are prompted for the new file's name. If you enter the name of a pre-existing file, the software asks you if you want to overwrite the old file. The original file will remain in memory.

<u>Save</u>

When permanent modifications are performed on a file, user must save the new changes before exiting the program, or proceeding to open a different file. The system will ask you for the name you want for this file. You can also save pressing 🖬 on the toolbar.

<u>Exit</u>

Exit the application, if changes were made to the configuration and haven't been saved you will be asked if you want to save them.

Before the Exit option there is a list of the most recently used configuration files so you can select one of them without looking for it in the disk.

VIEW

View Drawings

To view the wiring drawings for the Flow Computer go to the **View** menu and then select **Wiring**. The drawings available for this device will be listed.

- Back Panel
- Analog Input
- RTD
- Analog Output
- Status Input
- Switch Output
- Turbine
- Densitometer
- RS 232
- RS 485

TOOLS

Communication Port Settings

You can access this window either through the **Tools | Comm Settings** menu option or the Comm button and the toolbar.

This window let you set the port settings in order to communicate with the Flow Computer. You have the following options available:

Serial Parameters

Port - Communication Port Number

Enter the PC port used to communicate with the MicroMS4 Flow Computer.

Baud Rate

Note: this parameter must be set the same for both the PC and the MicroMS4 Flow Computer for communication to occur.

Baud rate is defined as number of bits per second. The available selections are 1200, 2400, 4800, 9600, or 19200.

Parity

Note: this parameter must be set the same for both the PC and the MicroMS4 Flow Computer for communication to occur.

RTU - NONE

ASCII - EVEN or ODD

Set the parity to match the **Modbus Type**.

Data Bits

Options available: 5, 6, 7, or 8. Generally used: 8 for RTU mod, 7 for ASCII mode.

Stop Bits

Options available: 1, 1.5, or 28. Generally used: 1.

Modbus Type

Note: this parameter must be set the same for both the PC and the MicroMS4 Flow Computer for communication to occur.

The Modbus Communication Specification is either Binary RTU or ASCII.

Auto Detect Settings

Click this button and the configuration program will attempt to communicate with a single MicroMS4 Flow Computer at different baud rates and formats.

Failure to communicate can occur because of a wiring problem, wrong PC port selection, communication parameter mismatch between PC and MicroMS4 Flow Computer (Modbus type, parity, baud rate, etc.) or lack of power to the MicroMS4 Flow Computer. To use this feature, the user must insure that only one MicroMS4 Flow Computer is connected to the PC. More than one MicroMS4 Flow Computer in the loop will cause data collisions and unintelligible responses

FLOW CONTROL

RTS Flow Control

Turns the RTS flow control on and off. The Enable option turns ON the RTS line during the connection. The Handshake option turns on RTS handshaking. Disable turns OFF the RTS line. Toggle specifies that the RTS line is high if bytes are available for transmission. After all buffered bytes have been sent the RTS line will be low.

DTR Flow Control

Specifies the DTR flow control. Enable turns ON the DTR line during the connection. Handshake turns on DTR handshaking. Disable turns off the DTR line.

CST Flow Control

Turns the CTS flow control on and off. To use RTS/CTS flow control, specify Enable for this option and Handshake control for the RTS option.

<u>Use Internet Protocol</u>

Check the box if you are planning to communicate using an Ethernet connection instead of a serial connection.

IP Address

IP Address of the target Flow Computer. This address must follow the addressing standard xxx.xxx.xxx. You must provide both IP Address and Port in order to communicate with a flow computer.

Port

In conjunction with the IP Address, a port number must be specified. The default port number for Modbus/Ethernet bridges is 502 but it can be any number.

Protocol

Protocol to be used through the Ethernet connection. Modbus TCP, also known as Modbus Ethernet consists of a Modbus message without CRC wrapped by a TCP/IP message. This protocol is generally used by industrial Modbus to Ethernet converters. The TCP/IP encapsulation also known as TCP/IP Pass Through Mode consists of a regular Modbus message embedded in a TCP/IP message. This protocol is generally used by general purpose Ethernet to Serial converters.

UNIT ID NUMBER

The Unit ID Number is used strictly for communication purposes; it can take any value from 1 to 247. Only one master can exist in each loop.

Note: Do not duplicate the Unit ID number in a single communication loop! This situation will lead to response collisions and inhibit communications to units with duplicate ID numbers.

<u> TIME OUT</u>

The amount of time in seconds the program will wait for an answer from the flow computer.

<u>Retry Times</u>

Retry times for the program to communicate with the flow computer in case of timeout.

Meter Configuration

Meter Settings

Meter Set Up				
Select Unit				
Selection	Description	<u>Temperature</u>	Pressure	<u>DP</u>
0	US Unit	DEG.F	PSIG	Inches of Water
1	Metric Unit	DEG.C	BAR, KG/CM	KPA, m.Bar
Metric Pressure Units				
Selection	Description	Pressure		
0	Metric Unit	BAR		
1	Metric Unit	KG/CM2		
2	Metric Unit	KPA		
Flow Units				
Selection	Description			
0	MCF			
1	KM3			
Metric DP Units				
<u>Selection</u>	Description			
0	m.BAR			
1	KPA			
Meter Application				
Selection	Description			
0	Gas Meter			
1	Liquid Meter - H	BBLS		
2	Liquid Meter -			

Company Name

Up to 20 characters. The company name appears in the reports.

Meter Location

Up to 20 characters. This entry appears only in the report and serves no other function.

Day Start Hour (0-23)

Day start hour is used for batch operation. If daily batch is selected, the batch will end at day start hour, all batch totalizers and flow-weighted values are reset.

Disable Alarms

Use Disable Alarms to ignore alarms. When the alarm function is disabled alarms are not logged. Alarms are also not logged if the DP is below the cut-off limit.

Alarm Delay Timer

Enter delay timer in seconds for logging the alarms.

Disable Cry-Out Message

When a new alarm is occurred, the flow computer will send out an alarm message through the RS232 port. Check this option to disable this feature.

Cry-Out Alarm Message Delay Time

Enter delay time in seconds for sending out cry-out message.

Number of Meters

Enter '1', '2', '3', or '4' meters run configuration per individual flow computer.

Flow Rate Selection

The flow rate will be based on daily basis, hourly, or minute.

Flow Rate Average Second

The flow rate is averaged for 1-10 seconds to minimize fluctuating flow rate conditions. This number averages the current flow rate by adding it to the previous seconds' flow rate, and then displays an averaged smoothed number. Only a low-resolution pulse meter requires this function.

Atmospheric Pressure

This pressure is the local pressure or contracted atmospheric pressure to be used. Typical value is 14.696 PSIA for US units.

Base Pressure

The basis reference pressure is used for all corrections. Used, for example, when seller contracts to sell to buyer at an agreed base pressure. Typical values are 14.73 PSIA for US units, 1.01325 bar in Metric units.

Base Temperature

The basis reference temperature is used for all corrections. Used, for example, when seller contracts to sell to buyer at an agreed base temperature. Typically 60.0 °F is used in US units, 15 °C in Metric units.

Common Parameters

This feature allows the Micro MV Gas Flow Computer to use the transmitters on meter one to substitute and compensate for meter two, three, or four.

Analog Input Expansion #5-#9

Enter '1' to use analog input expansion #5-#9.

Use Battery Voltage Reading and Alarm

A battery low alarm occurs when battery voltage is below 11.2 volts. Only the certain new CPU boards have this feature. Check this option to enable this feature.

Daylight Saving Time (DST)

Enabling Daylight Saving Time (also called "Summer Time") sets the Flow Computer to automatically forward its time by one hour at 2:00 AM on a preset day ("Spring Forward") of the year and roll back on a second date("Fall Back").

If left in auto mode, the computer calculates the DST dates based on USA standards, which are, Spring Forward the first Sunday of April and Fall Back the last Sunday of October.

For countries with other DST dates, the user can enter dates manually. For example, European Summer Time starts the last Sunday in March and ends the last Sunday in October.

Effects of DST on Historical Data

Given the sudden time change that DST creates, the historical reports will show an hour with zero flow at 2:00 AM of Spring Forward Day and an hour with double flow at 1:00 AM of Fall Back Day, to achieve consistent 24-Hour a day flow records.

SLAVE UNITS CONFIGURATION

The Micro MV can poll up to 3 other slaves, 4 MicroMS4 Slaves, or 4 E-Chart Slaves.

Slave Type

Selection	Description
0	Others
1	MicroMS4
2	Foxboro
3	E-Chart
4	MicroMV and E-Chart Combination –
	Slave Type – 0 - E-Chart, 1 – MicroMVL, 2 – MicroMS4

Slave Unit ID

The Slave Unit ID Number is used strictly for communication purposes; it can take any value from 1 to 247.

VT – Variable Type for Slave Type 0 Only

Variable type describes the position of high, low words of slave device. When 32 bits (two words) register is polled, it is essential to define where the highest significant word.

Code	Description	Sequence in words
0	2 registers of 16 bits integers	High, Low
1	1 register of 32 bits floating	Low, High
2	2 registers of 16 bits floating	Low, High
3	1 register of 32 bits integer	High, Low
4	2 registers of 16 bits integers	Low, High
5	1 register of 32 bits floating	High, Low
6	2 registers of 16 bits floating	High, Low
7	1 register of 32 bits integer	Low, High

DEST - Destination Address for Slave Type 0 Only

Destination defines where the polled variables are used in the flow computer. Variable statements and other pre-defined locations are accepted. Pre-defined locations are temperature, pressure, and density. Variables can be accessed through the display and reports.

0	Floating #1 (7061)	10		1	20	M#1 TF	30	M#3 TF
1	Floating #2 (7062)	11	Integer #2(5073)		21	M#1 PF	31	M#3 PF
2	Floating #3 (7063)	12	Integer #3(5075)		22	M#1 DF	32	M#3 DF
3	Floating #4 (7064)	13	Integer #4(5077)		23	M#1 DB*	33	M#3 DB*
4	Floating #5 (7065)	14	Integer #5(5079)		24	M#1 DP	34	M#3 DP
5	Floating #6 (7066)	15	Integer #6(5081)		25	M#2 TF	35	M#4 TF
6	Floating #7 (7067)	16	Integer #7(5083)		26	M#2 PF	36	M#4 PF
7	Floating #8 (7068)	17	Integer #8(5085)		27	M#2 DF	37	M#4 DF
8	Floating #9 (7069)	18	Integer #9(5087)		28	M#2 DB*	38	M#4 DB*
9	Floating 10 (7070)	19	Integer 10(5089)		29	M#2 DP	39	M#4 DP

ADDR - Source Address

Source defines the actual registers being polled from the slave device. Source address is considered to be continuous without zero address in between.

Example : Meter #1 density uses micro motion density.

Slave ID = Micro Motion ID VT = 2, DEST=22, ADDR=248 *Note: DB – Density at Base Condition.

Slave Units Configuration - Example

Slave Type 0 – Other Slaves (up to 3 slaves)

Example : Read Meter #1 Density of MicroMS4 from the Micro Motion.

Slave ID	ID	Micro Motion ID
VT – Variable Type	2	2 registers of 16 bits floating (Words Order-Low, High)
DEST - Destination Address	22	Meter #1 Density
ADDR – Slave Modbus Address	248	Modbus Address of Micro Motion Density

Slave Type 1- MicroMS4 (up to 4 slaves)

	Slave ID	ID	MicoMS4 Unit ID
--	----------	----	-----------------

The MicroMS4 will poll variables are used in the slave. Variables are 4 analog inputs and multi-variables – DP, Pressure, and Temperature. The slave calibrations can be done through the master unit.

Slave Type 2– Foxboro (up to 4 slaves)

Slave ID	ID	FOXBORO Unit ID
----------	----	-----------------

The MicroMS4 will poll variables are used in the slave. Variables are mass flow rate, mass cumulative totals, and density,

Slave Type 3– E-Chart (up to 4 slaves)

Slave ID	ID	E-Chart Unit ID

The MicroMS4 will poll variables are used in the slave. Variables are multi-variables – DP, Pressure, and Temperature.

Slave Type 4– MicroMS4, E-Chart, or MicroMVL Combination (up to 4 slaves)

	Slave ID	ID	E-Chart Unit ID
--	-----------------	----	-----------------

The MicroMS4 will poll variables are used in the slave. Variables are multi-variables – DP, Pressure, and Temperature.

<u>Meter Data</u>

Meter ID

Up to 8 characters. This function will serve as meter tag.

Gas or Liquid Application

Enter '0' to select gas application, or '1' to select liquid application.

Flow Equation Type

- 0 = API 14.3 (NEW AGA3, 1992 Orifice Equations)
- 1 = ISO5167
- 2 = AGA7 (Frequency Type Input)
- 3 = V-Cone Flow Meter
- 4 = MPU 1200
- 5 = FOXBORO (Assume: US unit Mass in LB/HR, Density LB/CF, Metric Unit- Mass in M3, Density in KG/M3)
- 6= Natural Gas @20 Deg.C
- 7= Verabar
- 8= Pitot Tube
- 9= ISO 6976
- 10= Venturi
- 11= Accelabar
- 12= Dynacone Wet Gas

Select the desired calculation mode. API 14.3 is the latest orifice calculations introduced in 1994 All new installations are recommended to use API 14.3 for orifice calculations.

On the right hand side of the selection box is a property button is that when pressed pops up a window with the flow equation settings.

API 14.3 Data (new AGA3) Flow Equation Type = 0

Pipe I.D.

Orifice ID

Pipe ID in inches (us unit), or in millimeter (metric unit) is the measured inside pipe diameter at reference conditions. Orifice ID is the measured diameter of the orifice at reference conditions.

DP Cutoff

The Micro MV Gas Flow Computer suspends flow rate calculations whenever the DP, in inches of water column (us unit) or in mbar or in KPA (metric unit), is less than this value. This function is vital for suppressing extraneous data when the DP transmitter drifts around the zero mark under no-flow conditions.

Y Factor (0=None, 1=Upstream, 2=Downstream)

Y factor is the expansion factor through the orifice. The user must enter the position of the pressure and temperature sensors. Select y=1 if the sensors are installed upstream of the orifice plate. Select y=2 if the sensors are downstream of the orifice plate. When multi-variable is used, the pressure sensor is always upstream and set Y to 1.

Isentropic Exponent (Specific Heat)

Ratio of specific heat is a constant associated with each product. Even though it varies slightly with temperature and pressure, in all cases it is assumed as a constant.

Viscosity in Centipoise

Even though viscosity will shift with temperature and pressure changes, the effect on the calculations is negligent. Therefore using a single value is appropriate in most cases. Enter viscosity in centipoise at typical flowing conditions. Natural gas has a typical viscosity of 0.01.

Reference Temperature of Orifice

Reference Temperature of Pipe

These parameters give temperature at which the bore internal diameter was measured on the orifice and pipe respectively. Commonly 68 °F (us unit) or 20 °C (metric unit) is used.

Orifice Thermal Expansion Coeff. E-6

Pipe Thermal Expansion Coeff. E-6

These parameters give the linear expansion coefficients of the orifice and pipe materials respectively.

	Us Unit	Metric Unit
Type 304 and 316 Stainless	9.25 E-6	16.7 E-6
Monel	7.95 E-6	14.3 E-6
Carbon Steel	6.20 E-6	11.2 E-6

ISO5167

Flow Equation Type = 1

Pipe I.D.

Orifice ID

Pipe ID in inches (us unit), or in millimeter (metric unit) is the measured inside pipe diameter to 5 decimals at reference conditions. Orifice ID is the measured diameter of the orifice at reference conditions.

DP Cutoff

The Micro MV Gas Flow Computer suspends flow calculations whenever the DP, in inches of water column (us unit) or in mbar or in KPA (metric unit), is less than this value. This function is vital for suppressing extraneous data when the DP transmitter drifts around the zero mark under no-flow conditions.

Select Position of Temperature and Pressure Sensors

Selection	Description
1	Temperature and Pressure Upstream
2	Temperature and Pressure Downstream
3	Temperature Upstream and Pressure Downstream
4	Temperature Downstream and Pressure Upstream

Note: When the multi-variable is used, the pressure sensor is always upstream.

Isentropic Exponent (Specific Heat)

Ratio of specific heat is a constant associated with each product. Even though it varies slightly with temperature and pressure, in most cases it is assumed as a constant.

Viscosity in Centipoise

Even though viscosity will shift with temperature and pressure changes, the effect on the calculations is negligent. Therefore using a single value is appropriate in most cases. Enter viscosity in centipoise.

Reference Temperature of Orifice

Reference Temperature of Pipe

These parameters give temperature at which the bore internal diameter was measured on the orifice and pipe respectively. Commonly 68 °F (us unit) or 20 °C (metric unit) is used.

Orifice Thermal Expansion Coeff. E-6

Pipe Thermal Expansion Coeff. E-6

These parameters give the linear expansion coefficients of the orifice and pipe materials respectively.

	Us Unit	Metric Unit
Type 304 and 316 Stainless	9.25 E-6	16.7 E-6
Monel	7.95 E-6	14.3 E-6
Carbon Steel	6.20 E-6	11.2 E-6

Distance of Upstream Tapping

Distance of upstream tapping from the upstream face of the plate

Distance of Downstream Tapping

Distance of upstream tapping from the face of the orifice plate

Density Use Upstream Temperature

Using up-stream temperature to calculate the density of gas at the inlet of the orifice.

AGA7 Data (Frequency)

Frequency IO Position

Enter '0' to select frequency #1, or enter '1' to select frequency #2.

K Factor

K Factor is the number of pulses per unit volume, i.e. 1000 pulses/CF (us unit), M3 (metric unit). The meter's tag would normally indicate the K Factor.

Liquid	Meter	Gas Meter		
Set Composition Selection to Zero		Set Composition Selection to Zero		
US Units	Metric Units	US Units	Metric Units	
K Factor: Pulses/BBL K Factor: Pulses/M3		K Factor: Pulses/CF	K Factor: Pulses/M3	
Hourly Report: Gross and Net Total BBL (US), M3(Metric)		*Hourly Report: Net and Energy Net: MCF or KM3, Energy: MMBTU(US),GJ(Metric)		

*Note (Available for firmware version 6.04.13 or newer)

To display Gross and Net total, composition selection must be set to nonzero.

Configuration					
Meter Settings Meter	r Data I/O Span	e Assignment FC	Ports PID Con	ntrol Turbine Diagnostic	
Meter 1	Meter 2	Meter 3	Meter 4	1	
Meter ID		Meter	r Application) - Gas Meter	•
Flow Equation 0 -	API 14.3 (Orifice Plate)	💌 😭 Dens	sity Equation 3	- AGA8 Detailed Method	▼ 🛃
Density of Dry Air (b	om/mol) 28.9	96250 Compositi	on Selection 1	- Use Meter 1 composition	⊡∽

After downloading this configuration, the MicroMS4 will force a Gas Meter to a Liquid meter but use the AGA8 detailed method. Composition selection and Gas Composition data are required for this setup.

Force a Gas Meter to a Liquid Meter		
Set Composition Selection to nonzero		
US Units Metric Units		
K Factor: Pulses/CF K Factor: Pulses/M3		
Hourly Report: Gross and Net		
BBL(US), M3 (Metric)		

Meter Factor

Meter Factor is a correction to the K Factor for this individual meter, applied multiplicatively to the K factor.

Flow Cutoff Frequency

The Micro MV Gas Flow Computer will quit totalizing when the turbine frequency (or other frequency input) is below this set limit. This feature is to reduce extraneous noise appearing as volume data when the meter is down for period of time.

This value is entered as pulses per second.

Flow Rate Threshold/Linear Factor

Enter the different correction factors for the meter at different flow rates. The Micro MV Gas Flow Computer will perform linear interpolation each second. Notice that even though using this feature enhances the measurement accuracy and range, performing audit trail on a linearized meter factor is very difficult.

Cone/Smart Cone Data Flow Equation Type = 3

Pipe I.D.

Cone ID

Pipe ID in inches (us unit), or in millimeter (metric unit) is the measured inside pipe diameter at reference conditions. Cone ID is the measured diameter of the Cone at reference conditions.

DP Cutoff

The Micro MV Gas Flow Computer suspends flow rate calculations whenever the DP, in inches of water column (us unit) or in mbar (metric unit), is less than this value. This function is vital for suppressing extraneous data when the DP transmitter drifts around the zero mark under no-flow conditions.

Y Factor

Selection	Description
0	Non-Compressible
1	Compressible Fluids – Precision
2	Compressible Fluids – Wafer & Cone

Isentropic Exponent (Specific Heat)

Ratio of specific heat is a constant associated with each product. Even though it varies slightly with temperature and pressure, in all cases it is assumed as a constant.

Flow Coefficient

Enter flow coefficient of the meter.

Pipe Thermal Expansion Coefficient E-6

Pipe material coefficient of thermal expansion. *Note: the value is typically between 5.0e-6 and 10.0e-6.*

Cone Thermal Expansion Coefficient E-6

Cone material coefficient of thermal expansion. *Note: the value is typically between 5.0e-6 and 10.0e-6.*

Natural Gas @20 Deg.C Flow Equation Type = 6

Pipe I.D.

Orifice ID

Pipe ID in millimeter (metric unit) is the measured inside pipe diameter at reference conditions. Orifice ID is the measured diameter of the orifice at reference conditions.

DP Cutoff

The Micro MV Gas Flow Computer suspends flow rate calculations whenever the DP, in inches of water column (us unit) or in mbar or in KPA (metric unit), is less than this value. This function is vital for suppressing extraneous data when the DP transmitter drifts around the zero mark under no-flow conditions.

Y Factor (0=None, 1=Upstream, 2=Downstream)

Y factor is the expansion factor through the orifice. The user must enter the position of the pressure and temperature sensors. Select y=1 if the sensors are installed upstream of the orifice plate. Select y=2 if the sensors are downstream of the orifice plate. When multi-variable is used, the pressure sensor is always upstream and set Y to 1.

Isentropic Exponent (Specific Heat)

Ratio of specific heat is a constant associated with each product. Even though it varies slightly with temperature and pressure, in all cases it is assumed as a constant.

Viscosity in Centipoise

Even though viscosity will shift with temperature and pressure changes, the effect on the calculations is negligent. Therefore using a single value is appropriate in most cases. Enter viscosity in centipoise at typical flowing conditions. Natural gas has a typical viscosity of 0.01.

Reference Temperature of Orifice

Reference Temperature of Pipe

These parameters give temperature at which the bore internal diameter was measured on the orifice and pipe respectively. Commonly 68 °F (us unit) or 20 °C (metric unit) is used.

Orifice Thermal Expansion Coeff. E-6

Pipe Thermal Expansion Coeff. E-6

These parameters give the linear expansion coefficients of the orifice and pipe materials respectively.

	Us Unit	Metric Unit
Type 304 and 316 Stainless	9.25 E-6	16.7 E-6
Monel	7.95 E-6	14.3 E-6
Carbon Steel	6.20 E-6	11.2 E-6

Verabar Data Flow Equation Type = 7

To set Verabar flow parameters, set **Meter** | **Meter Data** | **Flow Equation Type = 7**. You will then access a submenu in which you can set the parameters below.

Pipe I.D.

Pipe ID in inches (us unit), or in millimeter (metric unit) is the measured inside pipe diameter to 5 decimals at reference conditions.

Blockage No - PW

Beta = TheSensorBlockage = $\frac{4 \times PW}{\pi \times D}$ where D = Pipe I.D. in Inches PW = The Sensor's Probe Width in Inches PW = .336" for a - 05 sensor PW = .614" for a - 10 Sensor PW = 1.043" for a - 15 Sensor π =3.141592654

DP Cutoff

The Micro MV Gas Flow Computer suspends all calculations whenever the DP, in inches of water column, is less than this value. This function is vital for suppressing extraneous data when the DP transmitter drifts around the zero mark under no-flow conditions.

Flow Coefficient K

Enter flow coefficient for pipe dimension and wall thickness.

Ratio of Specific Heat

Fluid isentropic exponent at flowing conditions.

Pitot Tube Data Flow Equation Type = 8

Pipe I.D.

Pipe ID in inches (us unit), or in millimeter (metric unit) is the measured inside pipe diameter at reference conditions.

Pitot Flow Coefficient

Enter flow coefficient of the meter.

DP Cutoff

The Micro MV Gas Flow Computer suspends flow rate calculations whenever the DP, in inches of water column (us unit) or in mbar (metric unit), is less than this value. This function is vital for suppressing extraneous data when the DP transmitter drifts around the zero mark under no-flow conditions.

Pipe Thermal Expansion Coefficient E-6

Pipe material coefficient of thermal expansion. *Note:* the value is typically between 5.0e-6 and 10.0e-6.

Reference Temperature of Pipe

These parameters give temperature at which the bore internal diameter was measured on the orifice and pipe respectively. Commonly 68 °F (us unit) or 20 °C (metric unit) is used.

<u>Fluid Humidity</u> Enter Fluid Humidity in Percent.

ISO 6976

Flow Equation Type = 9

Pipe I.D.

Orifice ID

Pipe ID in inches (us unit), or in millimeter (metric unit) is the measured inside pipe diameter at reference conditions. Orifice ID is the measured diameter of the orifice at reference conditions.

DP Cutoff

The Micro MV Gas Flow Computer suspends flow rate calculations whenever the DP, in inches of water column (us unit) or in mbar or in KPA (metric unit), is less than this value. This function is vital for suppressing extraneous data when the DP transmitter drifts around the zero mark under no-flow conditions.

Y Factor (0=None, 1=Upstream, 2=Downstream)

Y factor is the expansion factor through the orifice. The user must enter the position of the pressure and temperature sensors. Select y=1 if the sensors are installed upstream of the orifice plate. Select y=2 if the sensors are downstream of the orifice plate. When multi-variable is used, the pressure sensor is always upstream and set Y to 1.

Isentropic Exponent (Specific Heat)

Ratio of specific heat is a constant associated with each product. Even though it varies slightly with temperature and pressure, in all cases it is assumed as a constant.

Viscosity in Centipoise

Even though viscosity will shift with temperature and pressure changes, the effect on the calculations is negligent. Therefore using a single value is appropriate in most cases. Enter viscosity in centipoise at typical flowing conditions. Natural gas has a typical viscosity of 0.01.

Reference Temperature of Orifice

Reference Temperature of Pipe

These parameters give temperature at which the bore internal diameter was measured on the orifice and pipe respectively. Commonly 68 °F (us unit) or 20 °C (metric unit) is used.

Orifice Thermal Expansion Coeff. E-6

Pipe Thermal Expansion Coeff. E-6

These parameters give the linear expansion coefficients of the orifice and pipe materials respectively.

	Us Unit	Metric Unit
Type 304 and 316 Stainless	9.25 E-6	16.7 E-6
Monel	7.95 E-6	14.3 E-6
Carbon Steel	6.20 E-6	11.2 E-6

*Note

Set Heating Value to zero if ISO6976 method is used. The heating value is calculated from composition.

Venturi Data Flow Equation Type = 10

Pipe I.D.

Orifice ID

Pipe ID in inches (us unit), or in millimeter (metric unit) is the measured inside pipe diameter at reference conditions. Orifice ID is the measured diameter of the orifice at reference conditions.

DP Cutoff

The EPLUS Flow Computer suspends flow rate calculations whenever the DP, in inches of water column (us unit) or in mbar or in KPA (metric unit), is less than this value. This function is vital for suppressing extraneous data when the DP transmitter drifts around the zero mark under no-flow conditions.

Y Factor (0=None,1=Upstream,2=Downstream)

Y factor is the expansion factor through the orifice. The user must enter the position of the pressure and temperature sensors. Select y=1 if the sensors are installed upstream of the orifice plate. Select y=2 if the sensors are downstream of the orifice plate. When multi-variable is used, the pressure sensor is always upstream and set Y to 1.

Selection	Description
0	None
1	Upstream
2	Downstream

Isentropic Exponent (Specific Heat)

Ratio of specific heat is a constant associated with each product. Even though it varies slightly with temperature and pressure, in all cases it is assumed as a constant.

Reference Temperature of Orifice

These parameters give temperature at which the bore internal diameter was measured on the orifice and pipe respectively. Commonly 68 °F (us unit) or 20 °C (metric unit) is used.

Thermal Expansion Coefficient E-6

Pipe Coefficient Corner Tap E-6

	Us Unit	Metric Unit
Type 304 and 316 Stainless	9.25 E-6	16.7 E-6
Monel	7.95 E-6	14.3 E-6
Carbon Steel	6.20 E-6	11.2 E-6

Discharge Coefficient C

This value is the discharge coefficient for Venturi flow equations.

Accelabar Data

To set Accelabar flow parameters, set **Meter Data** | **Flow Equation Type = 11**. You will then access a submenu in which you can set the parameters below.

Accelabar Size

Selection	Size	Throat Diameter	Flow Constant
0	2"	.9"	0.4650
1	3"	1.289"	0.6566
2	4"	1.700"	0.7106
3	6"	2.560"	0.6779
4	8"	3.389"	0.7123
5	10"	4.251"	0.7329
6	12"	5.056	0.7455

Pipe Material

Selection	Pipe Material	
0	CS	
1	SS	
2	Chrome-Molly	
3	P91	
4	Monel	
5	Others	

DP Cutoff

The Flow Computer suspends all calculations whenever the DP is less than this value. This function is vital for suppressing extraneous data when the DP transmitter drifts around the zero mark under no-flow conditions.

Isentropic Exponent (Specific Heat)

Isentropic exponent for a real gas (approximately 1.3 for natural gas).

Dynacone Wet Gas Data Flow Equation Type = 12

On the right hand side of the selection box is a property button is that when pressed pops up a window with the Dynacone flow equation data settings.

Meter#1 is for a Gas meter, meter#2 is for an Oil meter, and meter#3 is for a Water Meter

Gas/Oil/Water Meter I.D.

Up to 8 characters. This function will serve as meter tag.

Pipe I.D.

Pipe ID in inches (us unit), or in millimeter (metric unit) is the measured inside pipe diameter at reference conditions.

Pitot Flow Coefficient

Enter flow coefficient of the meter.

DP Cutoff

The Micro MV Gas Flow Computer suspends flow rate calculations whenever the DP, in inches of water column (us unit) or in mbar (metric unit), is less than this value. This function is vital for suppressing extraneous data when the DP transmitter drifts around the zero mark under no-flow conditions.

Pipe Thermal Expansion Coefficient E-6

Pipe material coefficient of thermal expansion. Note: the value is typically between 5.0e-6 and 10.0e-6.

Reference Temperature of Pipe

These parameters give temperature at which the bore internal diameter was measured on the orifice and pipe respectively. Commonly 68 °F (us unit) or 20 °C (metric unit) is used.

AGA8 Detailed Method Mol Percentage

Refer to Transmission Measurement Committee Report No. 8

Gas Meter Gross Flow Units

Selection	Description
0	MCF
1	KM3
2	CF
3	M3

Gas Meter Mass Flow Units

Selection	Description
0	LB
1	MLB
2	KG
3	TONNE

Oil and Water Meter Gross Flow Units

Selection	Description
0	MCF
1	KM3
2	CF
3	M3

Oil and Water Meter Mass Flow Units

Selection	Description
0	BBL
1	GAL
2	M3
3	LIT
4	CF
5	MCF

Meter Data Entries for Flow Equation 0 - 11

Flow Rate Low/High Limit

The high/low flow rate alarm is activated, when net flow rate exceeds or is below the set limit. The alarm will be documented with time, date, and totalizer.

Select	Calculation Type	Comments and Limitations		
1	AGA8 Gross Method 1	Relative Density: 0.554–0.87		
		US Unit- Heating Value: 477–1150 BTU/SCF		
		Metric Unit- Heating Value: 18.7 – 45.1 MJ/M3		
2	AGA8 Gross Method 2	Relative Density: 0.554–0.87		
		US Unit – Heating Value: 477–1150 BTU/SCF		
		Metric Unit – Heating Value: 18.7 – 45.1 MJ/M3		
3	AGA8 Detail Method	Relative Density: 0.07–1.52		
		Heating Value 0–1800 BTU/SCF (US Unit)		
4	NIST10 Superheated Steam	Pressure > 2.06843 MPA, Temperature > 533.15 Deg.K		

Density Equation-	Gas Meter:	Specifies the eq	quation used to	calculate density.

AGA 8 Detail method can be used for gases other than natural gas, such as methane, carbon dioxide, ethane, and hydrogen sulfide.

On the right hand side of the selection box is a property button is that when pressed pops up a window with the density equation settings.

Density Equation- Liquid Meter:

	Calculation Type	Comments and Limitations
US Unit	Table 24A/Chapter.11.2.1	SG .637 – 1.076, Temperature 0-300 DEG.F
Metric Unit	0=Crude Volume to 20 Deg.C	
Metric Unit	1=Crude Volume to 15 Deg.C	

On the right hand side of the selection box is a property button if that when pressed pops up a window with the SG-US unit, Density- Metric settings.

Composition Set Selection

This entry is for gas meter only.

Selection	Description		
0	Use This Meter Composition		
1	Meter#1 Composition		
2	Meter#2 Composition		
3	Meter#3 Composition		
4	Meter#4 Composition		

Density of Dry Air

Typical value would be 28.9625

Relative Density

The real gas relative density is used in the calculations of the compressibility factor, flowing and reference densities (required only when AGA8 is not used).

Base Density Factor

Enter a correction factor for density at base.

Heating Value

The energy totalizer requires the heating value entry. (US Unit – BTU/SCF, Metric Unit- MJ/M3)

Input Position

This section allows the user to assign analog inputs to the process variables. The available options are displayed in the selection box. The configuration of the analog inputs is done in the I/O section (explained later on).

Input Position Assignment

- 1: Analog Input#1
- 2: Analog Input#2
- 3: Analog Input#3
- 4: Analog Input#4
- 5: RTD Input
- 7. Frequency Input (Not Selectable)
- 10. Multi-Variable Module (Master)
- 11. Multi-Variable Module Slave #1
- 12. Multi-Variable Module Slave #2
- 13. Multi-Variable Module Slave #3
- 21. Analog Input #5
- 22. Analog Input #6
- 23. Analog Input #7
- 24. Analog Input #8
- 25. Analog Input #9

Density Type

If live density is connected to the flow computer, user must enter the density type. Raw density frequency or 4-20mA input can be selected. This density will be used to calculate mass flow and net flow. Set density type to zero if liquid application is selected.

Density Type	Densitometer		
Type 0	None		
		Density 4–	20 mA Type*
Type 1	4–20 mA	Туре 0	Density Signal 4-20mA in LB/FT3 (us unit) or in KG/M3 (metric unit)
		Type 1	SG Signal 4-20mA
Type 2	UGC		
Type 3	Sarasota		
Type 4	Solartron		

Density 4-20mA Type

Note that this type of input requires the user to choose a subtype, as indicated in the table above.

Use Stack DP

The Micro MV Gas Flow Computer allows the user to select dual DP transmitters on each meter for better accuracy and low range flow. Use in conjunction with the DP Switch High % parameter setting.

DP Switch High %

The Micro MV Gas Flow Computer will begin using the high DP when the low DP reaches the percent limit assigned in this entry. Example: DP low was ranged from 0-25 inches and switch % was set at 95%. When low DP reaches 23.75 in (= 0.95 * 25) the Micro MV Gas Flow Computer will begin using the high DP provided the high DP did not fail. When the high DP cell drops below 23.75, the Flow Computer will start using the Low DP for measurement.

<u>INPUT/OUTPUT</u>

ANALOG INPUTS

In order for the Flow Computer to use the live input, the input must be properly assigned and properly wired

TAG No

Select the following tag no to use default tag, or select '0' to enter tag id.

8 8							
11	TubingP1	21	TubingP2	31	TubingP3	41	TubingP4
12	CasingP1	22	CasingP2	32	CasingP3	42	CasingP4
13	OilTank1	23	OilTank2	33	OilTank3	43	OilTank4
14	WatTank1	24	WatTank2	34	WatTank3	44	WatTank4
15	Suction1	25	Suction2	35	Suction3	45	Suction4
16	Dischag1	26	Dischag2	36	Dischag3	46	Dischag4
17	CompreT1	27	CompreT2	37	CompreT3	47	CompreT4

TAG ID

Up to 8 alphanumeric ID number. The transmitters are referred to according to the TAG ID. All alarms are labeled according to TAG ID

4mA

Enter the 4mA value for the transmitter.

<u>20mA</u>

Enter the 20mA value for the transmitter.

Low/High Limit

Enter the low and high limits. When live value exceeds high limit or less than low limit, an alarm log will be generated.

Maintenance Value

The value is to be used when the transmitter fails, or while calibrating. Set fail code to 1 while calibrating.

Fail Code

Fail Code 0:	always use the live value even if the transmitter failed.
Fail Code 1:	always use the maintenance value
Fail Code 2:	use maintenance value if transmitter failed. (i.e. 4-20mA is above 21.75 or below
	3.25)

RTD INPUTS

In order for the Flow Computer to use the live input, the input must be properly assigned and properly wired

TAG No

Select the following tag no to use default tag, or select '0' to enter tag id.

11	TubingP1	21	TubingP2	31	TubingP3	41	TubingP4
12	CasingP1	22	CasingP2	32	CasingP3	42	CasingP4
13	OilTank1	23	OilTank2	33	OilTank3	43	OilTank4
14	WatTank1	24	WatTank2	34	WatTank3	44	WatTank4
15	Suction1	25	Suction2	35	Suction3	45	Suction4
16	Dischag1	26	Dischag2	36	Dischag3	46	Dischag4
17	CompreT1	27	CompreT2	37	CompreT3	47	CompreT4

TAG ID

Up to 8 alphanumeric ID number. The transmitters are referred to according to the TAG ID. All alarms are labeled according to TAG ID.

Low/High Limit

Enter the low and high limits. When live value exceeds high limit or less than low limit, an alarm log will be generated.

Maintenance Value

The value is to be used when the transmitter fails, or while calibrating. Set fail code to 1 while calibrating.

Fail Code

Fail Code 0: always use the live value even if the transmitter failed.Fail Code 1: always use the maintenance valueFail Code 2: use maintenance value if transmitter failed (i.e., OHMs is above 156 or below 50)

Analog Output Assignment

4-20mA selection must be proportional and within the range of the selected parameter.

Analog Output Tag ID

Up to 8 alphanumeric ID number. The transmitters are referred to according to the TAG ID. All alarms are labeled according to TAG ID.

Assignments:

	Meter 1	Meter 2	Meter 3	Meter 4
Gross Flow Rate	111	211	311	411
Net Flow Rate	112	212	312	412
Mass Flow Rate	113	213	313	413
Energy Flow Rate	114	214	314	414
DP	121	221	321	421
Temperature	122	222	322	422
Pressure	123	223	323	423
Density	124	224	324	424
Densitometer Temp.	125	225	325	425
Density at base	126	226	326	426
DP Low	127	227	327	427
DP High	128	228	328	428
SG	129	229	329	429
BS&W	130	230	330	430

Station Gross Flow Rate	511
Station Net Flow Rate	512
Station Mass Flow Rate	513
Station Energy Flow Rate	514

	Assignment						
Analog Input #1	1		Spare Auxiliary#1	11			
Analog Input #2	2		Spare Auxiliary#2	12			
Analog Input #3	3		Spare Auxiliary#3	13			
Analog Input #4	4		Spare Auxiliary#4	14			
RTD Input	5		Spare Auxiliary#5	15			
Remote Control	6		Spare Auxiliary#6	16			
Meter #1 PID	7		Spare Auxiliary#7	17			
Meter #2 PID	8		Spare Auxiliary#8	18			
Meter #3 PID	9		Spare Auxiliary#9	19			
Meter #4 PID	10		Spare Auxiliary#10	20			
		_	Spare Auxiliary#11	21			
			Spare Auxiliary#12	22			
		Analog Input #5	23				
			Analog Input #6	24			

Analog Output 4mA/20mA

4-20mA selection must be proportional and within the range of the selected parameter. The 4-20mA output signal is 12 bits.

25

26

27

Analog Input #7

Analog Input #8

Analog Input #9

Densitometer Data

Densitometer Tag ID

Up to 8 alphanumeric ID number. The transmitters are referred to according to the TAG ID. All alarms are labeled according to TAG ID.

Densitometer Temperature IO Position

Selection	Description	Selection	Description
1	Analog Input #1	21	Analog Input #5
2	Analog Input #2	22	Analog Input #6
3	Analog Input #3	23	Analog Input #7
4	Analog Input #4	24	Analog Input #8
5	RTD Input	25	Analog Input #9

Densitometer Pressure IO Position

Selection	Description]	Selection	Description
1	Analog Input #1		21	Analog Input #5
2	Analog Input #2		22	Analog Input #6
3	Analog Input #3		23	Analog Input #7
4	Analog Input #4		24	Analog Input #8
		-	25	Analog Input #9

Density Period Low/High Limits

Density Period is the time period in microsecond. The densitometer fails if the density period exceeds the density period low or high limits. If the densitometer fails and density fail code is set to 2, the maintenance value will be used. (Density Period = 1000000/Density Frequency)

Density Correction Factor

Enter the correction factor for the densitometer

Density Low/High Limits

Enter the low and high limits. When live value exceeds high limit or less than low limit, an alarm log will be generated.

Density Low/High Limits

The value is to be used when the transmitter fails, or while calibrating. Set fail code to 1 while calibrating.

Density Fail Code

- Fail Code 0: always use the live value even if the densitometer failed.Fail Code 1: always use the maintenance valueFail Code 2: use maintenance value if densitometer failed. (i.e. densitometer period is above
- density high period or is below densitometer period.)

Sarasota, UGC, or Solartron Constants

Enter the densitometer constants accordingly with the type selection.

SPARE AUXILIARY I/O

The Flow Computer can be configured to be master unit through the second RS485 (port#3). The master unit can connect up to three "MicroMV Flow Computer" slave units. Each slave unit has four analog inputs. In order to use spare auxiliary inputs, the input must be properly assigned. Enter spare auxiliary 1-4 input data entries are for slave#1, 5-8 input data entries for slave#2, and 9-12 input data entries for slave#3.

TAG No

Dereet	Select the following tag no to use default tag, of select of to enter tag id.						
11	TubingP1	21	TubingP2	31	TubingP3	41	TubingP4
12	CasingP1	22	CasingP2	32	CasingP3	42	CasingP4
13	OilTank1	23	OilTank2	33	OilTank3	43	OilTank4
14	WatTank1	24	WatTank2	34	WatTank3	44	WatTank4
15	Suction1	25	Suction2	35	Suction3	45	Suction4
16	Dischag1	26	Dischag2	36	Dischag3	46	Dischag4
17	CompreT1	27	CompreT2	37	CompreT3	47	CompreT4

Select the following tag no to use default tag, or select '0' to enter tag id.

TAG ID

Up to 8 alphanumeric ID number. The transmitters are referred to according to the TAG ID. All alarms are labeled according to TAG ID

4mA

Enter the 4mA value for the transmitter.

<u>20mA</u>

Enter the 20mA value for the transmitter.

Low/High Limit

Enter the low and high limits. When live value exceeds high limit or less than low limit, an alarm log will be generated.

Maintenance Value

The value is to be used when the transmitter fails, or while calibrating. Set fail code to 1 while calibrating.

Fail Code

Fail Code 0: always use the live value even if the transmitter failed.
Fail Code 1: always use the maintenance value
Fail Code 2: use maintenance value if transmitter failed. (i.e. 4-20mA is above 21.75 or below 3.25)

MULTI.VARIABLE SETTINGS

In order for the Flow Computer to use the live input, the input must be properly assigned and properly wired The Flow Computer can be configured to be master unit through the second RS485 (port#3). The master unit can connect up to three "MicroMV Flow Computer" slave units. Each slave unit has multivariable – DP, pressure, and temperature.

TAG ID

Up to 8 alphanumeric ID number. The multi-variables are referred to according to the TAG ID. All alarms are labeled according to TAG ID.

Low/High Limit

Enter the low and high limits. When live value exceeds high limit or less than low limit, an alarm log will be generated.

Maintenance Value

The value is to be used when the transmitter fails, or while calibrating. Set fail code to 1 while calibrating.

Fail Code

Fail Code 0: always use the live value even if the multivariable failed.

Fail Code 1: always use the maintenance value

Fail Code 2: use maintenance value if multivariable failed

<u>STATUS INPUT /SWITCH OUTPUT ASSIGNMENT</u>

I/O|Status Input/Switch Output Assignment

	Assignment	Comments
2	Calibration Mode	
4	Alarm Acknowledge	Reset the previous occurred alarms output bit

Switch Output Assignment

User can assign an output to each of the Micro MV Gas Flow Computer's output switches from this list. The Micro MV Gas Flow Computer switch outputs are open collector type, requiring external D.C power applied to the SW power.

Outputs in the top list, "Pulse Outputs", require a definition of pulse output per unit volume and "Pulse Output Width". Those data entry are in the other parameter's menu. These outputs are available through switches 1 or 2 only.

Outputs in the bottom list, "Contact Type Outputs", are ON/OFF type outputs. They can be assigned to any of the four switch outputs.

Switches 1 and 2 can be pulse or contact type output; switches 3, 4 are contact-type output only.

Assignments – Pulse Outputs

	Meter 1	Meter 2	Meter 3	Meter 4
Gross	101	105	109	113
Net	102	106	110	114
Mass	103	107	111	115
Energy	104	108	112	116

Station Gross	117
Station Net	118
Station Mass	119
Station Energy	120

Assignments – Contact Type Outputs

	Meter 1	Meter 2	Meter 3	Meter 4
Meter Down	123	127	131	135
AGA8 Out of Range	124	128	132	136
Flow Rate High	125	129	133	137
Flow Rate Low	126	130	134	138

Assignments – Contact Type Outputs

Day Ended	121
Month Ended	122
Analog Input #1 High	139
Analog Input #1 Low	140
Analog Input #2 High	141
Analog Input #2 Low	142
Analog Input #3 High	143
Analog Input #3 Low	144
Analog Input #4 High	145
Analog Input #4 Low	146
RTD Input High	147
RTD Input Low	148
Densitometer Failed	149
Density High	150
Density Low	151
Multi-Variable DP HI	152
Multi-Variable DP LO	153
Multi-Variable PF HI	154
Multi-Variable PF Low	155
Multi-Variable TF HI	156
Multi-Variable TF Low	157
Active Alarms	158
Occurred Alarms	159
Watchdog	160
Remote Control	161
Analog Input #5 High	162
Analog Input #5 Low	163
Analog Input #6 High	164
Analog Input #6 Low	165

Analog Input #7 High 160 Analog Input #7 Low 160 Analog Input #8 High 160 Analog Input #8 Low 160 Analog Input #8 Low 160 Analog Input #8 Low 160 Analog Input #9 High 170 Analog Input #9 Low 17 Spare Auxiliary I/O#1 Hi 177 Spare Auxiliary I/O#1 LO 177 Spare Auxiliary I/O#2 Hi 174	7 8 9 0
Analog Input #8 High 166 Analog Input #8 Low 166 Analog Input #9 High 170 Analog Input #9 Low 17 Spare Auxiliary I/O#1 Hi 177 Spare Auxiliary I/O#1 LO 177	8 9 0
Analog Input #8 Low160Analog Input #9 High170Analog Input #9 Low17Spare Auxiliary I/O#1 Hi170Spare Auxiliary I/O#1 LO170	9
Analog Input #9 High 170 Analog Input #9 Low 17 Spare Auxiliary I/O#1 Hi 177 Spare Auxiliary I/O#1 LO 177	0
Analog Input #9 Low17Spare Auxiliary I/O#1 Hi17Spare Auxiliary I/O#1 LO17	-
Spare Auxiliary I/O#1 Hi177Spare Auxiliary I/O#1 LO177	1
Spare Auxiliary I/O#1 LO 173	
Spare Auxiliary I/O#2 Hi 174	
Spare Auxiliary I/O#2 LO 17:	
Spare Auxiliary I/O#3 Hi 170	-
Spare Auxiliary I/O#3 LO 17	
Spare Auxiliary I/O#4 Hi 173	8
Spare Auxiliary I/O#4 LO 179	9
Spare Auxiliary I/O#5 HI 180	0
Spare Auxiliary I/O#5 LO 18	1
Spare Auxiliary I/O#6 HI 182	2
Spare Auxiliary I/O#6 LO 183	3
Spare Auxiliary I/O#7 HI 184	4
Spare Auxiliary I/O#7 LO 18	5
Spare Auxiliary I/O#8 HI 180	6
Spare Auxiliary I/O#8 LO 18	7
Spare Auxiliary I/O#9 HI 183	8
Spare Auxiliary I/O#9 LO 189	9
Spare Auxiliary I/O#10 HI 190	0
Spare Auxiliary I/O10 LO 19	1
Spare Auxiliary I/O#11 HI 192	2
Spare Auxiliary I/O11 LO 193	
Spare Auxiliary I/O#12 HI 194	4
Spare Auxiliary I/O12 LO 19:	5

Slave#1 DP HI 197 Slave#1 DP LO 198 Slave#1 P HI 199 Slave#1 P LO 2000	;
Slave#1 P HI 199 Slave#1 P LO 200)
Slave#1 P HI 199 Slave#1 P LO 200	
Slave#1 P LO 200	
)
Slave#1 T HI 201	
Slave#1 T LO 202	1
Slave#2 DP HI 203	
Slave#2 DP LO 204	
Slave#2 P HI 205	i
Slave#2 P LO 206	,
Slave#2 T HI 207	
Slave#2 T LO 208	
Slave#3 DP HI 209)
Slave#3 DP LO 210	
Slave#3 P HI 211	
Slave#3 P LO 212	
Slave#3 T HI 213	
Slave#3 T LO 214	
Analog#1 Fail 215	i
Analog#2 Fail 216	
Analog#3 Fail 217	'
Analog#4 Fail 218	;
RTD Fail 219)
Analog#5 Fail 220	
Analog#6 Fail 221	
Analog#7 Fail 222	
Analog#8 Fail 223	
Analog#9 Fail 224	

FLOW COMPUTER DISPLAY ASSIGNMENT

Display assignment selections are up to 12 assignments. Each screen has two selections. The Micro MV Gas Flow Computer will scroll through them at the assigned delay time.

	Meter 1	Meter 2	Meter 3	Meter 4
Gross Flow Rate	101	201	301	401
Gross Daily Total	105	205	305	405
Gross Cumulative Total	109	209	309	409
Gross Month Total	113	213	313	413
Previous Gross Daily Total	117	217	317	417
Net Flow Rate	102	202	302	402
Net Daily Total	106	206	302	406
Net Cumulative Total	110	210	310	410
Net Month Total	114	214	314	414
Previous Net Daily Total	118	218	318	418
Mass Flow Rate	103	203	303	403
Mass Daily Total	107	207	307	407
Mass Cumulative Total	111	211	311	411
Mass Month Total	115	215	315	415
Previous Mass Daily Total	119	219	319	419
Energy Flow Rate	104	204	304	404
Energy Daily Total	108	208	308	408
Energy Cumulative Total	112	212	312	412
Energy Month Total	116	216	316	416
Previous Energy Daily Total	120	220	320	420

Station Gross Flow Rate	501
Station Net Flow Rate	502
Station Mass Flow Rate	503
	000
Station Energy Flow Rate	504

	Meter 1	Meter 2	Meter 3	Meter 4
Temperature	121	221	321	421
Pressure	122	222	322	422
Density	123	223	323	423
DP	124	224	324	424
DP Low	125	225	325	425
DP High	126	226	326	426
Alarms	127	227	327	427
Orifice ID	128	228	328	428
Pipe ID	129	229	329	429
PID – Flow	130	230	330	430
PID – Pressure	131	231	331	431
PID – Output	132	232	332	432
Test Status	133	233	333	433
Test Gross	134	234	334	434
Test Net	135	235	335	435
BS&W	136	236	336	436

Selection	Description	Selection	Description
701	Date/Time	709	Spare Auxiliary Var.#5/#6
702	Battery Voltage/Spare Variable #1	710	Spare Auxiliary Var.#7/#8
703	Spare Variable #2/#3	711	Spare Auxiliary Var.#9/#10
704	Spare Variable #4/#5	712	Spare Auxiliary Var.#11/#12
705	Spare Variable #6/#7	713	Program Variable #1/#2
706	Spare Variable #8/#9	714	Program Variable #3/#4
707	Spare Auxiliary Variable#1/#2	715	Program Variable #5/#6
708	Spare Auxiliary Variable#3/#4	716	Program Variable #7/#8

MODBUS SHIFT- 2 OR 4 BYTES

Reassigns Modbus address registers on the Micro MV Gas Flow Computer to predefined Modbus registers for easy polling and convenience. Use Modbus Shift to collect values in scattered Modbus registers into a consecutive order. The Micro MV Gas Flow Computer will repeat the assigned variables into the selected locations.

Note: some Modbus registers are 2 byte/16 bit, and some are 4 byte/32 bit. Register size incompatibility could cause rejection to certain address assignments. Refer to the Modbus Address Table Registers in Chapter 5.

Example: you want to read the current status of switches #1 and #2 (addresses 2751 and 2752) and the Daily Gross Total for Meter #1 (address 3131). Make assignments such as:

3082=2751	(2 bytes)
3083=2752	(2 bytes)
3819=3131	(4 bytes)

<u> Modbus Shift – Floating Point</u>

Use Modbus Shift to collect values in scattered Modbus floating point registers into a consecutive order. The Micro MV Gas Flow Computer will repeat the assigned variables (Refer to the Modbus Address Table Registers in Chapter 5) into the selected locations (7501-7600)

*Note: Modbus shift registers are READ ONLY registers.

BOOLEAN STATEMENTS

From the MicroMV Flow Computer Configuration Software, Point cursor to 'I/O', scroll down to 'Boolean Statements' and a window will pop up allowing you to enter the statements.

Boolean Points - 4 digits (0001-0800, 7831-7899)

Enter the Boolean statements (**no space allowed**, up to 30 statements). Each statement contains up to two Boolean variables (optionally preceded by '/') and one of the Boolean function (&, +, *). <u>*4 digits are required*</u> for referencing programmable variables or Boolean points. (Example: 0001) Example: The statement is true if either temperature or pressure override is in use. 0070=0112+0113

BOOLEAN STATEMENTS AND FUNCTIONS

Each programmable Boolean statement consists of two Boolean variables optionally preceded a Boolean 'NOT' function (/) and separated by one of the Boolean functions (&, +, *). Each statement is evaluated every 100 milliseconds. Boolean variables have only two states 0 (False, OFF) or 1 (True, ON). Any variable (integer or floating point) can be used in the Boolean statements. The value of Integer or floating point can be either positive (TRUE) or negative (FALSE).

Boolean Functions	Symbol
NOT	/
AND	&
OR	+
EXCLUSIVE OR	*

Boolean points are numbered as follows:

0001 through 0050 Digital I/O Points 1 through 50

0001 - Status Input/Digital Output #1

0002 - Status Input/Digital Output #2

0003 - Status Input/Digital Output #3

0004 - Status Input/Digital Output #4

0005 - 0050 - Spare

0070 through 0099 **Programmable Boolean Points**

See Boolean Statements.

Boolean Points 0100 through 0199 0200 through 0299 0300 through 0399 0400 through 0499	Meter #1 Boolean Points Meter #2 Boolean Points Meter #3 Boolean Points Meter #4 Boolean Points
1 st digit–alway	ys 0, 2 nd digit–meter number, 3 rd and 4 th digit-Selection
0n01	Spare
0n02	Spare
0n03	Spare
0n04 0n05	Spare Meter Active
0n06	Spare
0n07	Any Active Alarms
0n08-0n10	Spare
0n11	DP Override in use
0n12	Temperature Override in use
0n13	Pressure Override in use
0n14	AGA8 Out of Range
0n15	Flow Rate High Alarm
0n16	Flow Rate Low Alarm
0n17-0n99	Spare
Other Alarms	
0401	Analog Input #1 High Alarm
0402	Analog Input #1 Low Alarm
0403	Analog Input #2 High Alarm
0404	Analog Input #2 Low Alarm
0405	Analog Input #3 High Alarm
0406 0407	Analog Input #3 Low Alarm Analog Input #4 High Alarm
0407	Analog Input #4 Low Alarm
0400	Analog input #4 Low Alarm
0409	RTD Input High Alarm
0410	RTD Input Low Alarm
0411	Calibration Mode
0412	Battery Voltage Low Alarm
0413	Analog Output #1 Out of Range Alarm
0414 0415	Analog Output #2 Out of Range Alarm Analog Output #3 Out of Range Alarm
0415	Analog Output #3 Out of Range Alarm
0410	
0417	Analog Input #1 Failed
0418	Analog Input #2 Failed
0419	Analog Input #3 Failed
0420	Analog Input #4 Failed
0421	RTD Input Failed
0422 0423	Densitometer Failed Densitometer High Alarm
0423	Densitometer Low Alarm

Other Alarms 0425 Multivariable DP High 0426 Multivariable DP Low 0427 Multivariable Pressure High 0428 Multivariable Pressure Low Multivariable Temperature High 0439 0440 Multivariable Temperature Low 0441-0442 Spare 0443 Analog Input #1 Live/Manual 0444 Analog Input #2 Live/Manual 0445 Analog Input #3 Live/Manual Analog Input #4 Live/Manual 0446 0447 **RTD Input Live/Manual** 0448 Densitometer Live/Manual **Densitometer Temperature Live/Manual** 0449 0450 Densitometer Pressure Live/Manual 0451 Multivariable DP Live/Manual 0452 Multivariable Pressure Live/Manual 0453 Multivariable Temperature Live/Manual 0454 Spare 0455 Spare Input #1 Live/Manual Spare Input #2 Live/Manual 0456 0457 Spare Input #3 Live/Manual 0458 Spare Input #4 Live/Manual 0459 G.C. Communication 0460 Slave ID #1 Communication 0461 Slave ID #2Communication 0462 Slave ID #3Communication MPU12 Alarms 0463 0464 Slave ID #4 Communication 0465 Spare 0466 Spare 0467 Analog Input #21 High Analog Input #21 Low 0468 0469 Analog Input #22 High 0470 Analog Input #22 Low 0471 Analog Input #23 High 0472 Analog Input #23 Low 0473 Analog Input #24 High 0474 Analog Input #24 Low 0475 Analog Input #25 High 0476 Analog Input #25 Low 0477 0478 Spare Input #5 Live/Manual Spare Input #6 Live/Manual 0479 Spare Input #7 Live/Manual 0480 0481 Spare Input #8 Live/Manual Spare Input #9 Live/Manual 0482

0483	Analog Input #5 Live/Manual
0484	Analog Input #6 Live/Manual
0485	Analog Input #7 Live/Manual
0486	Analog Input #8 Live/Manual
0487	Analog Input #9 Live/Manual
0488	Spare
0489	Spare
0490	Spare
0491	Auxiliary Input #1 High Alarm
0492	Auxiliary Input #1 Low Alarm
0493	Auxiliary Input #2 High Alarm
0494	Auxiliary Input #2 Low Alarm
0495	Auxiliary Input #3 High Alarm
0496	Auxiliary Input #3 Low Alarm
0497	Auxiliary Input #4 High Alarm
0498	Auxiliary Input #4 Low Alarm
0499	Auxiliary Input #5 High Alarm
0500	Auxiliary Input #5 Low Alarm
0501	Auxiliary Input #6 High Alarm
0502	Auxiliary Input #6 Low Alarm
0503	Auxiliary Input #7 High Alarm
0504	Auxiliary Input #7 Low Alarm
0505	Auxiliary Input #8 High Alarm
0506	Auxiliary Input #8 Low Alarm
0507	Auxiliary Input #9 High Alarm
0508	Auxiliary Input #9 Low Alarm
0509	Auxiliary Input #10 High Alarm
0510	Auxiliary Input #10 Low Alarm
0511	Auxiliary Input #11 High Alarm
0512	Auxiliary Input #11 Low Alarm
0513	Auxiliary Input #12 High Alarm
0514	Auxiliary Input #12 Low Alarm
0515 0516 0517 0518 0519 0520 0521 0522	Analog Input #5 Failed Analog Input #6 Failed Analog Input #7 Failed Analog Input #8 Failed Analog Input #9 Failed
0523 0524 0525 0526 0527 0528 0529 0530	Slave ID #1 DP High Alarm Slave ID #1 DP Low Alarm Slave ID #1 Pressure High Alarm Slave ID #1 Pressure Low Alarm Slave ID #1 Temperature High Alarm Slave ID #1 Temperature Low

0531 0532 0533 0534 0535 0536 0537 0538	Slave ID #2 DP High Alarm Slave ID #2 DP Low Alarm Slave ID #2 Pressure High Alarm Slave ID #2 Pressure Low Alarm Slave ID #2 Temperature High Alarm Slave ID #2 Temperature Low
0539 0540 0541 0542 0543 0544 0545 0546	Slave ID #3 DP High Alarm Slave ID #3 DP Low Alarm Slave ID #3 Pressure High Alarm Slave ID #3 Pressure Low Alarm Slave ID #3 Temperature High Alarm Slave ID #3 Temperature Low
0701 0702	Day Ended Flag (Last 5 Seconds) Month Ended Flag (Last 5 Seconds)

0801 through 0899 Command Boolean Points 0801 Alarm

Alarm Acknowledge

Program Variable Statements

From the MicroMV Flow Computer Configuration Software, Point cursor to 'I/O', scroll down to 'Program Variable Statements' and a window will pop up allowing you to enter the statements.

Enter the user programmable statements (**no space allowed**, up to 69 statements). Each statement contains up to three variables and separated by one of the mathematical functions. <u>**4**</u> <u>**digits are required**</u> for referencing programmable variables or Boolean points. (Example: 0001+7801)

Example:

7832 is equal to total of variable#1(Modbus addr.7801) and variable#2 (Modbus addr.7802) 32=7801+7802

Variable Statements and Mathematical Functions

Each statement can contain up to 3 variables or constants. Function Symbol						
ADD	+	Add the two variables or constant				
SUBTRACT	-	Subtract the variable or constant				
MULTIPLY	*	Multiply the two variables or constant				
DIVIDE	1	Divide the two variables or constants				
CONSTANT	#	The number following is interpreted as a constant				
POWER	&	1^{st} variable to the power of 2^{nd} variable				
ABSOLUTE	\$	unsigned value of variable				
EQUAL	=	Move result to another variable Variable within the range of 7801-7899 (floating points) Variable within the range of 5031-5069 (long integer)				
7801)78 GOTO STATEMENT	02=#0 (if v T	Compares the variable to another able is greater to or is equal to 1 then go to 7835) ariable is greater to or is equal to 1 then set variable 7802 to 0) Go to a different statement (forward only) f variable is equal to 60 then go to statement 7836) Compare a value (EQUAL TO)				
GREATER/EQUAL Example: 7801>78	>	Compare a value (GREATER OR EQUAL TO)				
•		equal to variable 2 then go to 7836) Natural Log of variable				

Order of precedence – absolute, power, multiply, divide, add and subtract. Same precedence – left to right

Variables stored on the hourly report - 7071- 7075 will be reset at the end of hour.
 Variables stored on the daily report - 7076 - 7080 will be reset at the end of day.
 Variables stored on the month report - 7081- 7085 will be reset at the end of month.

Scratch Pad Variables – Floating Point – 7801-7830 (Read or Write) - Long Integer – 5031 – 5069 (Read or Write)

7262-7266 – Last Hour Program Variables (Read Only) 7434-7438 – Yesterday Program Variables (Read Only) 7466-7470 – Last Month Program Variables (Read Only)

<u>Spare Assignment</u>

Spare inputs are not used in the calculation and just for indication, display and alarm purpose only.

<u>FC PORTS</u>

Unit ID Number

The Unit ID Number is used strictly for communication purposes; it can take any value from 1 to 247.

Note: Do not duplicate the Unit ID number in a single communication loop! This situation will lead to response collisions and inhibit communications to units with duplicate ID numbers.

Only one master can exist in each loop.

Flow Computer Ports

Port #1/#3 Modbus Type

Note: this parameter must be set the same for both the PC and the MicroMS4 Flow Computer for communication to occur.

The Modbus Communication Specification is either Binary RTU or ASCII.

Port #1/#3 Parity

Note: this parameter must be set the same for both the PC and the MicroMS4 Flow Computer for communication to occur.

RTU – NONE ASCII – EVEN or ODD

Set the parity to match the **Modbus Type**.

Port #1/#3 Baud Rate

Note: this parameter must be set the same for both the PC and the MicroMS4 Flow Computer for communication to occur.

Baud rate is defined as number of bits per second. The available selections are 1200, 2400, 4800, 9600, or 19200.

Port #1/#3 RTS Delay

This function allows modem delay time before transmission. The MicroMS4 Flow Computer will turn the RTS line high before transmission for the entered time delay period.

Port #2 Baud Rate

Baud rate is defined as number of bits per second. The available selections are 1200, 2400, 4800, 9600, or 19200.

Port #2 Modbus Type

Note: this parameter must be set the same for both the PC and the MicroMS4 Flow Computer for communication to occur.

The Modbus Communication Specification is either Binary RTU or ASCII.

Port #2 Parity

RTU – NONE ASCII – EVEN or ODD

Set the parity to match the **Modbus Type**.

Select 0=RTS, 1=Printer (N/A)

RTS line has dual function selection: either RTS for driving request to send or transmit to serial printer. To use serial printer interface for printing reports, i.e. batch, daily, and interval Connect the serial printer to RTS and common return, and select 1 for printer. Serial printer function is not available.

Port 2 RTS Delay

This function allows modem delay time before transmission. The MicroMS4 Flow Computer will turn the RTS line high before transmission for the entered time delay period.

Printer Baud Rate (N/A)

Baud rate is defined as number of bits per second. The available selections are 1200, 2400, 4800, or 9600.

Printer Number of Nulls (N/A)

This function is used because no hand shaking with the printer is available and data can become garbled as the printer's buffer is filled. The MicroMS4 Flow Computer will send nulls at the end of each line to allow time for the carriage to return. Printers with large buffers do not require additional nulls. If data is still being garbled, try reducing the baud rate to 1200.

PID PARAMETERS

PID CONFIGURATION

(PID) Proportional Integral Derivative control– We call this function PID, however the flow computer performs Proportional Integral control. And does not apply the Derivative. The Derivative is not normally used in flow and pressure control operations and complicates the tuning operation

Use Flow Loop

(Valid entries are 0 or 1) Enter 1 if the computer performs flow control. Enter 0 if the flow computer does not perform flow control.

Flow Loop Maximum Flow rate

Enter the maximum flow rate for this meter. This rate will be basis for maximum flow rate to control at.

Flow Set Point

Enter the set point. The set point is the flow rate that the flow computer will try to control at.

Flow Acting – forward or reverse

Enter 0 if the control is direct acting, Enter 1 if the control is reverse acting.

Direct acting is when the output of the controller causes the flow rate to follow in the same direction. The output goes up and the flow rate increases. A fail Close valve located in line with the meter will typically be direct acting. If the Controller output signal increases, the control valve will open more causing the flow rate to increase.

Reverse acting is when the output of the controller causes the opposite action in the flow rate. A fail open valve in line with the meter will typically be reverse acting. If the Controller output increases the control valve will close some causing the flow rate to decrease.

Care must be taken to study where the valves are located in relation to the meter and whether the valves are fail open or fail close to understand if the controller should be direct or reverse acting. Some control valves can be fail in position (especially Electrically actuated control valves). This valve should be studied to understand if the actuators themselves are direct or reverse acting.

PID Flow Base

PID flow rate base can be gross, net, or mass flow rate.

Use Pressure Loop

(Valid entries are 0 or 1) Enter 1 if the computer performs pressure control. Enter 0 if the flow computer does not perform pressure control.

Pressure Maximum

Enter the Maximum pressure for this meter. This pressure will be basis for Maximum pressure to control at.

Pressure Set Point

Enter the set point. The set point is the pressure that the flow computer will try to control at.

Pressure Acting – forward or reverse

Enter 0 if the control is direct acting, Enter 1 if the control is reverse acting.

Direct acting is when the output of the controller causes the pressure to follow in the same direction. The output goes up and the pressure increases. A fail open valve located in the line downstream of the meter will typically be direct acting to maintain the pressure at the meter. An Increase in the output from the controller will cause the control valve to close thus causing the pressure to increase.

Reverse acting is when the output of the controller causes the opposite action in the flow rate. A fail close valve in the line downstream of the meter will typically be reverse acting to maintain the pressure at the meter. An increase in the output signal will cause the valve to open, which will cause the pressure to be released thus causing the pressure to decrease.

Care must be taken to study where the valves are located in relation to the meter and whether the valves are fail open or fail close to understand if the controller should be direct or reverse acting. Some control valves can be fail in position (especially Electrically actuated control valves). These valves should be studied to understand if the actuators themselves are direct or reverse acting.

PID Pressure Base

PID pressure base can be meter pressure or spare#1-#9.

System Data Minimum Output

Enter the minimum output percent (default to 0)

System Data Maximum Output

Enter the maximum output percent (default to 100.0)

Signal Selection

If flow and pressure loops are both configured in the PID control loop, select high or low signal to be the output.

PID TUNING

Flow Controller Gain

(Allowable Entries 0.0 - 9.99)

The gain is effectively 1/Proportional Band.

The basis of theory for proportional band is the relationship of the percentage of the output of the controller to the percentage of the change of the process. In this case, if the control output changes 5% the flow rate should change 5%, the proportional band would be 1.0 and the gain would be 1.0.

If the percentage of the output is 5% and the flow rate would change by 10%, the proportional band would be 2 and the Gain would be 0.5

However since you do not know until you are flowing the effect of the output on the flow rate, you have to start somewhere. A good starting point is to use a proportional band of 0.5 if the valve is properly sized.

Flow Controller Reset

(Allowable Range 0.0 - 9.99)

Reset is the number of minutes per repeat is the time interval controller adjusts the output to the final control element. If the reset is set at 2, the flow computer will adjust the signal to the flow control valve every 2 minutes. If the Reset is set at 0.3, the output signal will be adjusted approximately every 20 seconds, until the process and set point are the same.

The rule of thumb is the reset per minute should be set slightly slower that the amount of time it takes for the control valve and the flow rate to react to the flow computer output signal changing.

This can only be determined when there is actual flow under normal conditions. It is best to start the reset at 0.3 or reset the signal every 3 minutes, if the control valve is properly sized.

Pressure Controller Gain

(Allowable Entries 0.0 - 9.99)

The gain is effectively 1/Proportional Band.

The basis of theory for proportional band is the relationship of the percentage of the output of the controller to the percentage of the change of the process. In this case, if the control output changes 5% the pressure should change 5%, the proportional band would be 1.0 and the gain would be 1.0.

If the percentage change of the output is 5% and the pressure would change by 10%, the proportional band would be 2 and the Gain would be 0.5.

However since you do not know until you are flowing the effect of the output on the pressure, you have to start somewhere. A good starting point is to use a proportional band of 0.5 if the control element is properly sized.

Pressure Controller Reset

(Allowable Range 0.0 – 9.99)

Reset is the number of times per minute the controller adjusts the output to the control valve. If the reset is set at 2, the flow computer will adjust the signal to the final control element every 2 minutes. If the Reset is set at 0.3, the output signal will be adjusted approximately every 20 seconds, until the process and the set point are the same.

The rule of thumb is the reset per minute should be set slightly slower that the amount of time it takes for the control valve and the pressure to react to the flow computer changing the output.

This can only be determined when there is actually flow under normal conditions. It is best to start the reset at 0.3 or reset the signal every 3 minutes, if the control element is properly sized.

Download Firmare/Image File

To Download an Image File to the Flow Computer select the Tools option form the menu, and then Download Program.

A small dialog will appear asking for the file name of the image file. Type it in or use the Browse option to locate it. Once the file name is in place press Download. This task will take about 5 minutes to be completed.

Security Codes

The desktop application provides 4 security areas to prevent users from entering data into certain areas. The four areas are:

Configuration: Allow user to modify device configuration settings.

Override: Allow user to change values directly on the device.

Calibration: Let the user to calibrate the device inputs.

Image File Download: Let user download an image file to the device. This procedure will erase all the information and configuration stored in the device.

Master Access: Once the master access is granted, the user can access to all four areas.

Use the **Tools Security Codes** option to modify the access code; a form will appear showing the five different security areas and the actual access status (at bottom of the form). To put a new access code log in to the desired security area and press Change security Code, type in the code and retype it on the confirm space to avoid mistyped codes. Then click [OK].

The system will update the security access every time the application connects to the device and every time data is written to the device it will check for security access before writing.

NOTE: In case the access code is forgotten contact our offices for a reset code.

Connect to Device

Click to Device to establish the communication. If the communication is failed, check information in the "Communication Port Settings".

<u>Go Offline</u>

to disconnect the communication.

Modbus Driver

DFM provides this tool to read and write Modbus registers from and to the MicroMV flow computers. It will display transmitting and receiving message in HEX format. It should be used for testing purpose only.

PID OPERATING

Click PID Loops icon to display PID output percentage, flow, and pressure data. To change setup, select entries under PID menu.

CALIBRATION

Calibrations are performed under **Calibration**. Select inputs to be calibrated, and then select full, single, offset calibration method.

View Diagnostic Data

Diagnostic data will show live data changing real time. To control the switch outputs manually, check "Enable Switch Output Diagnostic Mode".

Calibrate Mode

To calibrate Flow Computer, totalizers will continue at same rate where live parameters will show actual value, i.e. flow rate, DP, pressure etc. Enter '1' to enable this feature.

SET CALIBRATION METER

Set the meter to be calibrated.

SET CALIBRATION TIME (1-9 HOUR)

This entry is the duration for the calibrate mode. After time expires, the Micro MV Flow Computer will resume its normal operation.

Calibration

See details in chapter 1.

Parameter Overrides:

Temperature Override

This value is entered when no live temperature is available, or when a different value from the live value should be used.

Pressure Override

Pressure override can be used when no live pressure transmitter is connected to the MicroMS4 Flow Computer.

Heating Value Override

BTU override is used in the AGA8 calculation Gross Method 1. In addition the heating value totalizer requires the heating value.

Orifice ID Override

Orifice ID is the measured diameter of the orifice at reference conditions.

FPV Override

Entering a value to override NZ19 super-compressibility factor. Using zero is a command to use the live value.

Base Density Override

In the event the user would like to override the calculated base density. This number would affect the net calculations only. Using zero is a command to use the live value. Base density is used to convert mass volume into corrected standard volume

Venturi C Override

The value is the discharge coefficient for Venturi flow equations. The default value is .9950

BS&W Override

The value is used in the liquid net flow calculation.

Multi-variables Input Override

The value can be used when the transmitter fails.

Analog Input Override

The value can be used when the transmitter fails, or while calibrating.

RTD Input Override

The value can be used when the transmitter fails, or while calibrating.

<u>SYSTEM</u>

<u>DATE AND TIME</u> Change the date and time for the flow computer.

<u>RESET CUMULATIVE TOTALIZER</u> Enter reset code to reset cumulative totalizer. Non-resettable accumulated volume will roll over at 999999.

CLEAR SYSTEM

Enter reset system code to reset all data.

Meter Test

Well Number

Enter test well number. The test is referred to according to the WELL NUMBER.

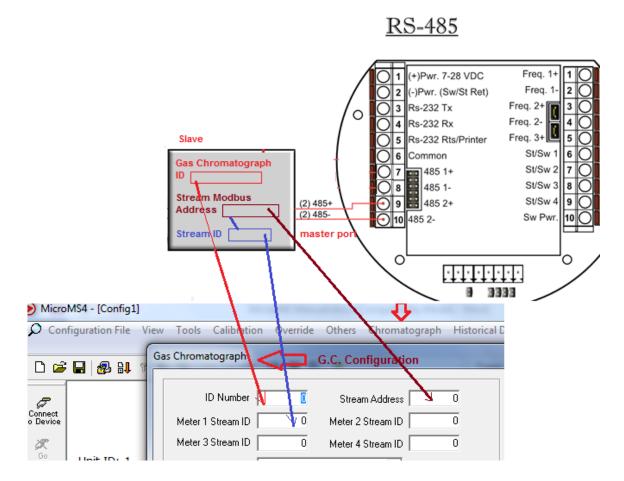
Test Period in Minutes

It is time duration for the test. The flow computer will start collecting data for the gas and liquid streams for the pre-set time.

Test Request

Enter '1' to start the test, or '2' to start the test that is based on the entered date and time. The flow computer will continuously totalize the gas, oil, and water meters for the pre-set time. Five previous test data can be archived.

View Meter Test


Test snapshot data will show test status and data.

Previous Test Reports

Up to 5 previous test data can be retrieved. Starting from the most recent to the oldest.

Gas Chromatograph Communcation Set up(RS485 Master Port)

Note: AGA8 Detailed Method must be selected, and G.C. Modbus registers have to be configured.

Gas Chromatograph Unit ID

Gas Chromatograph Modbus Communication ID number is to be polled by the Master Flow Computer. Flow Computers in listen mode must have the G.C. Modbus ID configured, so they can recognize the G.C. response.

Gas Chromatograph Stream Address

Modbus holding register where the current stream number resides. When the master flow computer reads this address, all flow computers will recognize the current stream composition.

GC Stream address configured in GC and the Modbus address range is from 3001 to 3999 and stream number is a16 bits integer format

Meter Stream ID

The stream ID for the flow computer to recognize the current stream meter composition.

GC Floating Register Settings

Variable type describes the position of high, low words of slave device. When 32 bits (two words) register is polled, it is essential to define where the highest significant word.

Code	Description	Sequence in words
0	1 register of 32 bits floating	High, Low
1	1 register of 32 bits floating	Low, High

DEST - Destination Address

Destination defines where the polled variables are used in the flow computer. Variable statements and other pre-defined locations are accepted. Pre-defined locations are temperature, pressure, and density. Variables can be accessed through the display and reports.

0	Methane
1	Nitrogen
2	Carbon Dioxide
3	Ethane
4	Propane
5	Water
6	Hydrogen Sulfide
7	Hydrogen

8	Carbon Monoxide
9	Oxygen
10	i-Butane
11	n-Butane
12	i-Pentane
13	n-Pentane
14	n-Hexane
15	n-Heptane

16	n-Octane
17	n-Nonane
18	n-Decane
19	Helium
20	Argon
21	S.G.
22	Heating Value

ADDR - Source Address

Source address defines the actual register being polled from the slave device. Source address is considered to be continuous without zero address in between and range must in 7000s area (IEEE Floating Point) *Example:* Heating Value BTU

DEST=22, ADDR=7081

HISTORICAL DATA

VIEW, CAPTURE AND STORE

To retrieve historical data, go to **Historical Data** menu. The **View** option retrieves the data from the flow computer but does not store the information into the database. The second option, **Capture and Store**, retrieves the information, shows it on the screen and stores it on the database.

On any of these options, a small dialog like the following appears to select the amount of reports to get and from which one to start.

Number of Reports		
Number of Hepoils		ance
First Report	1	

The valid data entries are shown at the bottom of the dialog. The available types of reports are:

PREVIOUS HOURLY DATA

Up to 840 previous hourly data are stored in the Flow Computer. Enter starting hour and the Flow Computer will go backward from that selected time. Current hour cannot be selected.

PREVIOUS DAILY DATA

Up to 35 previous daily reports can be retrieved.

LAST MONTH DATA

Month of daily data is stored in the Flow Computer. Select meter number to display, print, or capture. Current month data cannot be retrieved.

<u>Alarm Report</u>

Up to 80 previous alarm data can be retrieved. The data are starting from the most recent to the oldest.

<u>Audit Report</u>

The audit trail report shows configuration parameters that have changed which could influence the calculated numbers. The Flow Computer provides up to 80 event logs. One purpose for audit trail is to back track calculation errors that result from mistakes by the operator of the flow computer operator.

Viewing previously captured reports

Once a report is stored in the database using the **Historical Data**|**Capture and Store** option it can be seen using the **Previously Captured Reports** option under the Historical Data Menu.

When the option is selected, a dialog will appear asking for the name of the report you want to see. There is a "View last captured report" option than will show the data acquired the last time from a device. If you want to see another report different than the last one just type the name of the report in the space provided. The browse button can be used to see the list of reports stored in the database.

Exporting or Printing Reports

		Print •			Save / E	xport			
冝E	-Chart	Report							- 8 ×
M	-	1 of 1 🕨	N = 8	3 🔬 100%	-	Total:30	100%	30 of 30	
					Report				

Once the data is retrieved from the Flow Computer it is shown in a report format, like the picture above. On this window there are several buttons.

- Arrow buttons let you go through all the reports captured.
- The **Print** Button (shown o the picture) lets you print the report to any printer installed in your computer. The printed version will look just like it is shown on the screen.
- The **Export** Button allows the user to save the report in different formats. Once the button is pressed a small dialog appears showing the different formats available (see following picture).

In the first box select the format you want the file to have. **Excel**, **Word** or **HTML** formats are recommended because they preserve the report format. The plain text formats (text-format, CSV comma separated values, tab-separated values) include all the information but will require user modification to improve readability. The other text formats are **text** or **paginated text**. **IMPORTANT:** when a report is exported to text format it can only be 80 character wide, thus, some numbers might appear together making it hard to determine their original values. (i.e. values 1.2543 and 34.2342 on following columns might appear as 1.254334.2342).

Once the export format is selected, press OK and a dialog will appear asking for the file name that you want for the report. Type in the name and press SAVE.

SCHEDULED AUTO POLLING

Automatic Data Polling

Use the **Historical Data**|Scheduled Auto Polling to retrieve report information from devices in a periodic basis automatically.

These are the following settings:

Enable Automatic Data Retrieval: Check this option to enable the automatic polling. If the automatic polling function is enabled an "AUTOPOLL" message will appear on the application's status bar (bottom-right corner of the application window).

Reports to Retrieve: check the reports you want to get from the devices, you can select as many as you want, just make sure the polling interval is long enough to allow the PC to retrieve the archive. For example, if the computer is programmed to poll 100 reports every 10 seconds, there will not be enough time to get the report before the next poll starts and data will be overlapped.

Report Name: provide a name to the reports captured so they will be available for viewing, printing and exporting.

Starting Day: Type the date where the poll is going to start. Select "Every Day" is the date doesn't matter.

Polling Time: select the time you want the automatic polling to start, then select "Poll One Time" if you want to execute these poll only once or select "Poll Every…" and type the polling interval for periodic polls. For example, to poll every hour and a half select "Poll Every…" and type 90 in the Minutes field. **IMPORTANT:** Do not use straight hours as starting time (i.e. 7:00, 8:00). The flow computer calculates and updates its information at the beginning of the hour so if data is retrieved at this time it might be erroneous. Allow about 5 minutes for the flow computer to update the data.

Polling List: Add all the units you want to get data from on every poll. You can add up to 100 units. To add a unit just click "Add" and then type the unit's **Modbus** ID number.

NOTE: The file C:\AutoPoll.log will contain all the logs for the automatic poll, it will tell if there was a problem or if the data was retrieved successfully.

Histsorical Data

~ .	-			•			
Company N	ame:	Met	ter Location :		Uni	t No. 1	
Meter Numb Meter ID Pipe ID (mr Orifice ID(n	m) 200.0			Day Start Hou Base Pressure Atmospheric F Base Tempera Application	101.353 K Press. 101.325 K		
Date: Hour	11/04/21 Flow Time (Hours)	Net Flow Total E KSM3	nergy Total GJ	Average Pressure (KPA)	Average Temperature (°C)	Average DP (mBAR)	DPE xt
0	1.00	147.0	4,996.3	2,001.00	11.0	52.1	330.9
Date: Hour	11/03/21 Flow Time (Hours)	Net Flow Total E KSM3	Energy Total GJ	Average Pressure (KPA)	Average Temperature (°C)	Average DP (mBAR)	DPE xt
23	1.00	147.0	4.996.4	2.001.00	11.0	52.1	330.9
22	1.00	146.9	4,996.4	2,001.00	11.0	52.1	330.9
21	1.00	147.0	4,996.4	2,001.00	11.0	52.1	330.9
20	1.00	147.0	4,996.4	2,001.00	11.0	52.1	330.9
19	1.00	147.0	4,996.4	2,001.00	11.0	52.1	330.9
18	1.00	146.9	4,996.4	2,001.00	11.0	52.1	330.9
17	1.00	147.0	4,996.4	2,001.00	11.0	52.1	330.9
16	1.00	147.0	4,996.5	2,001.00	11.0	52.1	330.9
15	1.00	147.0	4,996.4	2,001.00	11.0	52.1	330.9
14	1.00	146.9	4,996.4	2,001.00	11.0	52.1	330.9
13	1.00	147.0	4,996.4	2,001.00	11.0	52.1	330.9
12	1.00	147.0	4,996.4	2,001.00	11.0	52.1	330.9
11	1.00	147.0	4,996.4	2,001.00	11.0	52.1	330.9
10	1.00	146.9	4,996.4	2,001.00	11.0	52.1	330.9
9	1.00	147.0	4,996.5	2,001.00	11.0	52.1	330.9
8	1.00	147.0	4,996.4	2,001.00	11.0	52.1	330.9
7	1.00	147.0	4,996.4	2,001.00	11.0	52.1	330.9
6	1.00	146.9	4,996.4	2,001.00	11.0	52.1	330.9
5	1.00	147.0	4,996.4	2,001.00	11.0	52.1	330.9
4	1.00	147.0	4,996.4	2,001.00	11.0	52.1	330.9
3	1.00	147.0	4,996.5	2,001.00	11.0	52.1	330.9
2	1.00	146.9	4,996.4	2,001.00	11.0	52.1	330.9
1	1.00	147.0	4,996.4	2,001.00	11.0	52.1	330.9
0	1.00	147.0	4,996.4	2,001.00	11.0	52.1	330.9

Hourly Report

Previous Daily Report

Company Name:		Meter Location:		Unit No.	1	
Meter Number	1	Base Pressure	101.353 KPA	Application:	Gas	
Meter ID	Meter1	Atmospheric Press.	101.325 KPA			
Pipe ID (mm)	200.0000	Base Temperature	15 °C			
Orifice ID(mm)	100.0000	-				

Date	Day Start Hour	FlowingTime (Hours)	Net Flow Total KSM3	Energy Total GJ	Average Pressure (KPA)	Average Temperat. (°C)	Average DP (mBAR)	DPE xt
11/03/21	0	24.00	3,527.4	119,914.0	2,001.00	11.0	52.1	330.9
11/02/21	0	24.00	3,505.5	119,167.2	2,001.00	11.0	51.4	328.9
11/01/21	0	24.00	2,401.1	81,627.0	2,001.00	11.0	50.0	324.2

Date: 9/28/2022

CHAPTER 3: Data Entry

Through Front Panel Display

The Data entry is a menu driven type construction.

Four Keys – ESC/Mode, Enter/Select, \downarrow , \rightarrow

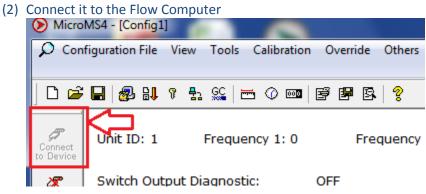
These keys can be operated with a reflective object. The reflective object must be placed in front of the key to get a response.

Function

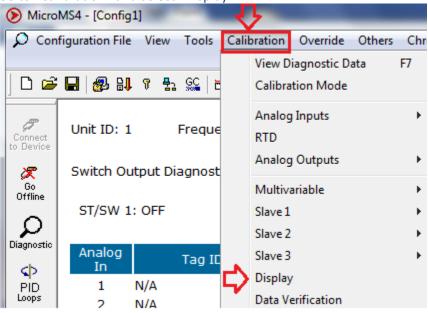
ESC/Mode Key

This key serves dual functions. In order to access the data entry, the mode key has to be activated. The mode key is on/off type key. This key will get the security code prompt, and then using select, enter key with the arrow keys to access the program. Place the reflective object on and then off for each step. Once the data menu function access is completed, exit by using the escape key.

Select/Enter Key


It is used to stop screen from scrolling, to select data entry, and accept the data configurations. It is on/off type key. Place the reflective object in front of key, and then move away before the next step.

\downarrow Key, \rightarrow Key


Scrolling keys, the \rightarrow Key function is to scroll \rightarrow way for selecting the number to be changed, and then changing the number by using \downarrow Key

Steps to "Enable or Disable" the front panel keys

(1) Run PC configuration software

(3) Go to "Calibration" and select "Display"

(4) Check the "Disable Touch Screen Buttons" box to disable the front panel keys or uncheck the "Disable Touch Screen Buttons" box to enable the front panel keys, and then click on "OK" button

Display Calibration <			X
Display Constrast Dark 0%	50%	Bright 100% ' '	OK Cancel
Touch Screen Buttons S	ensitivity		
Highly Sensitive	Les	s Sensitive	
0%	50%	100%	
	uch Screen Buttons		

MAIN MENU

It consists primarily of series of topics. Your valid choices are the two Arrow Keys $(\downarrow, \rightarrow)$ and select/enter key. Use the Down (\downarrow) or Right (\rightarrow) Arrow keys to make your selection and then use the select/enter key. Use Esc/Mode key to go back to previous mode.

Security Code

$\left(\right)$	Enter Security Code	00000)

Enter the right security code to be able to change data.

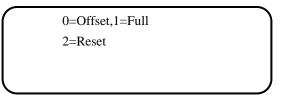
Calibrate /1=M.Var

Enter 0 to calibrate analog input 1-4, RTD, analog output 1-4, or enter '1' to calibrate multi-variable

Calibrate/1=M.Var Override Meter No. Date Time Configuration

You must first select this menu and the number will begin to blink. Use arrow key to change between 0 and 1, then use select key.

Enable Calib. Mode
Analog Input (1-9)
RTD Input
Analog Output (1-4)

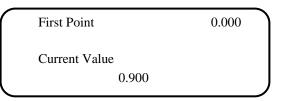

Enable Calibrate Mode

Enter '1' to enable calibrate mode. Calibration mode will set the flow computer to continue totalizing at same rate while all values are still showing live readings.

Calibrate Analog Input, RTD

0=Offset is a single point calibration that will offset zero and span.

- **1=Full** zero and span must be calibrated.
- 2=Reset to factory calibration.


<u>OFFSET (SINGLE POINT)</u>

Induce the signal into the analog input, wait for 10 seconds for the reading to stabilize, then enter the offset.

Enter Correct Value	8.000	
Current Value		
7.9000		
		Ϊ

FULL (ZERO AND SPAN CALIBRATION)

1. Calibrate Low Point (4mA or 75 Ω ,), induce the known live value for the low set point, and wait for 10 seconds for the reading to stabilize. Now enter in that value.

2. Calibrate High Point (20mA or 120 Ω), induces the known live value for the high set point, and then wait for 10 seconds for the reading to stabilize. Now enter in that value.

Second Point		20.000
Current Value		
	19.900	

<u>Reset (Use Default)</u>

Enter '2' to use manufacture default.

Calibrate Analog Output

0=Offset is a single point calibration that will offset zero and span.
1=Full – zero and span must be calibrated.
2=Reset to factory calibration.

0=Offset,1=Full

2=Reset

FULL (ZERO AND SPAN CALIBRATION)

1. The screen will show the minimum possible signal 4mA. Enter the live output value reading in the end device i.e. 4mA.

Enter 4mA		4.000
Reading mA		
	4.000	

2. Now the flow computer will output full scale 20mA. Enter the live output i.e. 20mA

Enter 20mA		20.000
Reading mA		
	20.000	

<u>Reset (Use Default)</u>

Enter '2' to use manufacture default.

Calibrate Multivariable

Select DP, Pressure, or Temperature to be calibrated.

Ca	alibrate Muli.Var.	
D	P	
Pr	ressure	
Τe	emperature	

Enter the calibrate method (0=Offset, 1=Full, 2=Reset).

0=Offset,1=Full

2=Reset

<u>Offset (Single Point)</u>

Induce the live value, and then enter the offset.

Enter Offset	10.0000
Current Value	
10.9000	

FULL (ZERO AND SPAN CALIBRATION)

1.Calibrate Low Point – induce the low range signal, and enter in that value.

First Point		0.0000	
Current Value			
	0.9000		J

2. Calibrate High Point – induces the high range signal, and enters in that value.

Second Point		250.0000
Current Value	250 0000	
	250.0000	

RESET (USE DEFAULT)

Enter '2' to use manufacture default.

Override Meter No.

Enter the meter number 1 or 2 to change meter override value

TF/PF/MF	
HV/FPV	
Dens.b/DCF	
Orifice/Pipe/DP	

<u>TF/PF/MF</u>

TF – Temperature

This value is entered when no live temperature is available, or when a different value from the live value should be used.

PF – Pressure

This value is entered when no live temperature is available, or when a different value from the live value should be used.

MF – Meter Factor

Enter the value to change current meter factor (AGA7 Method)

<u>HV/FPV</u>

Heating Value Override is used in the AGA8 calculation GROSS METHOD 1. In addition the heating value totalizer requires the heating value; without a BTU override value entered, the Energy Flow rate will always equal zero. Enter this number in BTU/SCF for US unit, or in MJ/M3 for Metric unit. **FPV override**: used to enter a value to override the NX19 super-compressibility factor.

DENS.B/DCF

Base Density Override is used to override the calculated base density and affects the net calculations only. For products other than natural gas, you must enter base density override for net calculations. **DCF- Density Correction Factor**

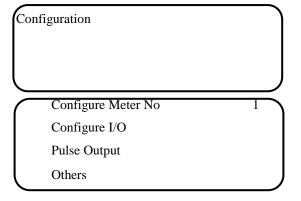
ORIFICE/PIPE/DP

Orifice ID in inches is the measured inside pipe diameter to 5 decimals at reference conditions **Pipe ID** in inches is the measured diameter of the orifice at reference conditions.

Date/Time

Change Date	
Change Time	

<u>Change Date</u>


Month	09
Day	08
Year	00
Change Date 1=Yes	

Enter Month (1-12), Day (1-31), Year (0-99) and then enter '1' to change date.

	<u>Change Time</u>	
$\left(\right)$	Hour	09
	Minute	08
	Second	00
L	Change Time 1=Yes	J

Enter Hour (0-23), Minute (0-59), Second (0-59) and then enter '1' to change time.

Configuration

Configue Meter

Flow Equation 0-10

0=New AGA3,1=ISO5167

1

2=AGA7,3=V-Cone,4,5,6 ...

Flow Equation Type (0-10)

- 0 = API 14.3 (NEW AGA3, 1992 Orifice Equations)
- 1 = ISO5167
- 2 = AGA7 (Frequency Type Input)
- 3 = V-Cone Flow Meter
- 4 = MPU 1200
- 5 = FOXBORO (Assume: US unit Mass in LB/HR, Density LB/CF, Metric Unit- Mass in M3, Density in KG/M3)
- 6= Natural Gas @20 Deg.C
- 7= Verabar
- 8= Pitot Tube
- 9= ISO 6976
- 10= Venturi
- 11= Accelabar
- 12= Dynacone Wet Gas

New AGA3/ISO5167/V-Cone/Natural Gas @20 Deg.C/Venturi

Orifice ID	10.00000
Pipe ID,	5.00000
DP Cut Off	1.0000
Vis/Coeff	.024500

<u> PIPE I.D.</u>

<u>Orifice ID</u>

Pipe ID is the measured inside pipe diameter to 5 decimals at reference conditions. Orifice ID is the measured diameter of the orifice at reference conditions.

DP CUTOFF

The Micro MV Gas Flow Computer suspends all calculations whenever the DP, in inches of water column, is less than this value. This function is vital for suppressing extraneous data when the DP transmitter drifts around the zero mark under no-flow conditions.

VISCOSITY IN CENTIPOISE

Even though viscosity will shift with temperature and pressure changes, the effect on the calculations is negligent. Therefore using a single value is appropriate in most cases. Enter viscosity in centipoises.

DISCHARAGE COEFFICIENT C

This value is the discharge coefficient for Venturi flow equations.

<u>AGA7</u>

K Fastar	1000 000	
K Factor	1000.000	
Meter Factor	1.00000	
Flow Cut Off Freq.	1	

<u>K Factor</u>

K Factor is the number of pulses per unit volume, i.e. 1000 pulses/cf. The tag on the meter would normally indicate the K Factor.

Meter Factor

Meter Factor is a correction to the K Factor for this individual meter, applied multiply to the K factor.

FLOW CUTOFF FREQUENCY

The Smart Flow Computer will quit totalizing, when frequency is below the set limit. This feature is to reduce noise effect when the meter is down for period of time. The totalizer will stop totalizing when the frequency is below the cut off limit.

Configure I/O

Analog Output Meter I/O Status/Switch Flow Computer Display

Analog Output

Ana.Out#1 Assign	1	١
Ana.Out#2 Assign	0	
Ana.Out#3 Assign	0	
Ana.Out#4 Assign	0	
		1

Assignments: 3 Digits

	Meter 1	Meter 2	Meter 3	Meter 4
Gross Flow Rate	111	211	311	411
Net Flow Rate	112	212	312	412
Mass Flow Rate	113	213	313	413
Energy Flow Rate	114	214	314	414
DP	121	221	321	421
Temperature	122	222	322	422
Pressure	123	223	323	423
Density	124	224	324	424
Dens.Temp.	125	225	325	425
Density.b	126	226	326	426
DP Low	127	227	327	427
DP High	128	228	328	428
SG	129	229	329	429
BS&W	130	230	330	430

	Gross	Net	Mass	Energy
Station Flow Rate	511	512	513	514

Assignments- other

Assignment				
Analog Input #1	1		Spare Auxiliary#1	11
Analog Input #2	2		Spare Auxiliary#2	12
Analog Input #3	3		Spare Auxiliary#3	13
Analog Input #4	4		Spare Auxiliary#4	14
RTD Input	5		Spare Auxiliary#5	15
Remote Control	6		Spare Auxiliary#6	16
Meter #1 PID	7		Spare Auxiliary#7	17
Meter #2 PID	8		Spare Auxiliary#8	18
Meter #3 PID	9		Spare Auxiliary#9	19
Meter #4 PID	10		Spare Auxiliary#10	20
		-	Spare Auxiliary#11	21
			Spare Auxiliary#12	22
			Analog Input #5	23
			Analog Input #6	24

Analog Input #7

Analog Input #8

Analog Input #9

25

26

27

Meter I/O

Temperature	
Pressure	
DP Densitometer	J

<u>Assignments</u>

0= Not Used	4= Analo	g#4
1= Analog#1	5= RTD	
2= Analog#2	21= Analo	g#5
3= Analog#3	22= Analo	g#6

7 =	Dens.Freq (Not Selectable)
10 =	Multi. Variable Module #1
23=	Analog #7
24=	Analog #8
25=	Analog Input#9

<u>4MA</u>

Enter the 4mA value for the transducer.

<u> 20мА</u>

Enter the 20mA value for the transducer.

Status Input /Switch Output Assignment

Status/Swite Status/Swite	•••••	000 001
Status/Swite Status/Swite		000 000
`		

	Assignment	Comments
2	Calibration Mode	
4.	Alarm Acknowledge	Reset the previous occurred alarms output bit

<u>Switch Output Assignment</u>

User can assign an output to each of the Micro MV Gas Flow Computer's output switches from this list. The Micro MV Gas Flow Computer switch outputs are sourcing through switch power input power. Outputs in the top list, "Pulse Outputs", require a definition of pulse output per unit volume. Therefore a Pulse Output Width must be defined when one of these switch types are chosen. These outputs are available through switch 1 or 2 only.

Outputs in the bottom list, "Contact Type Outputs", are ON/OFF type outputs. They can be assigned to any of the four switch outputs.

Switches 1 and 2 can be pulse or contact type output; switches 3, 4 are contact-type output only.

Assignments - Pulse Outputs

	Meter 1	Meter 2	Meter 3	Meter 4
Gross	101	105	109	113
Net	102	106	110	114
Mass	103	107	111	115
Energy	104	108	112	116

Station Gross	117
Station Net	118
Station Mass	119
Station Energy	120

Assignments - Contact Type Outputs

	Meter 1	Meter 2	Meter 3	Meter 4
Meter Down	123	127	131	135
AGA8 Out of Range	124	128	132	136
Flow Rate High	125	129	133	137
Flow Rate Low	126	130	134	138

Day Ended	121	Analog Input #7 High	166	Slave#1 DP HI	197
Month Ended	122	Analog Input #7 Low	167	Slave#1 DP LO	198
Analog Input #1 High	139	Analog Input #8 High	168	Slave#1 P HI	199
Analog Input #1 Low	140	Analog Input #8 Low	169	Slave#1 P LO	200
Analog Input #2 High	141	Analog Input #9 High	170	Slave#1 T HI	201
Analog Input #2 Low	142	Analog Input #9 Low	171	Slave#1 T LO	202
Analog Input #3 High	143	Spare Auxiliary I/O#1 Hi	172	Slave#2 DP HI	203
Analog Input #3 Low	144	Spare Auxiliary I/O#1 LO	173	Slave#2 DP LO	204
Analog Input #4 High	145	Spare Auxiliary I/O#2 Hi	174	Slave#2 P HI	205
Analog Input #4 Low	146	Spare Auxiliary I/O#2 LO	175	Slave#2 P LO	206
RTD Input High	147	Spare Auxiliary I/O#3 Hi	176	Slave#2 T HI	207
RTD Input Low	148	Spare Auxiliary I/O#3 LO	177	Slave#2 T LO	208
Densitometer Failed	149	Spare Auxiliary I/O#4 Hi	178	Slave#3 DP HI	209
Density High	150	Spare Auxiliary I/O#4 LO	179	Slave#3 DP LO	210
Density Low	151	Spare Auxiliary I/O#5 HI	180	Slave#3 P HI	211
Multi-Variable DP HI	152	Spare Auxiliary I/O#5 LO	181	Slave#3 P LO	212
Multi-Variable DP LO	153	Spare Auxiliary I/O#6 HI	182	Slave#3 T HI	213
Multi-Variable PF HI	154	Spare Auxiliary I/O#6 LO	183	Slave#3 T LO	214
Multi-Variable PF Low	155	Spare Auxiliary I/O#7 HI	184	Analog#1 Fail	215
Multi-Variable TF HI	156	Spare Auxiliary I/O#7 LO	185	Analog#2 Fail	216
Multi-Variable TF Low	157	Spare Auxiliary I/O#8 HI	186	Analog#3 Fail	217
Active Alarms	158	Spare Auxiliary I/O#8 LO	187	Analog#4 Fail	218
Occurred Alarms	159	Spare Auxiliary I/O#9 HI	188	RTD Fail	219
Watchdog	160	Spare Auxiliary I/O#9 LO	189	Analog#5 Fail	220
Remote Control	161	Spare Auxiliary I/O#10 HI	190	Analog#6 Fail	221
Analog Input #5 High	162	Spare Auxiliary I/O10 LO	191	Analog#7 Fail	222
Analog Input #5 Low	163	Spare Auxiliary I/O#11 HI	192	Analog#8 Fail	223
Analog Input #6 High	164	Spare Auxiliary I/O11 LO	193	Analog#9 Fail	224
Analog Input #6 Low	165	Spare Auxiliary I/O#12 HI	194	L	•
	·1	Spare Auxiliary I/O12 LO	195		

Flow Computer Display Assignment

FC.Display#1	000
FC.Display#2 FC.Display#3	001 000
FC.Display#4	000

Display assignment can be selected up to 16 assignments. The Micro MV Gas Flow Computer will scroll through them at the assigned delay time.

<u>Assignment</u>

	Meter 1	Meter 2	Meter 3	Meter 4
Gross Flow Rate	101	201	301	401
Gross Daily Total	105	205	305	405
Gross Cumulative Total	109	209	309	409
Gross Month Total	113	213	313	413
Previous Gross Daily Total	117	217	317	417
Net Flow Rate	102	202	302	402
Net Daily Total	106	206	302	406
Net Cumulative Total	110	210	310	410
Net Month Total	114	214	314	414
Previous Net Daily Total	118	218	318	418
Mass Flow Rate	103	203	303	403
Mass Daily Total	107	207	307	407
Mass Cumulative Total	111	211	311	411
Mass Month Total	115	215	315	415
Previous Mass Daily Total	119	219	319	419
Energy Flow Rate	104	204	304	404
Energy Daily Total	108	208	308	408
Energy Cumulative Total	112	212	312	412
Energy Month Total	116	216	316	416
Previous Energy Daily Total	120	220	320	420

Station Gross Flow Rate	501
Station Net Flow Rate	502
Station Mass Flow Rate	503
Station Energy Flow Rate	504

	Meter 1	Meter 2	Meter 3	Meter 4
Temperature	121	221	321	421
Pressure	122	222	322	422
Density	123	223	323	423
DP	124	224	324	424
DP Low	125	225	325	425
DP High	126	226	326	426
Alarms	127	227	327	427
Orifice ID	128	228	328	428
Pipe ID	129	229	329	429
PID - Flow	130	230	330	430
PID – Pressure	131	231	331	431
PID – Output	132	232	332	432
Test Status	133	233	333	433
Test Gross	134	234	334	434
Test Net	135	235	335	435
BS&W	136	236	336	436

Selection	Description	Selection	Description
701	Date/Time	709	Spare Auxiliary Var.#5/#6
702	Battery Voltage/Spare Variable #1	710	Spare Auxiliary Var.#7/#8
703	Spare Variable #2/#3	711	Spare Auxiliary Var.#9/#10
704	Spare Variable #4/#5	712	Spare Auxiliary Var.#11/#12
705	Spare Variable #6/#7	713	Program Variable #1/#2
706	Spare Variable #8/#9	714	Program Variable #3/#4
707	Spare Auxiliary Variable#1/#2	715	Program Variable #5/#6
708	Spare Auxiliary Variable#3/#4	716	Program Variable #7/#8

Pulse Output

Pulse Output	
#1 P/Unit#1	1.000
#2 P/Unit#2	1.000
Pulse Width	50

PULSE OUTPUT AND PULSE OUTPUT WIDTH

Pulse Output is used to activate a sampler or external totalizer. The number selected will be pulses per unit volume or per unit mass. If 0.1 pulse is selected, the one pulse will be given every 10 unit volumes has passed through the meter.

Pulse Output Width is the duration, in milliseconds, of one complete pulse cycle (where each cycle is the pulse plus a wait period, in a 50/50 ratio). For example: if POW = 500 msec, the Micro MV Gas Flow Computer at most can produce one pulse each second regardless of the pulse per unit volume selected (500 msec pulse + 500 msec wait). If POW = 10 msec the Micro MV Gas Flow Computer can produce up to 50 pulses per second.

The Micro MV Gas Flow Computer's maximum pulse output is 125 pulses/sec. The Pulse Output in combination with the Pulse Output Width should be set appropriately.

<u>Others</u>

Day Start Hour	7	
Print Interval	1440	
0=Hour,1=Day,2=Min	0	
Disable Alarms	0	

DAY START HOUR (0-23)

Day start hour is used for daily totalizer reset operation.

FLOW RATE SELECTION

The flow rate will be based on hourly basis, daily, or minute.

DISABLE ALARMS

Use Disable Alarms to ignore alarms. When the alarm function is disabled alarms are not logged. Alarms are also not logged if the DP is below the cut-off limit.

CHAPTER 4: FLOW EQUATIONS

Common Terms

The following terms are used throughout this chapter.

Term	Definition	US Units	Metric Unit	Examples
q	Flow rate: volume or mass displaced per unit time	See equations	See equations	<i>Qmass</i> , <i>Qenergy</i>
Т	Temperature	°F unless noted	°C unless noted	
DP	Differential Pressure across measuring device	Inches H ₂ O	m.Bar	
d	Orifice Diameter	Inches	Millimeter	d, d_r, d_m
D	Pipe Diameter	Inches	Millimeter	D , D_r , D_m
β	$= \frac{d}{D} = \frac{Orifice \ diameter}{Pipe \ diameter}$			eta , eta_r
ρ	Density (usually of the fluid)	Lb/ft ³	Kg/M ³	$ ho_{ ext{flowing}}$, $ ho_{ ext{m}}$
μ	Viscosity	centipoise	centipoise	
HN	Heating Value	BTU/ ft ³	MJ/M^3	
Y	Expansion factor			

Subscripts: Conventions Used

This Subscript	Means	Examples
r	At reference conditions	$T_{r,p}$ = reference temperature of the pipe
O (letter o)	Refers to the orifice	$T_{r,O}$ = reference temperature of the orifice
Р	Refers to the pipe	
flowing	At flow conditions	$\rho_{flowing}$ = density at flow conditions
cal	Calibration conditions	T_{cal} , P_{cal}
m	At measured conditions	D_m = pipe diameter at measured temp.

API 14.3

For more information, please see *Orifice Metering of Natural Gas*, 3rd edition.

Mass Flow Rate	$= \frac{\pi}{4} \times N_c \times C_d \times E_v \times d^2 \times Y \times \sqrt{2DP \times Density} \times .001$
Net Flow Rate	$= \frac{Mass Flow}{Base Density} \times Conversion Factor$
Gross Flow Rate	= $\frac{Mass Flow}{Flowing Density} imes Conversion Factor$

Energy Flow Rate = Net Flow × Heating Value × Conversion Factor

Where: $N_c = Units$ Conversion Constant $C_d = Orifice$ Plate Coefficient of Discharge $E_v = \frac{1}{\sqrt{1-\beta^4}} = Velocity$ of Approach Factor d = Orifice plate bore diameter Y = Expansion Factor DP = Orifice Differential Pressure

	US unit	Metric Unit
N _c	323.279	.036
Density	<i>lb/ft</i> ³	kg/m ³
Gross Flow Rate/HR	Selectable by Data Entry	Selectable by Data Entry
Net Flow Rate/HR	Selectable by Data Entry	Selectable by Data Entry
Mass Flow Rate/HR	MLB	TONNE
Energy Flow Rate/HR	MMBTU	GJ

ISO5167

$$M \operatorname{assFlowrate} = \frac{\pi}{4} \times N_c \times FA \times E_v \times d^2 Y \sqrt{2000 \times DP \times \rho}$$
$$= \mathbf{q}_{mass} \text{ (TON/Hr)}$$
$$\operatorname{NetFlowrate} = \frac{q_{mass}}{\rho_{reference}} = \operatorname{KM 3/Hr}$$
$$\operatorname{GrossFlowrate} = \frac{q_{mass}}{\rho_{flowing}} = \operatorname{KM 3/Hr}$$

Energy Flowrate = Net Flowrate \times *HeatingValue* = *GJ* / *HR*

Where :

$$N_c = ALPHA$$

 $Y = 10^{-6}$
 $E_v = Exp. \times 3600$

AGA7

Density Units: LB/CF (US Units), KG/M3 (Metric Units)

Gas Application

Gas Meter		
Set Compositio	n Selection to Zero	
US Units	Metric Units	
K Factor: Pulses/CF	K Factor: Pulses/M3	
*Hourly Report: Net and Energy		
Net: MCF or KM3 (User Selectable)		
Energy: MMBTU(US Units),GJ(Metric Units)		

Gross Flow Rate (Hour) = Frequency / K Factor x 3.6 * Linear Factor*Meter Factor*Units Conversion

Net Flow Rate (Hour) = Gross*Flowing Density / Reference Density

Mass Flow Rate = Gross Flow*Flowing Density*Units Conversion

Energy Flow Rate = Net Flow * Heating Value*Units Conversion / 1000

Liquid Application

Liquid Meter		Force a Gas Meter to a Liquid Meter	
Set Composition Selection to Zero		Set Composition Selection to Nonzero	
US Units	Metric Units	US Units	Metric Units
K Factor: Pulses/BBL	K Factor: Pulses/M3	K Factor: Pulses/CF	K Factor: Pulses/M3
		Hourly Report:	Net and Energy
Hourly Report: G	coss and Net Total	Available for firmware	version 6.04.13 or newer
BBL (US), M3(Metric)		Net: MCF or KM3 (User Selectable)	
		Energy: MMBTU	J(US),GJ(Metric)

Firmware Version 6.04.10 or newer

Gross Flow Rate (Hour) = Frequency / K Factor *3.6*Units Conversion

Net Flow Rate = Gross Flow *Meter Factor* Linear Factor* C t,ant x (1-BSW)%

Mass Flow Rate = Gross Flow* Flowing Density*Units Conversion *Note:* C t,ant = CTPL = CTL x CPL (*API2004*)

Firmware Version 6.04.09 or older

Gross Flow Rate = Frequency / K Factor * 3.6*Units Conversion

Net Flow Rate= Gross Flow*Meter Factor * Linear Factor *CTL* CPL* C t,ant * (1-BSW)%

Mass Flow Rate = Gross Flow *Flowing Density*Units Conversion Note: <u>US Unit, Metric Unit @15 Deg.C</u> C t,ant = 1 <u>Metric Unit @20 Deg.C (Petroleum Measurement Paper No3 - 1988)</u> C t.ant = factor to correct CTL

Cone/SMART Cone

$$M \text{ ass Flowrate} = \frac{\pi}{4} \times \sqrt{2g_c \times \rho} \times \frac{D^2 \times \beta^2}{\sqrt{1 - \beta^4}} \times Cf \times Y \times \sqrt{Psf} \times Fa$$
$$= \mathbf{q}_{mass/second} (LB - US, KG - Metric)$$
$$\text{Net Flowrate} = \frac{q_{mass}}{\rho_{reference}}$$
$$\text{Gross Flowrate} = \frac{q_{mass}}{\rho_{flowing}}$$

Energy Flowrate (MMBTU)= Net Flowrate \times HeatingValue(MBTU) \times ConversionFactor /1000 EnergyFlowRate(GJ) = NetFlowRat e \times HeatingValue(MJ) \times ConversionFactor

Where:

 g_c = Dimensional Conversion Constant

 C_f = Flow Coefficient of the Meter

 ρ = Density (LB/FT3-US, KG/M3-Metric)

D = Meter Inside Diameter (Feet-US, Meters-Metric)

Psf = D.Pressure(Pounds force per square foot-US, Pascal-Metric)

Y = Adiabatic Expansion Factor for Contoured Elements

 $\beta = \sqrt{1 - \frac{d^2}{D^2}}$ d = Cone Diameter, D=Meter Inside Diameter (Inches-US, Millimeters-Metric)

Fa = Thermal Expansion Factor

Verabar – Gas

Net Flow in MSCF/Day N x K x Y x D x D / SQRT(G) x SQRT(Hw x Pfa /Tfa)

Mass Flow in MLB/Day Net Flow x Base Density

Gross Flow in MSCF/Day

Net flow x Base Density / Flowing Density

Where: N = 5.2436 K = Flow Coefficient Y = Expansion Factor D = Pipe ID G = Ideal Gas Specific Gravity

Hw = Differential Pressure in H2O (68F)

Pfa = Flowing Pressure + 14.7

Tfa = Flowing Temperature + 459.67

Verabar – Liquid

Net Flow in Barrel/Day N x K x D x D x SQRT(Hw) / SQRT(Gf)

Mass Flow in MLB/Day Net Flow x Base Density x Unit Conversion Factor

Gross Flow in Barrel/Day Net flow x Base Density / Flowing Density

Where: N = 194.2784725 K = Flow Coefficient D = Pipe ID Gf = Flowing Specific Gravity

Hw = Differential Pressure in H2O (68F)

Venturi

MassFlowrate = 0.0997424 × 3.6 ×
$$\sqrt{\rho \times DP} \times \frac{C \times Y \times F_a \times d^2}{\sqrt{1 - \beta^4}}$$

= (MLb/Hr)

Net Flowrate =
$$\frac{Mass Flowrate (MLb/Hr)}{Reference Density}$$

= (MCF/Hr)

 $Gross Flowrate = \frac{Mass Flowrate (MLb/Hr)}{Flowing Density}$ = (MCF/Hr)

Where $C = discharge \ coefficient \ C \ (manual entry)$ $Y = expansion \ factor$ $\beta = \frac{d}{D} = \frac{venturi \ bore \ diameter \ at \ reference}{meter \ tube \ internal \ diameter \ at \ reference}$ $\rho = density \ of \ the \ fluid \ at \ flowing \ conditions$ $DP = differenti \ al \ pressure$

Metric Unit for Mass Flow is in TON.

(Refer to Miller Measurement Engineering Handbook)

Accelabar

Mass Flow LB/Hour = $N \times K \times Y \times Fa \times D^2 \times \sqrt{\rho \times Dp} \times 3600$

Net Flowrate =
$$\frac{q_{mass}}{\rho_{reference}}$$

Gross Flowrate = $\frac{q_{mass}}{\rho_{flowing}}$ = Hour

Energy Flowrate (MMBTU)= Net Flowrate × *HeatingValue(MBTU)*× *ConversionFactor* /1000

Where :

$$K = Flow Constant$$

 $N = .0997429$
 $Density = FlowingFlu idDensity(LB / FT3)$
 $D = ThroatDiameter$
 $Fa = ThermalExpansionCoefficient$
 $Y = Accelabar Gas Expansion Factor (Y = 1 for Liquid Application)$
 $Dp = Different Pressure IN H2O(68F)$

Refer to VERIS Accelabar Meter

The unit of Mass Flow (ELITE-EXP)

Mass Unit	Description
MLB	US unit
TONNE	Metric Ton

DENSITY EQUATIONS

Sarasota Density(GM/CC-US Unit, KG/M3-Metric Unit)

Sarasota density is calculated using the frequency signal produced by a Sarasota densitometer, and applying temperature and pressure corrections as shown below.

Corrected Density =
$$DCF \times \frac{2D_0(t-T_{0p})}{T_{0p} \times \frac{1+K(t-T_{0p})}{2T_{0p}}}$$

Where:

$$T_{0p} = T_{coef} \times (T - T_{cal}) + P_{coef} \times (P - P_{cal}) + T_0$$

DCF = *Density Correction Factor*

 $D_0 = Calibration constant, mass/volume, gm/cm^3$

t = *Densitometer oscillation p eriod in microseconds.*

 $_{t_0} = A \ calibration \ constant \ in \ microseconds$

 T_{coef} = Temperature coefficient in microseconds/°F(USUnit)or°C(MetricUnit)

P = *Flowing pressure in PSIG(USUnit), BAR, orKG / CM(MetricUnit)*

 $P_{coef} = Pressure \ coefficien \ t \ in \ microseconds/PSIG \ (US \ Unit), \ BAR, \ or \ KG/CM(Metric \ Unit))$

 $P_{cal} = Calibration \ pressure \ in \ PSIG(USUnit), BAR, or KG / CM (MetricUnit))$

UGC Density(GM/CC-US Unit, KG/M3-Metric Unit)

UGC density is calculated using the frequency signal produced by a UGC densitometer, and applying temperature and pressure corrections as shown below

Corrected Density = $DCF \times P_{flowing} \{ [K(P_{off} + d) \times 10^{-6}] + [K_T(T_{flowing} - T_{cal})] + d \}$

Where :

$$d = K_0 + K_1 t + K_2 t^2$$

 $K_0, K_1, K_2 = Calibration Constants$

t = Densitometer oscillation period in microseconds

DCF = *Density Correction Factor*

K = *Pressure Constant*

 $P_{off} = Pressure Offset$

 $K_T = Temperature Coefficient$

 $T_{cal} = Temperature \ coefficien \ t \ in \ microseconds/^{\circ}F(USUnit), or^{\circ}C(MetricUnit)$

Solartron Density (GM/CC-US Unit, KG/M3-Metric Unit)

Solartron density is calculated using the frequency signal produced by a Solartron densitometer, and applying temperature and pressure corrections as shown below.

Density at 20 Deg.C and 0 BAR

$$D = K_0 + K_1 t + K_2 t^2$$

Where:

t = Densitometer Oscillation Period in microseconds

 $K_0, K_1, K_2 = Calibration Constants Supplied by Solartron$

Temperature Corrected Density $DT = D[1 + K_{18}(T - 20) + K_{19}(T - 20)]$

Additional Equation for Gas offset data

The following equation can provide more accurate measurement for Argon/Methane Gas Mixture over density range 60 to 200 kg/m³. DA = DT + (1 + K3/(DT + K4)x0.00236 - G/(T + 273))G = Gas Specific Gravity / Ratio of Specific Heats.

Density (GM/CC)= Density(KG/M3) / 1000.0

AGA8 Gross Method 1- Gas Meter

Refer to Transmission Measurement Committee Report No. 8

<u>AGA8 Gross Method 2 – Gas Meter</u>

Refer to Transmission Measurement Committee Report No. 8

AGA8 Detail Method – Gas Meter

Refer to Transmission Measurement Committee Report No. 8

Table 24A/ Chapter 11.2.1 - Liquid Meter

	Calculation Type	Comments and Limitations
US Unit	Table 24A/Chapter.11.2.1	SG .637 – 1.076
		Temperature 0-300 DEG.F
Metric Unit	0=Crude Volume to 20 Deg.C	
Metric Unit	1=Crude Volume to 15 Deg.C	

NIST10 Superheated Steam - Gas Meter

Refer to National Institute of Standards and Technology

NIST10 Superheated Steam	Pressure > 2.06843 MPA, Temperature > 533.15 Deg.K
--------------------------	---

CHAPTER 5: MODBUS DATA

MODBUS PROTOCOL

TRANSMISSION MODE

	ASCII	RTU
DATA BITS	7	8
START BITS	1	1
PARITY	EVEN, ODD	NONE
STOP BITS	1	1
ERROR CHECKING	LRC	CRC
BAUD RATE	1200-9600	1200-9600

ASCII FRAMING

Framing is accomplished by using colon (:) character indicating the beginning of frame and carriage (CR), line feed (LF) for the end of frame

ASCII MESSAGE FORMAT

_	ADDRESS	FUNCTION	DATA	ERR\CHECK		_
:	2 CHAR	2 CHAR	Nx2 CHAR	2 CHAR	CR	LF
8 BITS	16 BITS	16 BITS	Nx16 BITS	16 BITS	8 BITS	8 BITS

RTU FRAMING

Frame synchronization is done by time basis only. The Smart Flow Computer allows 3.5 characters time without new characters coming in before proceeding to process the message and resetting the buffer.

RTU MESSAGE FORMAT

ADDRESS	FUNCTION	DATA	CRC
8 BITS	8 BITS	Nx8 BITS	16 BITS

FUNCTION CODE

To inform the slave device of what function to perform

FUNCTION CODE	ACTION
01	
03	Read Strings or Multiple 16 Bits
16	Write Strings or Multiple 16 Bits

ERROR CHECK

<u>LRC MODE</u>

The LRC check is transmitted as two ASCII hexadecimal characters. First, the message has to be stripped of the: LF, CR, and then converted the HEX ASCII to Binary. Add the Binary bits and then two's complement the result.

CRC MODE

The entire message is considered in the CRC mode. Most significant bit is transmitted first. The message is pre-multiplied by 16. The integer quotient digits are ignored and the 16-bit remainder is appended to the message as the two CRC check bytes. The resulting message including the CRC, when divided by the same polynomial (X16+X15+X2+1) at the receiver, which will give zero remainder if no error, has occurred.

EXCEPTION RESPONSE

Exception response comes from the slave if it finds errors in communication. The slave responds to the master echoing the slave address, function code (with high bit set), exception code and error check. To indicate that the response is notification of an error, the high order bit of the function code is set to 1.

EXCEPTION CODE	DESCRIPTION
01	Illegal Function
02	Illegal Data Address
03	Illegal Data Value

BROADCAST COMMAND

All units listen to Unit ID Zero, and no one will respond when the write function is broadcasted.

MODBUS EXAMPLES

FUNCTION CODE 03 (Read Single or Multiple Register Points)

Each Modbus System has a different Modbus address range. For example, 40000 or 90000 is the high level message generated through the host Modbus system. The set up and offset are different for each host Modbus system.

Read a Short (Single) Word Numeric Variable

The short word numeric variable is a 16-bit integer Data: 16 bits (short word: two 8-bit bytes - high byte, low byte), Short Integer Variable Modbus Address: from 1801 to 3030

ADDR	FUNC	STARTIN	G POINT	# OF P	CRC			
	CODE	HI	LO	HI	LO	CHECK		
01	03	0C	04	00	01	C6	9B	

RTU MODE - Read Address 3076

Response

4000	FUNC	BYTE	DA	CF	RC	
ADDR	CODE	COUNTS	HI	LO	CHE	СК
01	03	02	00	01	79	84

ASCII MODE - Read Address 3076

	ADD	R	FU		STARTING P			DINT # OF POINTS								
	ЛUU	IX I	CO	DE	F	11	LO		HI		LO		CHI	ECK		
:	30	31	30	33	30	43	30	43	30	30	30	31	45	42	CR	LF

Response

	ADD	R	FU		BYTE COUNT			DATA				NC		
			CO	DE			F	11	L	0	CHE	ECK		-
:	30	31	30	33	30	32	30	30	30	31	46	39	CR	LF

READ A LONG WORD NUMERIC VARIABLE

The long word numeric variable is a two 16-bit integers with decimal inferred Data: two 16-bit (32 bits, two words: high word, low word). Sign bit - first bit of high word (0:positive, 1:negative) Long Integer Variable Modbus Address: from 3131 to 9645

Read Address 3131

ADDR	FUNC	STARTIN	G Address	# OF R	CRC CHECK		
	CODE	HI	LO	HI	LO		CK
01	03	0C	3B	00	02	B6	96

Response - Data - 4 Bytes - 00 05 6A 29 (Hex), 611 (Decimal)

	FUNC	BYTE					CRC		
ADDR	CODE	COUNTS	ни	Vord	LO V	Vord	CHECK		
01	03	04	00	05	6A	29	05	4C	

Data Bytes - 00 05 6A 29 (Hex) = 354857 (decimal) Data with 2 decimal places inferred = 3548.57

For Example:

Honeywell Modbus System - read address 93131 Delta-V Modbus system - read address 43131 Data Calculation

Value = High Word x 65536 + Low Word

High Word = $00\ 05\ (Hex)$, 5 (Decimal) Low Word = 6A 29 (Hex), 27177 (Decimal) $= 5 \times 65536 + 27177$ = 354857Two decimal places inferred = 3548.57

READ A FLOATING POINT VARIABLE

The floating point variable is a single precision floating point value. The format can be configured as

Number of Bytes (Modbus Address2368)

Selection	Description
0: 4 Bytes	One Register - 4 Bytes
1: 2 Bytes	Two Registers – 4 Bytes

Bytes Order (Modbus Address 2369)

Selection	Description
0: HI, LO	Data - 4 Bytes HI HI LO LO
1: LO, HI	Data - 4 Bytes LO LO HI HI

IEEE Floating Point Format

Sign	Exponent	Mantissa
1 bit	8 bits	23 bits

Byte 3	Byte 2	Byte 1	Byte 0
SEEEEEE	EMMMMMMM	MMMMMMM	MMMMMMM

Modbus Address: From 7001 to 7999

Example: Read one register with 4 data bytes (High and Low words)

Read Register 7047

ADDR	FUNC	STARTING Address		# OF R	egisters	CF	
	CODE	HI LO		HI	LO	CHE	CK
01	03	1B	87	00	01	32	C7

Response - Four Data Bytes - 47 6C 4A 00 (HEX) = 60490.0

	FUNC	BYTE	DATA HI Word LO Word		CF	RC		
ADDR	CODE	COUNTS			HI Word LO Word		CHE	CK
01	03	04	47	6C	4 A	00	19	FA

woubus	Audress lable - 10 Dils	meyer	
ADDRESS	DESCRIPTION	DECIMAL	READ/WRITE
1801	Gas Chromatograph Unit ID	0 Inferred	Read/Write
1802	Gas Chromatograph Stream Address	0 Inferred	Read/Write
1803	Meter#1 Gas Chromatograph Stream ID	0 Inferred	Read/Write
1804	Meter#2 Gas Chromatograph Stream ID	0 Inferred	Read/Write
1805	Meter#3 Gas Chromatograph Stream ID	0 Inferred	Read/Write
1806	Meter#4 Gas Chromatograph Stream ID	0 Inferred	Read/Write
1807	Variable Type	0 Inferred	Read/Write
1808	Variable#1 Destination	0 Inferred	Read/Write
1809	Variable#2 Destination	0 Inferred	Read/Write
1810	Variable#3 Destination	0 Inferred	Read/Write
1811	Variable#4 Destination	0 Inferred	Read/Write
1812	Variable#5 Destination	0 Inferred	Read/Write
1813	Variable#6 Destination	0 Inferred	Read/Write
1814	Variable#7 Destination	0 Inferred	Read/Write
1815	Variable#8 Destination	0 Inferred	Read/Write
1816	Variable#9 Destination	0 Inferred	Read/Write
1817	Variable#10 Destination	0 Inferred	Read/Write
1818	Variable#11 Destination	0 Inferred	Read/Write
1819	Variable#12 Destination	0 Inferred	Read/Write
1820	Variable#13 Destination	0 Inferred	Read/Write
1821	Variable#14 Destination	0 Inferred	Read/Write
1822	Variable#15 Destination	0 Inferred	Read/Write
1823	Variable#16 Destination	0 Inferred	Read/Write
1824	Variable#17 Destination	0 Inferred	Read/Write
1825	Variable#18 Destination	0 Inferred	Read/Write
1826	Variable#19 Destination	0 Inferred	Read/Write
1827	Variable#20 Destination	0 Inferred	Read/Write
1828	Variable#1 Source Address	0 Inferred	Read/Write
1829	Variable#2 Source Address	0 Inferred	Read/Write
1830	Variable#3 Source Address	0 Inferred	Read/Write
1831	Variable#4 Source Address	0 Inferred	Read/Write
1832	Variable#5 Source Address	0 Inferred	Read/Write
1833	Variable#6 Source Address	0 Inferred	Read/Write
1834	Variable#7 Source Address	0 Inferred	Read/Write
1835	Variable#8 Source Address	0 Inferred	Read/Write
1836	Variable#9 Source Address	0 Inferred	Read/Write
1837	Variable#10 Source Address	0 Inferred	Read/Write
1838	Variable#11 Source Address	0 Inferred	Read/Write
1839	Variable#12 Source Address	0 Inferred	Read/Write
1840	Variable#13 Source Address	0 Inferred	Read/Write
1841	Variable#14 Source Address	0 Inferred	Read/Write
1842	Variable#15 Source Address	0 Inferred	Read/Write
1843	Variable#16 Source Address	0 Inferred	Read/Write
1844	Variable#17 Source Address	0 Inferred	Read/Write
1845	Variable#18 Source Address	0 Inferred	Read/Write
1846	Variable#19 Source Address	0 Inferred	Read/Write
1847	Variable#20 Source Address	0 Inferred	Read/Write
1848	Spare		
1849	MicroMV Slave (1=Yes)	0 Inferred	Read/Write
1850	Slave Unit#4 ID	0 Inferred	Read/Write

Modbus Address Table – 16 Bits Integer ADDRESS DESCRIPTION DECIMAL READ/WRITE

ADDRESS	DESCRIPTION	DECIMAL	READ/WRITE
1851	Slave#1 Unit ID	0 Inferred	Read/Write
1852	Slave#1 Variable#1 Type	0 Inferred	Read/Write
1853	Slave#1 Variable#2 Type	0 Inferred	Read/Write
1854	Slave#1 Variable#3 Type	0 Inferred	Read/Write
1855	Slave#1 Variable#4 Type	0 Inferred	Read/Write
1856	Slave#1 Variable#5 Type	0 Inferred	Read/Write
1857	Slave#1 Variable#1 Desitination	0 Inferred	Read/Write
1858	Slave#1 Variable#2 Desitination	0 Inferred	Read/Write
1859	Slave#1 Variable#3 Desitination Slave#1 Variable#4 Desitination	0 Inferred	Read/Write
1860 1861	Slave#1 Variable#5 Desitination	0 Inferred 0 Inferred	Read/Write Read/Write
1862	Slave#1 Variable#1 Source Address	0 Inferred	Read/Write
1863 1864	Slave#1 Variable#2 Source Address Slave#1 Variable#3 Source Address	0 Inferred 0 Inferred	Read/Write
1865	Slave#1 Variable#5 Source Address	0 Inferred	Read/Write Read/Write
1866	Slave#1 Variable#4 Source Address	0 Inferred	Read/Write
1000	Slave#1 valiable#5 Source Address	Uniteried	Reau/white
1867	Slave#2 Unit ID	0 Inferred	Read/Write
1868	Slave#2 Variable#1 Type	0 Inferred	Read/Write
1869	Slave#2 Variable#2 Type	0 Inferred	Read/Write
1870	Slave#2 Variable#3 Type	0 Inferred	Read/Write
1871	Slave#2 Variable#4 Type	0 Inferred	Read/Write
1872	Slave#2 Variable#5 Type	0 Inferred	Read/Write
1873	Slave#2 Variable#1 Desitination	0 Inferred	Read/Write
1874	Slave#2 Variable#2 Desitination	0 Inferred	Read/Write
1875	Slave#2 Variable#3 Desitination	0 Inferred	Read/Write
1876	Slave#2 Variable#4 Desitination	0 Inferred	Read/Write
1877	Slave#2 Variable#5 Desitination	0 Inferred	Read/Write
1878	Slave#2 Variable#1 Source Address	0 Inferred	Read/Write
1879	Slave#2 Variable#2 Source Address	0 Inferred	Read/Write
1880	Slave#2 Variable#3 Source Address	0 Inferred	Read/Write
1881	Slave#2 Variable#4 Source Address	0 Inferred	Read/Write
1882	Slave#2 Variable#5 Source Address	0 Inferred	Read/Write
1883	Slave#3 Unit ID	0 Inferred	Read/Write
1884	Slave#3 Variable#1 Type	0 Inferred	Read/Write
1885	Slave#3 Variable#2 Type	0 Inferred	Read/Write
1886	Slave#3 Variable#3 Type	0 Inferred	Read/Write
1887	Slave#3 Variable#4 Type	0 Inferred	Read/Write
1888	Slave#3 Variable#5 Type	0 Inferred	Read/Write
1889	Slave#3 Variable#1 Desitination	0 Inferred	Read/Write
1890	Slave#3 Variable#2 Desitination	0 Inferred	Read/Write
1891	Slave#3 Variable#3 Desitination	0 Inferred	Read/Write
1892	Slave#3 Variable#4 Desitination	0 Inferred	Read/Write
1893	Slave#3 Variable#5 Desitination	0 Inferred	Read/Write
1894	Slave#3 Variable#1 Source Address	0 Inferred	Read/Write
1895	Slave#3 Variable#2 Source Address	0 Inferred	Read/Write
1896	Slave#3 Variable#3 Source Address	0 Inferred	Read/Write
1897	Slave#3 Variable#4 Source Address	0 Inferred	Read/Write
1898	Slave#3 Variable#5 Source Address	0 Inferred	Read/Write
1899	Slave Unit Update Flag (1=Slave,2=G.C,3=MPU)	0 Inferred	Read/Write
1900-1920	Spare		

		J	
ADDRESS	DESCRIPTION	DECIMAL	READ/WRITE
1916	Spring Forward Month	0 Inferred	Read/Write
1917	Spring Forward Day	0 Inferred	Read/Write
1918	Fall Back Month	0 Inferred	Read/Write
1919	Fall Back Day	0 Inferred	Read/Write
1920	Enable Daylight Time Saving	0 Inferred	Read/Write
1921	DFM Display Screen#9 Assignment #1	0 Inferred	Read/Write
1922	DFM Display Screen#9 Assignment #2	0 Inferred	Read/Write
1923	DFM Display Screen#10 Assignment #1	0 Inferred	Read/Write
1924	DFM Display Screen#10 Assignment #2	0 Inferred	Read/Write
1925	DFM Display Screen#11 Assignment #1	0 Inferred	Read/Write
1926	DFM Display Screen#11 Assignment #2	0 Inferred	Read/Write
1927	DFM Display Screen#12 Assignment #1	0 Inferred	Read/Write
1928	DFM Display Screen#12 Assignment #2	0 Inferred	Read/Write
1020		o mionod	
1929	Analog Input#1 Tag Number	0 Inferred	Read/Write
1930	Analog Input#2 Tag Number	0 Inferred	Read/Write
1931	Analog Input#3 Tag Number	0 Inferred	Read/Write
1932	Analog Input#4 Tag Number	0 Inferred	Read/Write
1933	Analog Input#5 Tag Number	0 Inferred	Read/Write
1934	Analog Input#6 Tag Number	0 Inferred	Read/Write
1935	Analog Input#7 Tag Number	0 Inferred	Read/Write
1936	Analog Input#8 Tag Number	0 Inferred	Read/Write
1937	Analog Input#9 Tag Number	0 Inferred	Read/Write
1938	Auxiliary I/O #1 Tag Number	0 Inferred	Read/Write
1939	Auxiliary I/O #2 Tag Number	0 Inferred	Read/Write
1940	Auxiliary I/O #3 Tag Number	0 Inferred	Read/Write
1941	Auxiliary I/O #4 Tag Number	0 Inferred	Read/Write
1942	Auxiliary I/O #5 Tag Number	0 Inferred	Read/Write
1943	Auxiliary I/O #6 Tag Number	0 Inferred	Read/Write
1944	Auxiliary I/O #7 Tag Number	0 Inferred	Read/Write
1945	Auxiliary I/O #8 Tag Number	0 Inferred	Read/Write
1946	Auxiliary I/O #9 Tag Number	0 Inferred	Read/Write
1947	Auxiliary I/O #10 Tag Number	0 Inferred	Read/Write
1948	Auxiliary I/O #11 Tag Number	0 Inferred	Read/Write
1949	Auxiliary I/O #12 Tag Number	0 Inferred	Read/Write

ADDRESS	DESCRIPTION	DECIMAL	READ/WRITE
4050			D IAA/ .:
1950	Slave#1 DP Calib. Index	0 Inferred	Read/Write
1951	Slave#1 Pressure Calib. Index	0 Inferred	Read/Write
1952	Slave#1 Temperature Calib. Index	0 Inferred	Read/Write
1953	Spare Auxiliary I/O#1 Calib. Index	0 Inferred	Read/Write
1954	Spare Auxiliary I/O#2 Calib. Index	0 Inferred	Read/Write
1955	Spare Auxiliary I/O#3 Calib. Index	0 Inferred	Read/Write
1956	Spare Auxiliary I/O#4 Calib. Index	0 Inferred	Read/Write
1957	Slave#2 DP Calib. Index	0 Inferred	Read/Write
1958	Slave#2 Pressure Calib. Index	0 Inferred	Read/Write
1959	Slave#2 Temperature Calib. Index	0 Inferred	Read/Write
1960	Spare Auxiliary I/O#5 Calib. Index	0 Inferred	Read/Write
1961	Spare Auxiliary I/O#6 Calib. Index	0 Inferred	Read/Write
1962	Spare Auxiliary I/O#7 Calib. Index	0 Inferred	Read/Write
1963	Spare Auxiliary I/O#8 Calib. Index	0 Inferred	Read/Write
1964	Slave#3 DP Calib. Index	0 Inferred	Read/Write
1965	Slave#3 Pressure Calib. Index	0 Inferred	Read/Write
1966	Slave#3 Temperature Calib. Index	0 Inferred	Read/Write
1967	Spare Auxiliary I/O#9 Calib. Index	0 Inferred	Read/Write
1968	Spare Auxiliary I/O#10 Calib. Index	0 Inferred	Read/Write
1969	Spare Auxiliary I/O#11 Calib. Index	0 Inferred	Read/Write
1970	Spare Auxiliary I/O#12 Calib. Index	0 Inferred	Read/Write

ADDRESS	DESCRIPTION	DECIMAL	READ/WRITE
1971	Analog Input #5 Calib. Index	0 Inferred	Read/Write
1972	Analog Input #6 Calib. Index	0 Inferred	Read/Write
1973	Analog Input #7 Calib. Index	0 Inferred	Read/Write
1974	Analog Input #8 Calib. Index	0 Inferred	Read/Write
1975	Analog Input #9 Calib. Index	0 Inferred	Read/Write
1976	Spare Auxiliary I/O #1 Decimal Places	0 Inferred	Read
1977	Spare Auxiliary I/O #2 Decimal Places	0 Inferred	Read
1978	Spare Auxiliary I/O #3 Decimal Places	0 Inferred	Read
1979	Spare Auxiliary I/O #4 Decimal Places	0 Inferred	Read
1980	Spare Auxiliary I/O #5 Decimal Places	0 Inferred	Read
1981	Spare Auxiliary I/O #6 Decimal Places	0 Inferred	Read
1982	Spare Auxiliary I/O #7 Decimal Places	0 Inferred	Read
1983	Spare Auxiliary I/O #8 Decimal Places	0 Inferred	Read
1984	Spare Auxiliary I/O #9 Decimal Places	0 Inferred	Read
1985	Spare Auxiliary I/O #10 Decimal Places	0 Inferred	Read
1986	Spare Auxiliary I/O #11 Decimal Places	0 Inferred	Read
1987	Spare Auxiliary I/O #12 Decimal Places	0 Inferred	Read
1988	Turbine Diagnostic Data #1–Update Seconds(1-60)	0 Inferred	Read
1989	Turbine Diagnostic Data #1 – Sensitive Factor	0 Inferred	Read
1990	Turbine Diagnostic Data #1 – Number of Blades	0 Inferred	Read
1991	Turbine Diagnostic Data #2–Update Seconds(1-60)	0 Inferred	Read
1992	Turbine Diagnostic Data #2 – Sensitive Factor	0 Inferred	Read
1993	Turbine Diagnostic Data #2 – Number of Blades	0 Inferred	Read
1994	Turbine Diagnostic Data #3–Update Seconds(1-60)	0 Inferred	Read
1995	Turbine Diagnostic Data #3 – Sensitive Factor	0 Inferred	Read
1996	Turbine Diagnostic Data #3 – Number of Blades	0 Inferred	Read
	-		
1997	Turbine Diagnostic #1 Mode (1=Diagnostic,0=No)	0 Inferred	Read
1998	Turbine Diagnostic #2 Mode (1=Diagnostic,0=No)	0 Inferred	Read
1999	Turbine Diagnostic #3 Mode (1=Diagnostic,0=No)	0 Inferred	Read

2108	Frequency #1	0 Inferred	Read
2109	Frequency #2	0 Inferred	Read
2110	Frequency #3	0 Inferred	Read

ADDRESS	DESCRIPTION	DECIMAL	READ/WRITE
(The following (2 registers only available for version 6.01.6 or above	۱	
2368	2 registers only available for version 6.01.6 or above IEEE Floating Point Modbus 0=one 32 bit data ,1=t		
2369	IEEE Floating Point Modbus 0=HI,LO,1=LO,HI Byte		Read/Write
2000			
2534	Flow Copmputer Display Delay	0 Inferred	Read/Write
2535	DFM Display Screen#1 Assignment #1	0 Inferred	Read/Write
2536	DFM Display Screen#1 Assignment #2	0 Inferred	Read/Write
2537	DFM Display Screen#2 Assignment #1	0 Inferred	Read/Write
2538	DFM Display Screen#2 Assignment #2	0 Inferred	Read/Write
2539	DFM Display Screen#3 Assignment #1	0 Inferred	Read/Write
2540	DFM Display Screen#3 Assignment #2	0 Inferred	Read/Write
2541	DFM Display Screen#4 Assignment #1	0 Inferred	Read/Write
2542	DFM Display Screen#4 Assignment #2	0 Inferred	Read/Write
2543	DFM Display Screen#5 Assignment #1	0 Inferred	Read/Write
2544	DFM Display Screen#5 Assignment #2	0 Inferred	Read/Write
2545	DFM Display Screen#6 Assignment #1	0 Inferred	Read/Write
2546	DFM Display Screen#6 Assignment #2	0 Inferred	Read/Write
2547	DFM Display Screen#7 Assignment #1	0 Inferred	Read/Write
2548	DFM Display Screen#7 Assignment #2	0 Inferred	Read/Write
2549	DFM Display Screen#8 Assignment #1	0 Inferred	Read/Write
2550	DFM Display Screen#8 Assignment #2	0 Inferred	Read/Write
2551	Flow Copmputer ID or Unit ID	0 Inferred	Read/Write
2552	reserved	0 Inferred	Dood/Mrito
2553 2554	Port 1 Modbus Type (0=RTU,1=ASCII)	0 Inferred	Read/Write Read/Write
2555 2555	Port 1 Parity(0=None,1=Odd,2=Even) Port 1 Baud Rate(0=1200,1=2400,3=4800,4=9600)		Reau/write
2555	reserved)	
2557	Port 1 RTS Delay in Milliseconds	0 Inferred	Read/Write
2558-2559	reserved	0 Interred	iteau/write
2560	Port 2 Select 0=RTS,1=Printer	0 Inferred	Read/Write
2561	Port 2 Modbus Type (0=RTU,1=ASCII)	0 Inferred	Read/Write
2562	Port 2 Parity(0=None,1=Odd,2=Even)	0 Inferred	Read/Write
2563	Port 2 Baud Rate(0=1200,1=2400,3=4800,4=9600)		
2564	Reserved	, ,	
2565	Port 2 RTS Delay in Milliseconds	0 Inferred	Read/Write
2566	Printer- Number of Nulls	0 Inferred	Read/Write
2567	Reserved		
2568	No. of Meters	0 Inferred	Read/Write
2569	Select 0=US, 1=Metric Unit	0 Inferred	Read/Write
2570	Metric Pressure Units? 0=Bar,1=KG/CM2,2=KPA	0 Inferred	Read/Write
2571	Flow Units? 0=MCF,1=KM3,	0 Inferred	Read/Write
2572	Common Temperature 1=Yes	0 Inferred	Read/Write
2573	Common Pressure 1=Yes	0 Inferred	Read/Write
2574	Common Density 1=Yes	0 Inferred	Read/Write
2575	Use Station Total	0 Inferred	Read/Write
2576	Spare #1 Assignment	0 Inferred	Read/Write
2577	Spare #2 Assignment	0 Inferred	Read/Write
2578	Spare #3 Assignment	0 Inferred	Read/Write
2579	Spare #4 Assignment	0 Inferred	Read/Write
2580	DP Unit (0=m.Bar, 1=KPA)	0 Inferred	Read/Write
2581	Flow Rate Display 0=Hour,1=Day,2=Minute	0 Inferred	Read/Write
2582	Flowrate Averaged Seconds (1-5)	0 Inferred	Read/Write

2583	Day Start Hour (0-23)	0 Inferred	Read/Write
2584	Disable Alarms ? (0=No, 1=Yes)	0 Inferred	Read/Write
2585 2586	Spare		
2587	Spare Pulse Width	0 Inferred	Read/Write
2588-2590	Spare	0 Interreu	Reau/White
2591	Spare #5 Assignment	0 Inferred	Read/Write
2592	Spare #6 Assignment	0 Inferred	Read/Write
2593	Spare #7 Assignment	0 Inferred	Read/Write
2594	Spare #8 Assignment	0 Inferred	Read/Write
2595	Spare #9 Assignment	0 Inferred	Read/Write
2596	Status Input/Switch Output #1 Assign	0 Inferred	Read/Write
2597	Status Input/Switch Output #2 Assign	0 Inferred	Read/Write
2598	Status Input/Switch Output #3 Assign	0 Inferred	Read/Write
2599	Status Input/Switch Output #4 Assign	0 Inferred	Read/Write
2600	Analog Output #1 Assign	0 Inferred	Read/Write
2601	Analog Output #2 Assign	0 Inferred	Read/Write
2602	Analog Output #3 Assign	0 Inferred	Read/Write
2603	Analog Output #4 Assign	0 Inferred	Read/Write
2604	Analog Input #5 Fail Code	0 Inferred	Read/Write
2605	Analog Input #6 Fail Code	0 Inferred	Read/Write
2606	Analog Input #7 Fail Code	0 Inferred	Read/Write
2607	Analog Input #8 Fail Code	0 Inferred	Read/Write
2608	Analog Input #9 Fail Code	0 Inferred	Read/Write
2609	Enable Battery Alarm (1=Yes)	0 Inferred	Read/Write
2610	Common BS&W	0 Inferred	Read/Write
2611-2620	Company Name	20 Chars	Read/Write
2621-2630	Meter Location	20 Chars.	Read/Write
2631-2634	Meter #1 ID	8 Chars	Read/Write
2635-2638	Meter #2 ID	8 Chars	Read/Write
2639-2642	Meter #3 ID	8 Chars	Read/Write
2643-2646	Meter #4 ID	8 Chars	Read/Write
2647-2655	Reserved		
2656	Meter #1 Use Stack DP	0 Inferred	Read/Write
2657	Meter #1 Density Type	0 Inferred	Read/Write
2658	Meter #1 Density Unit	0 Inferred	Read/Write
2659	Meter #1 Flow Cut Off	0 Inferred	Read/Write
2660	Meter #1 Flow Equation	0 Inferred	Read/Write
2661	Meter #1 Y Factor Select	0 Inferred	Read/Write
2662	Meter #1 ISO5167 Dens Use up_stream Temp	0 Inferred	Read/Write
2663	Meter #1 Density Calculation Type	0 Inferred	Read/Write
2664	Meter #1 DP.Low Assignment	0 Inferred	Read/Write
2665	Meter #1 Temperature Assignment	0 Inferred	Read/Write
2666	Meter #1 Pressure Assignment	0 Inferred	Read/Write
2667	Meter #1 Density Assignment	0 Inferred	Read/Write
2668	Meter #1 DP.High Assignment	0 Inferred	Read/Write
2669-2671	Spare		
2672	Meter#1 Frequency I/O Position	0 Inferred	Read/Write
2673	Meter#1 Composition Set Number	0 Inferred	Read/Write
2674	Meter#1 BS&W Assignment	0 Inferred	Read/Write
2675	Spare		
2676	Meter #2 Use Stack DP	0 Inferred	Read/Write

|--|

2677	Meter #2 Density Type	0 Inferred	Read/Write
2678	Meter #2 Density Unit	0 Inferred	Read/Write
2679	Meter #2 Flow Cut Off	0 Inferred	Read/Write
2680	Meter #2 Flow Equation	0 Inferred	Read/Write
2681	Meter #2 Y Factor Select	0 Inferred	Read/Write
2682	Meter #2 ISO5167 Dens Use up_stream Temp	0 Inferred	Read/Write
2683	Meter #2 Density Calculation Type	0 Inferred	Read/Write
2684	Meter #2 DP.Low Assignment	0 Inferred	Read/Write
2685	Meter #2 Temperature Assignment	0 Inferred	Read/Write
2686	Meter #2 Pressure Assignment	0 Inferred	Read/Write
2687	Meter #2 Density Assignment	0 Inferred	Read/Write
2688		0 Inferred	Read/Write
	Meter #2 DP High Assignment	Uniterieu	Reau/White
2689-2691	Spare		Deed/M/rite
2692	Meter#2 Frequency I/O Position	0 Inferred	Read/Write
2693	Meter#2 Composition Set Number	0 Inferred	Read/Write
2694	Meter#2 BS&W Assignment	0 Inferred	Read/Write
2695	Spare		5 1447.5
2696	Meter #3 Use Stack DP	0 Inferred	Read/Write
2697	Meter #3 Density Type	0 Inferred	Read/Write
2698	Meter #3 Density Unit	0 Inferred	Read/Write
2699	Meter #3 Flow Cut Off	0 Inferred	Read/Write
2700	Meter #3 Flow Equation	0 Inferred	Read/Write
2701	Meter #3 Y Factor Select	0 Inferred	Read/Write
2702	Meter #3 ISO5167 Dens Use up_stream Temp	0 Inferred	Read/Write
2703	Meter #3 Density Calculation Type	0 Inferred	Read/Write
2704	Meter #3 DP.Low Assignment	0 Inferred	Read/Write
2705	Meter #3 Temperature Assignment	0 Inferred	Read/Write
2706	Meter #3 Pressure Assignment	0 Inferred	Read/Write
2707	Meter #3 Density Assignment	0 Inferred	Read/Write
2708	Meter #3 DP.High Assignment	0 Inferred	Read/Write
2709-2711	Spare		
2712	Meter #3 Frequency I/O Position	0 Inferred	Read/Write
2713	Meter #3 Composition Set Number	0 Inferred	Read/Write
2714	Meter #3 BS&W Assignment	0 Inferred	Read/Write
2715	Spare		
2716	Meter #4 Use Stack DP	0 Inferred	Read/Write
2717	Meter #4 Density Type	0 Inferred	Read/Write
2718	Meter #4 Density Unit	0 Inferred	Read/Write
2719	Meter #4 Flow Cut Off	0 Inferred	Read/Write
2720	Meter #4 Flow Equation	0 Inferred	Read/Write
2721	Meter #4 Y Factor Select	0 Inferred	Read/Write
2722	Meter #4 ISO5167 Dens Use up_stream Temp	0 Inferred	Read/Write
2723	Meter #4 Density Calculation Type	0 Inferred	Read/Write
2724	Meter #4 DP.Low Assignment	0 Inferred	Read/Write
2725	Meter #4 Temperature Assignment	0 Inferred	Read/Write
2726		0 Inferred	
	Meter #4 Pressure Assignment		Read/Write
2727	Meter #4 Density Assignment	0 Inferred	Read/Write
2728	Meter #4 DP.High Assignment	0 Inferred	Read/Write
2729-2731	Spare		DecelAN
2732	Meter #4 Frequency I/O Position	0 Inferred	Read/Write
2733	Meter #4 Composition Set Number	0 Inferred	Read/Write
2734	Meter #4 BS&W Assignment	0 Inferred	Read/Write
2735	Spare		

ADDRESS	DESCRIPTION

0700			
2736	Analog Input #1 Fail Code	0 Inferred	Read/Write
2737	Analog Input #2 Fail Code	0 Inferred	Read/Write
2738	Analog Input #3 Fail Code	0 Inferred	Read/Write
2739	Analog Input #4 Fail Code	0 Inferred	Read/Write
2740	RTD Input Fail Code	0 Inferred	Read/Write
2741	Muti.Var.DP Fail Code	0 Inferred	Read/Write
2742	Muti.Var.Pressure Fail Code	0 Inferred	Read/Write
2743	Muti.Var.Temperature Fail Code	0 Inferred	Read/Write
2744	Densitometer Fail Code	0 Inferred	Read/Write
2745	Densitometer Temperature Assignment	0 Inferred	Read/Write
2746	Densitometer Pressure Assignment	0 Inferred	Read/Write
2747	Meter #1 0=Gas, 1=Liquid Application	0 Inferred	Read/Write
2748	Meter #2 0=Gas, 1=Liquid Application	0 Inferred	Read/Write
2749	Meter #3 0=Gas, 1=Liquid Application	0 Inferred	Read/Write
2750	Meter #4 0=Gas, 1=Liquid Application	0 Inferred	Read/Write
2751	Status Input/Switch Output #1 (0=OFF,1=ON)	0 Inferred	Read/Write
2752	Status Input/Switch Output #2 (0=OFF,1=ON)	0 Inferred	Read/Write
2753	Status Input/Switch Output #3 (0=OFF,1=ON)	0 Inferred	Read/Write
2754	Status Input/Switch Output #4 (0=OFF,1=ON)	0 Inferred	Read/Write
2755-2860	Reserved	omened	Read/ White
2861-2864	Analog Input #5 Tag Name	8 Chars	Read/Write
2865-2868	Analog Input #6 Tag Name	8 Chars	Read/Write
		8 Chars	Read/Write
2869-2872	Analog Input #7 Tag Name	8 Chars	Read/Write
2873-2876	Analog Input #8 Tag Name		
2877-2880	Analog Input #9 Tag Name	8 Chars	Read/Write
2881-2883	Reserved		
2884-2890	Reserved		
2001 2001	Angles Input #1 Tes Name	9 Chara	Deed/Mrite
2891-2894	Analog Input #1 Tag Name	8 Chars	Read/Write
2895-2898	Analog Input #2 Tag Name	8 Chars	Read/Write
2899-2902	Analog Input #3 Tag Name	8 Chars	Read/Write
2903-2906	Analog Input #4 Tag Name	8 Chars	Read/Write
2907-2910	RTD Input Tag Name	8 Chars	Read/Write
2911-2914	Density Input Tag Name	8 Chars	Read/Write
2915-2918	Analog Output #1 Tag Name	8 Chars	Read/Write
2919-2922	Analog Output #2 Tag Name	8 Chars	Read/Write
2923-2926	Analog Output #3 Tag Name	8 Chars	Read/Write
2927-2930	Analog Output #4 Tag Name	8 Chars	Read/Write
2931-2934	Multi.Var DP Tag	8 Chars.	Read/Write
2935-2938	Multi.Var.Pressure Tag	8 Chars.	Read/Write
2939-2942	Multi.Var Temperature Tag	8 Chars.	Read/Write
2943	Meter#1 PID Auto/Manual	0 Inferred	Read/Write
2944	Meter#1 PID Flow Loop Used (1=Yes)	0 Inferred	Read/Write
2945	Meter#1 PID Flow Direct/Reverse Act	0 Inferred	Read/Write
2946	Meter#1 PID Pressure Loop Used (1=Yes)	0 Inferred	Read/Write
2947	Meter#1 PID Pressure Direct/Reverse Act	0 Inferred	Read/Write
2948	Meter#1 PID Flow Loop in Service	0 Inferred	Read/Write
2949	Meter#1 PID Pressure Loop in Service	0 Inferred	Read/Write
2950	Meter#1 PID 0=Low,1=High Signal	0 Inferred	Read/Write
2951	Meter#1 PID Flow Base 0=Gross,1=Net,2=Mass	0 Inferred	Read/Write
2952	Meter#2 PID Auto/Manual	0 Inferred	Read/Write
2953	Meter#2 PID Flow Loop Used (1=Yes)	0 Inferred	Read/Write
2954	Meter#2 PID Flow Direct/Reverse Act	0 Inferred	Read/Write

ADDRESS DESCRIPTION

2955	Meter#2 PID Pressure Loop Used (1=Yes)	0 Inferred	Read/Write
2956	Meter#2 PID Pressure Direct/Reverse Act	0 Inferred	Read/Write
2957	Meter#2 PID Flow Loop in Service	0 Inferred	Read/Write
2958	Meter#2 PID Pressure Loop in Service	0 Inferred	Read/Write
2959	Meter#2 PID 0=Low,1=High Signal	0 Inferred	Read/Write
2960	Meter#2 PID Flow Base 0=Gross,1=Net,2=Mass	0 Inferred	Read/Write
2961	Meter#3 PID Auto/Manual	0 Inferred	Read/Write
2962	Meter#3 PID Flow Loop Used (1=Yes)	0 Inferred	Read/Write
2963	Meter#3 PID Flow Direct/Reverse Act	0 Inferred	Read/Write
2964	Meter#3 PID Pressure Loop Used (1=Yes)	0 Inferred	Read/Write
2965	Meter#3 PID Pressure Direct/Reverse Act	0 Inferred	Read/Write
2966	Meter#3 PID Flow Loop in Service	0 Inferred	Read/Write
2967	Meter#3 PID Pressure Loop in Service	0 Inferred	Read/Write
2968	Meter#3 PID 0=Low,1=High Signal	0 Inferred	Read/Write
2969	Meter#3 PID Flow Base 0=Gross,1=Net,2=Mass	0 Inferred	Read/Write
2970	Meter#4 PID Auto/Manual	0 Inferred	Read/Write
2971	Meter#4 PID Flow Loop Used (1=Yes)	0 Inferred	Read/Write
2972	Meter#4 PID Flow Direct/Reverse Act	0 Inferred	Read/Write
2973	Meter#4 PID Pressure Loop Used (1=Yes)	0 Inferred	Read/Write
2974	Meter#4 PID Pressure Direct/Reverse Act	0 Inferred	Read/Write
2975	Meter#4 PID Flow Loop in Service	0 Inferred	Read/Write
2976	Meter#4 PID Pressure Loop in Service	0 Inferred	Read/Write
2977	Meter#4 PID 0=Low,1=High Signal	0 Inferred	Read/Write
2978	Meter#4 PID Flow Base 0=Gross,1=Net,2=Mass	0 Inferred	Read/Write
2979	Meter#1 PID Pressure Base	0 Inferred	Read/Write
2980	Meter#2 PID Pressure Base	0 Inferred	Read/Write
2981	Meter#3 PID Pressure Base	0 Inferred	Read/Write
2982	Meter#4 PID Pressure Base	0 Inferred	Read/Write
2983-2984	Spare		
2985	Analog Output#1 – Remote Control (0-100)	0 Inferred	Read
2986	Analog Output#2 –Remote Control (0-100)	0 Inferred	Read
2987	Analog Output#3 –Remote Control (0-100)	0 Inferred	Read
2988	Analog Output#4 –Remote Control (0-100)	0 Inferred	Read
2989	Reset PID	0 Inferred	Read/Write
2990	Slave #1 DP Fail Code	0 Inferred	Read/Write
2991	Slave #1 Pressure Fail Code	0 Inferred	Read/Write
2992	Slave #1 Temperature Fail Code	0 Inferred	Read/Write
2993	Slave #2 DP Fail Code	0 Inferred	Read/Write
2994	Slave #2 Pressure Fail Code	0 Inferred	Read/Write
2995	Slave #2 Temperature Fail Code	0 Inferred	Read/Write
2996	Slave #3 DP Fail Code	0 Inferred	Read/Write
2997	Slave #3 Pressure Fail Code	0 Inferred	Read/Write
2998	Slave #3 Temperature Fail Code	0 Inferred	Read/Write
2999	Spare		

ADDRESS DESCRIPTION

DECIMAL READ/WRITE

3001	Version Number	2 Inferred	Read
3002-3006	Spare	O lasferme d	Deed
3007	Meter #1 Product Used	0 Inferred	Read
3008-3011	Meter #1 ID	8 Chars	Read
3012	Report Format (0=Standard, 1=Prog.Variable)	0 Inferred	Read/Write
3013	Meter #2 Product Used	0 Inferred	Read
3014-3017	Meter #2 ID	8 Chars	Read
3018	Flow Computer Unit Number	0 Inferred	Read
3019	Disable Alarms (1=Yes)	0 Inferred	Read/Write
3020	Spare	0 Inferred	Read/Write
3021	Test Request (0=No,1=On Demand,2=Date/Time)	0 Inferred	Read/Write
3022	Calibrate Meter	0 Inferred	Read
3023	Application Tag	0 Inferred	Read
3024	Enable Calibration Mode (1=Yes)	0 Inferred	Read
3025	Calibration – Set Time (1-9 Hours)	0 Inferred	Read
3026	Last Test Report Request (1-5)	0 Inferred	Write
3027	Reserved		
3028	Meter Number for Previous Historical Data Packet	0 Inferred	Read/Write
3029	Last Month Report Request	0 Inferred	Write
3030	Last Alarm Report Request	0 Inferred	Write
3031	Last Audit Report Request	0 Inferred	Write
3032	Time Clock – Month		Read
3033	Time Clock – Day		Read
3034	Time Clock – Year (2 Digits)		Read
3035	Time Clock – Hour		Read
3036	Time Clock – Minute		Read
3037	Time Clock – Second		Read
3037	Time Clock – Second		Reau
3038	Meter#1 Accelabar Size	0 Inferred	Read/Write
3039	Meter#1 Body Material	0 Inferred	Read/Write
3040	Meter#2 Accelabar Size	0 Inferred	Read/Write
3041	Meter#2 Body Material	0 Inferred	Read/Write
3042	Meter#3 Accelabar Size	0 Inferred	Read/Write
3043	Meter#3 Body Material	0 Inferred	Read/Write
3044	Meter#4 Accelabar Size	0 Inferred	Read/Write
3045	Meter#4 Body Material	0 Inferred	Read/Write
3046-3050	Reserved		
3051	Gas Meter Gross Flow Units	0 Inferred	Read/Write
3052	Gas Meter Mass Flow Units	0 Inferred	Read/Write
3053	Oil and Water Meter Gross Flow Units	0 Inferred	Read/Write
3054	Oil Meter Mass Flow Units	0 Inferred	Read/Write
3055-3121	Spare		
3122	Data Verification Number	0 Inferred	Read/Write
3123-3128	Spare		
3129	Last Calib./Verification Rpt Req.(1=Latest,20=Olde	st) 0 Inferred	Write

Modbus 16-bit Address Table Ends

		Bits meger	
ADDRESS	DESCRIPTION	DECIMAL REAL	D/WRITE
3131	Meter #1 Daily Gross Total	1 inferred	Read
3133	Meter #1 Daily Net Total	1 inferred	Read
3135	Meter #1 Daily Mass Total		Read
3137	Meter #1 Daily Energy Total		Read
3139	Meter #1 Hourly Gross Total	1 Inferred	Read
3141	Meter #1 Hourly Net Total	1 Inferred	Read
3143	Meter #1 Hourly Mass Total		Read
3145	Meter #1 Hourly Energy Total		Read
3147	Meter #1 Monthly Gross Total		Read
3149	Meter #1 Monthly Net Total		Read
3151	Meter #1 Monthly Mass Total		Read
3153	Meter #1 Monthly Energy Total		Read
3155	Meter #1 Cumulative Gross Total		Read
3157	Meter #1 Cumulative Net Total		Read
3159	Meter #1 Cumulative Mass Total		Read
3161	Meter #1 Cumulative Energy Total		Read
3163	Meter #1 Meter Factor		Read
3165	Meter #1 Linear Factor	6 Inferred	Read
3167-3169	Spare		
3171	Meter #2 Daily Gross Total	1 inferred	Read
3173	Meter #2 Daily Net Total		Read
3175	Meter #2 Daily Mass Total		Read
3177	Meter #2 Daily Energy Total		Read
3179	Meter #2 Hourly Gross Total		Read
3181	Meter #2 Hourly Net Total		Read
3183	Meter #2 Hourly Mass Total		Read
3185	Meter #2 Hourly Energy Total		Read
3187	Meter #2 Monthly Gross Total		Read
3189	Meter #2 Monthly Net Total		Read
3191	Meter #2 Monthly Mass Total		Read
3193	Meter #2 Monthly Energy Total		Read
3195	Meter #2 Cumulative Gross Total		Read
3197	Meter #2 Cumulative Net Total		Read
3199	Meter #2 Cumulative Mass Total		Read
3201	Meter #2 Cumulative Energy Total		Read
3203	Meter #2 Meter Factor		Read
3205	Meter #2 Linear Factor		Read
3207-3209	Spare	0	
3201 3200	opulo		

Modbus Address Table – 2x16 Bits Integer DECIMAL READ/WRITE

<u>ADDRESS</u>	DESCRIPTION

3211		Meter #3 Daily Gross Total	1 inferred	Read
3213		Meter #3 Daily Net Total	1 inferred	Read
3215		Meter #3 Daily Mass Total	1 inferred	Read
3217		Meter #3 Daily Energy Total	1 inferred	Read
3219		Meter #3 Hourly Gross Total	1 Inferred	Read
3221		Meter #3 Hourly Net Total	1 Inferred	Read
3223		Meter #3 Hourly Mass Total	1 Inferred	Read
3225		Meter #3 Hourly Energy Total	1 Inferred	Read
3227		Meter #3 Monthly Gross Total	0 Inferred	Read
3229		Meter #3 Monthly Net Total	0 Inferred	Read
3231		Meter #3 Monthly Mass Total	0 Inferred	Read
3233		Meter #3 Monthly Energy Total	0 Inferred	Read
3235		Meter #3 Cumulative Gross Total	0 Inferred	Read
3237		Meter #3 Cumulative Net Total	0 Inferred	Read
3239		Meter #3 Cumulative Mass Total	0 Inferred	Read
3241		Meter #3 Cumulative Energy Total	0 Inferred	Read
3243		Meter #3 Meter Factor	6 Inferred	Read
3245		Meter #3 Linear Factor	6 Inferred	Read
3247-3	3249	Spare		
3251		Meter #4 Daily Gross Total	1 inferred	Read
3253		Meter #4 Daily Net Total	1 inferred	Read
3255		Meter #4 Daily Mass Total	1 inferred	Read
3257		Meter #4 Daily Energy Total	1 inferred	Read
3259		Meter #4 Hourly Gross Total	1 Inferred	Read
3261		Meter #4 Hourly Net Total	1 Inferred	Read
3263		Meter #4 Hourly Mass Total	1 Inferred	Read
3265		Meter #4 Hourly Energy Total	1 Inferred	Read
3267		Meter #4 Monthly Gross Total	0 Inferred	Read
3269		Meter #4 Monthly Net Total	0 Inferred	Read
3271		Meter #4 Monthly Mass Total	0 Inferred	Read
3273		Meter #4 Monthly Energy Total	0 Inferred	Read
3275		Meter #4 Cumulative Gross Total	0 Inferred	Read
3277		Meter #4 Cumulative Net Total	0 Inferred	Read
3279		Meter #4 Cumulative Mass Total	0 Inferred	Read
3281		Meter #4 Cumulative Energy Total	0 Inferred	Read
3283		Meter #4 Meter Factor	6 Inferred	Read
3285		Meter #4 Linear Factor	6 Inferred	Read
3287-3	3289	Spare		
0004	2000	0		
3291-3	3323	Spare	O linformed	Deed
3325	00000	Report by Exception Alarms 001 Slave#3 Multi.Var DP Alarm	0 Inferred	Read
		001 Slave#3 Multi.Var DF Alarm 002 Slave#3 Multi.Var PF Alarm		
		002 Slave#3 Multi.var PF Alarm 004 Slave#3 Multi.Var TF Alarm		
		004 Slave#S Multi.val if Alarm 008 Spare Auxiliary#9 Alarm		
		008 Spare Auxiliary#9 Alarm 010 Spare Auxiliary#10 Alarm		
		020 Spare Auxiliary#10 Alarm		
		040 Spare Auxiliary#11 Alarm		
		and apare manificary is mathem		
3327		Reserved	0 Inferred	Read

Reserved

0 Inferred Read

Modbus Address Table – 2x16 Bits	: Intege	er
ADDRESS DESCRIPTION	DECIMAL	READ/WRITE
3329 Report by Exception Alarms	0 Inferred	Read
00000001 Analog Input #1 Alarm		
00000002 Analog Input #2 Alarm		
00000004 Analog Input #3 Alarm		
00000008 Analog Input #4 Alarm		
00000010 Analog Input #5 Alarm		
00000020 Analog Input #6 Alarm		
00000040 Analog Input #7 Alarm		
00000080 Analog Input #8 Alarm		
00000100 Analog Input #9 Alarm		
00000200 Multi.Var DP Alarm		
00000400 Multi.Var Pressure Alarm		
00000800 Multi.Var Temperature Alarm		
00001000 Battery Alarm		
00002000 Slave Comm. Failed		
00004000		
0008000		
00010000 Slave#1 Multi.Var DP Alarm		
00020000 Slave#1 Multi.Var Pressure Alarm		
00040000 Slave#1 Multi.Var Temperature Alar	m	
00080000 Spare Auxiliary#1 Alarm		
00100000 Spare Auxiliary#2 Alarm		
00200000 Spare Auxiliary#3 Alarm		
00400000 Spare Auxiliary#4 Alarm		
01000000 Slave#2 Multi.Var DP Alarm		
02000000 Slave#2 Multi.Var Pressure Alarm		
04000000 Slave#2 Multi.Var Temperature Alar	m	
08000000 Spare Auxiliary#5 Alarm		
10000000 Spare Auxiliary#6 Alarm		
20000000 Spare Auxiliary#7 Alarm		
40000000 Spare Auxiliary#8 Alarm		

3331	Reserved	0 Inferred	Read
3333	Reserved	0 Inferred	Read
3335	Reserved	0 Inferred	Read
3337	Reserved	0 Inferred	Read
3339	Reserved	0 Inferred	Read

ADDRESS	DESCRIPTION		READ/WRITE
3341	Analog Input #5 mA Value	3 Inferred	Read
3343	Analog Input #6 mA Value	3 Inferred	Read
3345	Analog Input #7 mA Value	3 Inferred	Read
3347	Analog Input #8 mA Value	3 Inferred	Read
3349	Analog Input #9 mA Value	3 Inferred	Read
3351	Reserved		
3353	Analog Input #1 mA Value	3 Inferred	Read
3355	Analog Input #2 mA Value	3 Inferred	Read
3357	Analog Input #3 mA Value	3 Inferred	Read
3359	Analog Input #4 mA Value	3 Inferred	Read
3361	RTD Input Ohm Value	3 Inferred	Read
3363	Analog Output #1 mA Value	3 Inferred	Read
3365	Analog Output #2 mA Value	3 Inferred	Read
3367	Analog Output #3 mA Value	3 Inferred	Read
3369	Analog Output #4 mA Value	3 Inferred	Read
3371	Display Contrast	0 Inferred	Read
3373	Display Sensitive Factor	0 Inferred	Read
3375-3381	Spare		
3383	Analog Output #1 Output %	2 Inferred	Read
3385	Analog Output #2 Output %	2 Inferred	Read
3387	Analog Output #3 Output %	2 Inferred	Read
3389	Analog Output #4 Output %	2 Inferred	Read
3391	Uncorrected Density	6 Inferred	Read
3393-3421	Spare		
3423	Meter#1 Yesterday's FWA Temperature	2 Inferred	Read
3425	Meter#1 Yesterday's FWA Pressure	2 Inferred	Read
3427	Meter#1 Yesterday's Gross Total	1 Inferred	Read
3429	Meter#1 Yesterday's Net Total	1 Inferred	Read
3431	Meter#2 Yesterday's FWA Temperature	2 Inferred	Read
3433	Meter#2 Yesterday's FWA Pressure	2 Inferred	Read
3435	Meter#2 Yesterday's Gross Total	1 Inferred	Read
3437	Meter#2 Yesterday's Net Total	1 Inferred	Read
3439	Meter#3 Yesterday's FWA Temperature	2 Inferred	Read
3441	Meter#3 Yesterday's FWA Pressure	2 Inferred	Read
3443	Meter#3 Yesterday's Gross Total	1 Inferred	Read
3445	Meter#3 Yesterday's Net Total	1 Inferred	Read
3447	Meter#4 Yesterday's FWA Temperature	2 Inferred	Read
3449	Meter#4 Yesterday's FWA Pressure	2 Inferred	Read
3451	Meter#4 Yesterday's Gross Total	1 Inferred	Read
3453	Meter#4 Yesterday's Net Total	1 Inferred	Read
3455-3467	Spare		
	- F		

ADDRESS	DESCRIPTION	DECIMAL R	EAD/WRITE
<u>Snapshot T</u>	<u>est Data Area</u>		
3469	Test Data – Meter #1 24 Hours Gross Total	1 Inferred	Read
3471	Test Data – Meter #1 24 Hours Net Total	1 Inferred	Read
3473	Test Data – Meter #2 24 Hours Gross Total	1 Inferred	Read
3475	Test Data – Meter #2 24 Hours Net Total	1 Inferred	Read
3477	Test Data – Meter #3 24 Hours Gross Total	1 Inferred	Read
3479	Test Data – Meter #3 24 Hours Net Total	1 Inferred	Read
3481	Test Data – Meter #4 24 Hours Gross Total	1 Inferred	Read
3483	Test Data – Meter #4 24 Hours Net Total	1 Inferred	Read
3485	Test Data – Meter#1 Gross Total	1 Inferred	Read
3487	Test Data – Meter#1 Net Total	1 Inferred	Read
3489	Test Data – Meter#2 Gross Total	1 Inferred	Read
3491	Test Data – Meter#2 Net Total	1 Inferred	Read
3493	Test Data – Meter#3 Gross Total	1 Inferred	Read
3495	Test Data – Meter#3 Net Total	1 Inferred	Read
3497	Test Data – Meter#4 Gross Total	1 Inferred	Read
3499	Test Data – Meter#4 Net Total	1 Inferred	Read
3501-3507	Spare		

Previous Test Data

Set Last Test Report Request (3026, 16bits, Write only) to 1=Latest, 5=Oldest)

3509 3511 3513	Test Data – Meter#1 Gross Total Test Data – Meter#1 Net Total Test Data – Meter#2 Gross Total	1 Inferred 1 Inferred 1 Inferred	Read Read Read
3515	Test Data – Meter#2 Net Total	1 Inferred	Read
3517	Test Data – Meter#3 Gross Total	1 Inferred	Read
3519	Test Data – Meter#3 Net Total	1 Inferred	Read
3521	Test Data – Meter#4 Gross Total	1 Inferred	Read
3523	Test Data – Meter#4 Net Total	1 Inferred	Read
3525	Test Data – Meter #1 24 Hours Gross Total	1 Inferred	Read
3527	Test Data – Meter #1 24 Hours Net Total	1 Inferred	Read
3529	Test Data – Meter #2 24 Hours Gross Total	1 Inferred	Read
3531	Test Data – Meter #2 24 Hours Net Total	1 Inferred	Read
3533	Test Data – Meter #3 24 Hours Gross Total	1 Inferred	Read
3535	Test Data – Meter #3 24 Hours Net Total	1 Inferred	Read
3537	Test Data – Meter #4 24 Hours Gross Total	1 Inferred	Read
3539	Test Data – Meter #4 24 Hours Net Total	1 Inferred	Read
3541-3583	Spare		

ADDRESS	DESCRIPTION	DECIMAL RE	
3585	Spare#1 Data	1 Inferred	Read
3587	Spare#2 Data	1 Inferred	Read
3589	Spare#3 Data	1 Inferred	Read
3591	Spare#4 Data	1 Inferred	Read
3593	Spare#5 Data	1 Inferred	Read
3595	Spare#6 Data	1 Inferred	Read
3597	Spare#7 Data	1 Inferred	Read
3599	Spare#8 Data	1 Inferred	Read
3601	Spare#9 Data	1 Inferred	Read
3603-3649	Reserved		_
3651	Slave#1 Spare Auxiliary I/O #1 mA Value	3 Inferred	Read
3653	Slave#1 Spare Auxiliary I/O #2 mA Value	3 Inferred	Read
3655	Slave#1 Spare Auxiliary I/O #3 mA Value	3 Inferred	Read
3657	Slave#1 Spare Auxiliary I/O #4 mA Value	3 Inferred	Read
3659	Slave#1 DP	4 Inferred	Read
3661	Slave#1 Pressure	2 Inferred	Read
3663	Slave#1 Temperature	2 Inferred	Read
3665	Slave#1 Multi.Var.Unit Flag	0 Inferred	Read
3667	Slave#2 Spare Auxiliary I/O #1 mA Value	3 Inferred	Read
3669	Slave#2 Spare Auxiliary I/O #2 mA Value	3 Inferred	Read
3671	Slave#2 Spare Auxiliary I/O #3 mA Value	3 Inferred	Read
3673	Slave#2 Spare Auxiliary I/O #4 mA Value	3 Inferred	Read
3675	Slave#2 DP	4 Inferred	Read
3677	Slave#2 Pressure	2 Inferred	Read
3679	Slave#2 Temperature	2 Inferred	Read
3681	Slave#2 Multi.Var.Unit Flag	0 Inferred	Read
3683	Slave#3 Spare Auxiliary I/O #1 mA Value	3 Inferred	Read
3685	Slave#3 Spare Auxiliary I/O #2 mA Value	3 Inferred	Read
3687	Slave#3 Spare Auxiliary I/O #3 mA Value	3 Inferred	Read
3689	Slave#3 Spare Auxiliary I/O #4 mA Value	3 Inferred	Read
3691	Slave#3 DP	4 Inferred	Read
3693	Slave#3 Pressure	2 Inferred	Read
3695	Slave#3 Temperature	2 Inferred	Read
3697	Slave#3 Multi.Var.Unit Flag	0 Inferred	Read
3699	Foxboro Connection	0 Inferred	Read
0704			Dest
3701	Turbine Diagnostic – Profile Alarm	0 Inferred	Read

			-
<u>ADDRESS</u>	DESCRIPTION		READ/WRITE
3703	Profile#1 Zone #1 Average Revolution Error %	2 Inferred	Read
3705	Profile#1 Zone #1 Average Blade Error %	2 Inferred	Read
3707	Profile#1 Zone #1 Average Profile Error %	2 Inferred	Read
3709	Profile#1 Zone #2 Average Revolution Error %	2 Inferred	Read
3711	Profile#1 Zone #2 Average Blade Error %	2 Inferred	Read
3713	Profile#1 Zone #2 Average Profile Error %	2 Inferred	Read
3715	Profile#1 Zone #3 Average Revolution Error %	2 Inferred	Read
3717	Profile#1 Zone #3 Average Blade Error %	2 Inferred	Read
3719	Profile#1 Zone #3 Average Profile Error %	2 Inferred	Read
	-		
3721	Profile#2 Zone #1 Average Revolution Error %	2 Inferred	Read
3723	Profile#2 Zone #1 Average Blade Error %	2 Inferred	Read
3725	Profile#2 Zone #1 Average Profile Error %	2 Inferred	Read
3727	Profile#2 Zone #2 Average Revolution Error %	2 Inferred	Read
3729	Profile#2 Zone #2 Average Blade Error %	2 Inferred	Read
3731	Profile#2 Zone #2 Average Profile Error %	2 Inferred	Read
3733	Profile#2 Zone #3 Average Revolution Error %	2 Inferred	Read
3735	Profile#2 Zone #3 Average Blade Error %	2 Inferred	Read
3737	Profile#2 Zone #3 Average Profile Error %	2 Inferred	Read
	Ŭ		
3739	Profile#3 Zone #1 Average Revolution Error %	2 Inferred	Read
3741	Profile#3 Zone #1 Average Blade Error %	2 Inferred	Read
3743	Profile#3 Zone #1 Average Profile Error %	2 Inferred	Read
3745	Profile#3 Zone #2 Average Revolution Error %	2 Inferred	Read
3747	Profile#3 Zone #2 Average Blade Error %	2 Inferred	Read
3749	Profile#3 Zone #2 Average Profile Error %	2 Inferred	Read
3751	Profile#3 Zone #3 Average Revolution Error %	2 Inferred	Read
3753	Profile#3 Zone #3 Average Blade Error %	2 Inferred	Read
3755	Profile#3 Zone #3 Average Profile Error %	2 Inferred	Read
0100		2	rioud
3757	Current Turbine Diagnostic #1 Revolution Error %	2 Inferred	Read
3759	Current Turbine Diagnostic #1 Blade Error %	2 Inferred	Read
3761	Current Turbine Diagnostic #1 Profile Error %	2 Inferred	Read
3763	Current Turbine Diagnostic #2 Revolution Error %	2 Inferred	Read
3765	Current Turbine Diagnostic #2 Blade Error %	2 Inferred	Read
3767	Current Turbine Diagnostic #2 Profile Error %	2 Inferred	Read
3769	Current Turbine Diagnostic #2 Prome Error %	2 Inferred	Read
3771	Current Turbine Diagnostic #3 Revolution Error %	2 Inferred	Read
3773	Current Turbine Diagnostic #3 Profile Error %	2 Inferred	Read
3775-3819	Spare		ittau
0//0/0010	opuro		

3821-3999	Reserved
4001-4089	Reserved
4091-4109	Spare

ADDRESS	DESCRIPTION	DECIMAL	READ/WRITE
4111	Meter #1 PID – Pressure	2 Inferred	Read
4113	Meter #1 PID – Flow	2 Inferred	Read
4115	Meter #1 PID – Output %	2 Inferred	Read
4117	Meter #1 PID – Flow Output %	2 Inferred	Read
4119	Meter #1 PID – Pressure Output %	2 Inferred	Read
4121	Meter #2 PID – Pressure	2 Inferred	Read
4123	Meter #2 PID – Flow	2 Inferred	Read
4125	Meter #2 PID – Output %	2 Inferred	Read
4127	Meter #2 PID – Flow Output %	2 Inferred	Read
4129	Meter #2 PID – Pressure Output %	2 Inferred	Read
4131	Meter #3 PID – Pressure	2 Inferred	Read
4133	Meter #3 PID – Flow	2 Inferred	Read
4135	Meter #3 PID – Output %	2 Inferred	Read
4137	Meter #3 PID – Flow Output %	2 Inferred	Read
4139	Meter #3 PID – Pressure Output %	2 Inferred	Read
4141	Meter #4 PID – Pressure	2 Inferred	Read
4143	Meter #4 PID – Flow	2 Inferred	Read
4145	Meter #4 PID – Output %	2 Inferred	Read
4147	Meter #4 PID – Flow Output %	2 Inferred	Read
4149	Meter #4 PID – Pressure Output %	2 Inferred	Read
4151	Densitometer Period	3 Inferred	Read
4153-4199	Spare		

ADDRESS	DESCRIPTION		READ/WRITE
4201	Date (MMDDYY)	0 Inferred	Read/Write
4203	Time (HHMMSS)	0 Inferred	Read/Write
AGA 8 GROSS		0 micricu	Read/ Write
4205	Meter#1 Mol % of Carbon Dioxide	4 Inferred	Read/Write
4207	Meter#1 Mol % of Hydrogen	4 Inferred	Read/Write
4209	Meter#1 Mol % of Carbon Monoxide	4 Inferred	Read/Write
4211-4245	Spare	4 Interieu	iteau/white
4247	Meter#2 Mol % of Carbon Dioxide	4 Inferred	Read/Write
4249	Meter#2 Mol % of Hydrogen	4 Inferred	Read/Write
4251	Meter#2 Mol % of Carbon Monoxide	4 Inferred	Read/Write
4253-4287	Spare	4 interreu	Reau/ White
4287	Meter#3 Mol % of Carbon Dioxide	4 Inferred	Read/Write
4289	Meter#3 Mol % of Hydrogen	4 Inferred	Read/Write
4291	Meter#3 Mol % of Carbon Monoxide	4 Inferred	Read/Write
4293-4329	Spare	4 Interreu	Reau/ White
4331	Meter#4 Mol % of Carbon Dioxide	4 Inferred	Read/Write
4333	Meter#4 Mol % of Hydrogen	4 Inferred	Read/Write
4335	Meter#4 Mol % of Carbon Monoxide	4 Inferred	Read/Write
4337-4371	Spare	4 Interieu	iteau/white
4007-4071	Opare		
AGA 8 GROSS	S METHOD 2		
4205	Meter#1 Mol % of Nitrogen	4 Inferred	Read/Write
4207	Meter#1 Mol % of Carbon Dioxide	4 Inferred	Read/Write
4209	Meter#1 Mol % of Hydrogen	4 Inferred	Read/Write
4211	Meter#1 Mol % of Carbon Monoxide	4 Inferred	Read/Write
4213-4245	Spare		
	•		
4247	Meter#2 Mol % of Nitrogen	4 Inferred	Read/Write
4249	Meter#2 Mol % of Carbon Dioxide	4 Inferred	Read/Write
4251	Meter#2 Mol % of Hydrogen	4 Inferred	Read/Write
4253	Meter#2 Mol % of Carbon Monoxide	4 Inferred	Read/Write
4255-4287	Spare		
4289	Meter#3 Mol % of Nitrogen	4 Inferred	Read/Write
4291	Meter#3 Mol % of Carbon Dioxide	4 Inferred	Read/Write
4293	Meter#3 Mol % of Hydrogen	4 Inferred	Read/Write
4295	Meter#3 Mol % of Carbon Monoxide	4 Inferred	Read/Write
4297-4329	Spare		
4331	Meter#4 Mol % of Nitrogen	4 Inferred	Read/Write
4333	Meter#4 Mol % of Carbon Dioxide	4 Inferred	Read/Write
4335	Meter#4 Mol % of Hydrogen	4 Inferred	Read/Write
4337	Meter#4 Mol % of Carbon Monoxide	4 Inferred	Read/Write
4339-4371	Spare		

<u>ADDRESS</u>	DESCRIPTION	DECIMAL R	<u>EAD/WRITE</u>
AGA 8 Detail 1			
4205	Meter#1 Mol % of Methane	4 Inferred	Read/Write
4207	Meter#1 Mol % of Nitrogen	4 Inferred	Read/Write
4209	Meter#1 Mol % of Carbon Dioxide	4 Inferred	Read/Write
4211	Meter#1 Mol % of Ethane	4 Inferred	Read/Write
4213	Meter#1 Mol % of Propane	4 Inferred	Read/Write
4215	Meter#1 Mol % of Water	4 Inferred	Read/Write
4217	Meter#1 Mol % of Hydrogen Sulfide	4 Inferred	Read/Write
4219	Meter#1 Mol % of Hydrogen	4 Inferred	Read/Write
4221	Meter#1 Mol % of Carbon Monoxide	4 Inferred	Read/Write
4223	Meter#1 Mol % of Oxygen	4 Inferred	Read/Write
4225	Meter#1 Mol % of i-Butane	4 Inferred	Read/Write
4227	Meter#1 Mol % of n-Butane	4 Inferred	Read/Write
4229	Meter#1 Mol % of i-Pentane	4 Inferred	Read/Write
4231	Meter#1 Mol % of n-Pentane	4 Inferred	Read/Write
4233	Meter#1 Mol % of i-Hexane	4 Inferred	Read/Write
4235	Meter#1 Mol % of n-Heptane	4 Inferred	Read/Write
4237	Meter#1 Mol % of i-Octane	4 Inferred	Read/Write
4239	Meter#1 Mol % of i-Nonane	4 Inferred	Read/Write
4241	Meter#1 Mol % of i-Decane	4 Inferred	Read/Write
4243	Meter#1 Mol % of Helium	4 Inferred	Read/Write
4245	Meter#1 Mol % of Argon	4 Inferred	Read/Write
4247	Meter#2 Mol % of Methane	4 Inferred	Read/Write
4249	Meter#2 Mol % of Nitrogen	4 Inferred	Read/Write
4251	Meter#2 Mol % of Carbon Dioxide	4 Inferred	Read/Write
4253	Meter#2 Mol % of Ethane	4 Inferred	Read/Write
4255	Meter#2 Mol % of Propane	4 Inferred	Read/Write
4257	Meter#2 Mol % of Water	4 Inferred	Read/Write
4259	Meter#2 Mol % of Hydrogen Sulfide	4 Inferred	Read/Write
4261	Meter#2 Mol % of Hydrogen	4 Inferred	Read/Write
4263	Meter#2 Mol % of Carbon Monoxide	4 Inferred	Read/Write
4265	Meter#2 Mol % of Oxygen	4 Inferred	Read/Write
4267	Meter#2 Mol % of i-Butane	4 Inferred	Read/Write
4269	Meter#2 Mol % of n-Butane	4 Inferred	Read/Write
4271	Meter#2 Mol % of i-Pentane	4 Inferred	Read/Write
4273	Meter#2 Mol % of n-Pentane	4 Inferred	Read/Write
4275	Meter#2 Mol % of i-Hexane	4 Inferred	Read/Write
4277	Meter#2 Mol % of n-Heptane	4 Inferred	Read/Write
4279	Meter#2 Mol % of i-Octane	4 Inferred	Read/Write
4281	Meter#2 Mol % of i-Nonane	4 Inferred	Read/Write
4283	Meter#2 Mol % of i-Decane	4 Inferred	Read/Write
4285	Meter#2 Mol % of Helium	4 Inferred	Read/Write
4287	Meter#2 Mol % of Argon	4 Inferred	Read/Write
-1201			
4289	Meter#3 Mol % of Methane	4 Inferred	Read/Write
4291	Meter#3 Mol % of Nitrogen	4 Inferred	Read/Write
4293	Meter#3 Mol % of Carbon Dioxide	4 Inferred	Read/Write
4295	Meter#3 Mol % of Ethane	4 Inferred	Read/Write
4297	Meter#3 Mol % of Propane	4 Inferred	Read/Write
4299	Meter#3 Mol % of Water	4 Inferred	Read/Write

ADDRESS	DESCRIPTION		
4301	Meter#3 Mol % of Hydrogen Sulfide	4 Inferred	Read/Write
4303	Meter#3 Mol % of Hydrogen	4 Inferred	Read/Write
4305	Meter#3 Mol % of Carbon Monoxide	4 Inferred	Read/Write
4307	Meter#3 Mol % of Oxygen	4 Inferred	Read/Write
4309	Meter#3 Mol % of i-Butane	4 Inferred	Read/Write
4311	Meter#3 Mol % of n-Butane	4 Inferred	Read/Write
4313	Meter#3 Mol % of i-Pentane	4 Inferred	Read/Write
4315	Meter#3 Mol % of n-Pentane	4 Inferred	Read/Write
4317	Meter#3 Mol % of i-Hexane	4 Inferred	Read/Write
4319	Meter#3 Mol % of n-Heptane	4 Inferred	Read/Write
4321	Meter#3 Mol % of i-Octane	4 Inferred	Read/Write
4323	Meter#3 Mol % of i-Nonane	4 Inferred	Read/Write
4325	Meter#3 Mol % of i-Decane	4 Inferred	Read/Write
4327	Meter#3 Mol % of Helium	4 Inferred	Read/Write
4329	Meter#3 Mol % of Argon	4 Inferred	Read/Write
4004		41.6	
4331	Meter#4 Mol % of Methane	4 Inferred	Read/Write
4333	Meter#4 Mol % of Nitrogen	4 Inferred	Read/Write
4335	Meter#4 Mol % of Carbon Dioxide	4 Inferred	Read/Write
4337	Meter#4 Mol % of Ethane	4 Inferred	Read/Write
4339	Meter#4 Mol % of Propane	4 Inferred	Read/Write
4341	Meter#4 Mol % of Water	4 Inferred	Read/Write
4343	Meter#4 Mol % of Hydrogen Sulfide	4 Inferred	Read/Write
4345	Meter#4 Mol % of Hydrogen	4 Inferred	Read/Write
4347	Meter#4 Mol % of Carbon Monoxide	4 Inferred	Read/Write
4349	Meter#4 Mol % of Oxygen	4 Inferred	Read/Write
4351	Meter#4 Mol % of i-Butane	4 Inferred	Read/Write
4353	Meter#4 Mol % of n-Butane	4 Inferred	Read/Write
4355	Meter#4 Mol % of i-Pentane	4 Inferred	Read/Write
4357	Meter#4 Mol % of n-Pentane	4 Inferred	Read/Write
4359	Meter#4 Mol % of i-Hexane	4 Inferred	Read/Write
4361	Meter#4 Mol % of n-Heptane	4 Inferred	Read/Write
4363	Meter#4 Mol % of i-Octane	4 Inferred	Read/Write
4365	Meter#4 Mol % of i-Nonane	4 Inferred	Read/Write
4367	Meter#4 Mol % of i-Decane	4 Inferred	Read/Write
4369	Meter#4 Mol % of Helium	4 Inferred	Read/Write
4371	Meter#4 Mol % of Argon	4 Inferred	Read/Write
	-		

AGA 8 Detail Method Ends

ADDRESS	DESCRIPTION		READ/WRITE
4375	Meter #1 Density Dry Air	5 Inferred	Read/Write
4377	Meter #1 Relative Density	6 Inferred	Read/Write
4379	Meter #1 Ratio of Heat	4 Inferred	Read/Wirte
4381	Meter #1 Viscosity/Venturi Discharge Coeff.C	6 Inferred	Read/Write
4383	Meter #1 Pipe Thermal E-6	2 Inferred	Read/Write
4385	Meter #1 Orifice Thermal E-6	2 Inferred	Read/Write
4387		2 Inferred	Read/Write
4389	Meter #1 Reference Temperature of Pipe Meter #1 Reference Temperature of Orifice	2 Inferred	Read/Write
4391	Meter #1 ISO5167 up-stream Tapping	2 Inferred	Read/Write
4393	Meter #1 ISO5167 down-stream Tapping	2 Inferred	Read/Write
4395	Meter #1 DP Cut Off	4 Inferred	Read/Write
4397	Meter #1 DP Switch High %	2 Inferred	Read/Write
4399	Meter #1 Meter Factor	6 Inferred	Read/Write
4401	Meter #1 Flow Threshold #1	2 Inferred	Read/Write
4403	Meter #1 Flow Threshold #2	2 Inferred	Read/Write
4405	Meter #1 Flow Threshold #3	2 Inferred	Read/Write
4407	Meter #1 Flow Threshold #4	2 Inferred	Read/Write
4409	Meter #1 Linear Factor #1	6 Inferred	Read/Write
4411	Meter #1 Linear Factor #2	6 Inferred	Read/Write
4413	Meter #1 Linear Factor #3	6 Inferred	Read/Write
4415	Meter #1 Linear Factor #4	6 Inferred	Read/Write
4417	Meter #2 Density Dry Air	5 Inferred	Read/Write
4419	Meter #2 Relative Density	6 Inferred	Read/Write
4421	Meter #2 Ratio of Heat	4 Inferred	Read/Wirte
4423	Meter #2 Viscosity/Venturi Discharge Coeff.C	6 Inferred	Read/Write
4425	Meter #2 Pipe Thermal E-6	2 Inferred	Read/Write
4427	Meter #2 Orifice Thermal E-6	2 Inferred	Read/Write
4429	Meter #2 Reference Temperature of Pipe	2 Inferred	Read/Write
4431	Meter #2 Reference Temperature of Orifice	2 Inferred	Read/Write
4433	Meter #2 ISO5167 up-stream Tapping	2 Inferred	Read/Write
4435	Meter #2 ISO5167 down-stream Tapping	2 Inferred	Read/Write
4437	Meter #2 DP Cut Off	4 Inferred	Read/Write
4439	Meter #2 DP Switch High %	2 Inferred	Read/Write
4441	Meter #2 Meter Factor	6 Inferred	Read/Write
4443	Meter #2 Flow Threshold #1	2 Inferred	Read/Write
4445	Meter #2 Flow Threshold #2	2 Inferred	Read/Write
4447	Meter #2 Flow Threshold #3	2 Inferred	Read/Write
4449	Meter #2 Flow Threshold #4	2 Inferred	Read/Write
4451	Meter #2 Linear Factor #1	6 Inferred	Read/Write
4453	Meter #2 Linear Factor #2	6 Inferred	Read/Write
4455	Meter #2 Linear Factor #3	6 Inferred	Read/Write
4457	Meter #2 Linear Factor #4	6 Inferred	Read/Write
4459	Meter #3 Density Dry Air	5 Inferred	Read/Write
4461	Meter #3 Relative Density	6 Inferred	Read/Write
4463	Meter #3 Ratio of Heat	4 Inferred	Read/Wirte
4465	Meter #3 Viscosity/Venturi Discharge Coeff.C	6 Inferred	Read/Write
4467	Meter #3 Pipe Thermal E-6	2 Inferred	Read/Write
4469	Meter #3 Orifice Thermal E-6	2 Inferred	Read/Write
4471	Meter #3 Reference Temperature of Pipe	2 Inferred	Read/Write
4473	Meter #3 Reference Temperature of Orifice	2 Inferred	Read/Write
4475	Meter #3 ISO5167 up-stream Tapping	2 Inferred	Read/Write
4477	Meter #3 ISO5167 down-stream Tapping	2 Inferred	Read/Write

ADDRESS	DESCRIPTION		READ/WRITE
4479	Meter #3 DP Cut Off	4 Inferred	Read/Write
4481	Meter #3 DP Switch High %	2 Inferred	Read/Write
4483	Meter #3 Meter Factor	6 Inferred	Read/Write
4485	Meter #3 Flow Threshold #1	2 Inferred	Read/Write
4487	Meter #3 Flow Threshold #2	2 Inferred	Read/Write
4489	Meter #3 Flow Threshold #3	2 Inferred	Read/Write
4491	Meter #3 Flow Threshold #4	2 Inferred	Read/Write
4493	Meter #3 Linear Factor #1	6 Inferred	Read/Write
4495	Meter #3 Linear Factor #2	6 Inferred	Read/Write
4497	Meter #3 Linear Factor #3	6 Inferred	Read/Write
4499	Meter #3 Linear Factor #4	6 Inferred	Read/Write
4501	Meter #4 Density Dry Air	5 Inferred	Read/Write
4503	Meter #4 Relative Density	6 Inferred	Read/Write
4505	Meter #4 Ratio of Heat	4 Inferred	Read/Wirte
4507	Meter #4 Viscosity/Venturi Discharge Coeff.C	6 Inferred	Read/Write
4509	Meter #4 Pipe Thermal E-6	2 Inferred	Read/Write
4511	Meter #4 Orifice Thermal E-6	2 Inferred	Read/Write
4513	Meter #4 Reference Temperature of Pipe	2 Inferred	Read/Write
4515	Meter #4 Reference Temperature of Orifice	2 Inferred	Read/Write
4517	Meter #4 ISO5167 up-stream Tapping	2 Inferred	Read/Write
4519	Meter #4 ISO5167 down-stream Tapping	2 Inferred	Read/Write
4521	Meter #4 DP Cut Off	4 Inferred	Read/Write
4523	Meter #4 DP Switch High %	2 Inferred	Read/Write
4525	Meter #4 Meter Factor	6 Inferred	Read/Write
4527	Meter #4 Flow Threshold #1	2 Inferred	Read/Write
4529	Meter #4 Flow Threshold #2	2 Inferred	Read/Write
4531	Meter #4 Flow Threshold #3	2 Inferred	Read/Write
4533	Meter #4 Flow Threshold #4	2 Inferred	Read/Write
4535	Meter #4 Linear Factor #1	6 Inferred	Read/Write
4537	Meter #4 Linear Factor #2	6 Inferred	Read/Write
4539	Meter #4 Linear Factor #3	6 Inferred	Read/Write
4541	Meter #4 Linear Factor #4	6 Inferred	Read/Write
4543	Density Correction Factor	5 Inferred	Read/Write
4545	Densitometer Period Low Limit	3 Inferred	Read/Write
4547	Densitometer Period High Limit	3 Inferred	Read/Write
4549	Multi.Var. DP Low Limit	4 Inferred	Read/Write
4551	Multi.Var. DP High Limit	4 Inferred	Read/Write
4553	Multi.Var. DP Maintenance	4 Inferred	Read/Write
4555	Multi.Var. Pressure Low Limit	2 Inferred	Read/Write
4557	Multi.Var. Pressure High Limit	2 Inferred	Read/Write
4559	Multi.Var. Pressure Maintenance	2 Inferred	Read/Write
4561	Multi.Var. Temperature Low Limit	2 Inferred	Read/Write
4563	Multi.Var. Temperature High Limit	2 Inferred	Read/Write
4565		2 Inferred	
4567	Multi.Var. Temperature Maintenance Multi.Var DP Override	4 Inferred	Read/Write Read/Write
4569	Multi.Var Pressure Override	2 Inferred 2 Inferred	Read/Write
4571	Multi.Var Temperature Override	2 meneu	Read/Write
4573	Spare	Queferred	Dood/M/rito
4575	Analog Output #1 Percentage	2 Inferred	Read/Write
4577	Analog Output #2 Percentage	2 Inferred	Read/Write
4579	Analog Output #3 Percentage	2 Inferred	Read/Write
4581	Analog Output #4 Percentage	2 Inferred	Read/Write
4583	Meter #1 BS&W Value Override	2 Inferred	Read/Write
4585	Meter #2 BS&W Value Override	2 Inferred	Read/Write

ADDRESS	DESCRIPTION	DECIMAL F	READ/WRITE
4587	Meter #3 BS&W Value Override	2 Inferred	Read/Write
4589	Meter #4 BS&W Value Override	2 Inferred	Read/Write
4591-4655	Spare		
4657	Meter #1 Heating Value Override	3 Inferred	Read/Write
4659	Meter #2 Heating Value Override	3 Inferred	Read/Write
4661	Meter #3 Heating Value Override	3 Inferred	Read/Write
4663	Meter #4 Heating Value Override	3 Inferred	Read/Write
4665	Meter #1 FPV Override	6 Inferred	Read/Write
4667	Meter #2 FPV Override	6 Inferred	Read/Write
4669	Meter #3 FPV Override	6 Inferred	Read/Write
4671	Meter #4 FPV Override	6 Inferred	Read/Write
4673	Meter #1 Temperature Override	2 Inferred	Read/Write
4675	Meter #2 Temperature Override	2 Inferred	Read/Write
4677	Meter #3 Temperature Override	2 Inferred	Read/Write
4679	Meter #4 Temperature Override	2 Inferred	Read/Write
4681	Meter #1 Pressure Override	2 Inferred	Read/Write
4683	Meter #2 Pressure Override	2 Inferred	Read/Write
4685	Meter #3 Pressure Override	2 Inferred	Read/Write
4687	Meter #4 Pressure Override	2 Inferred	Read/Write
4689	Meter #1 Venturi C Override	4 Inferred	Read/Write
4691	Meter #2 Venturi C Override	4 Inferred	Read/Write
4693	Meter #3 Venturi C Override	4 Inferred	Read/Write
4695	Meter #4 Venturi C Override	4 Inferred	Read/Write
4697-4699	Spare		
4701-4703	Spare Auxiliary I/O #1 TAG	8 Chars	Read/Write
4705-4707	Spare Auxiliary I/O #2 TAG	8 Chars	Read/Write
4709-4711	Spare Auxiliary I/O #3 TAG	8 Chars	Read/Write
4713-4715	Spare Auxiliary I/O #4 TAG	8 Chars	Read/Write
4717-4719	Spare Auxiliary I/O #5 TAG	8 Chars	Read/Write
4721-4723	Spare Auxiliary I/O #6 TAG	8 Chars	Read/Write
4725-4727	Spare Auxiliary I/O #7 TAG	8 Chars	Read/Write
4729-4731	Spare Auxiliary I/O #8 TAG	8 Chars	Read/Write
4733-4735	Spare Auxiliary I/O #9 TAG	8 Chars	Read/Write
4737-4739	Spare Auxiliary I/O #10 TAG	8 Chars	Read/Write
4741-4743	Spare Auxiliary I/O #11 TAG	8 Chars	Read/Write
4745-4747	Spare Auxiliary I/O #12 TAG	8 Chars	Read/Write
4749-4759	Spare	0 Onaro	Redd/ White
4761-4763	Slave #1 DP Tag	8 Chars	Read/Write
4765-4767	Slave #1 Pressure Tag	8 Chars	Read/Write
4769-4771	Slave #1 Temperature Tag	8 Chars	Read/Write
4773-4775	Slave #2 DP Tag	8 Chars	Read/Write
4777-4779	Slave #2 Pressure Tag	8 Chars	Read/Write
4781-4783	Slave #2 Temperature Tag	8 Chars	Read/Write
4785-4787	Slave #2 Pemperature Tag	8 Chars	Read/Write
4789-4791	Slave #3 Pressure Tag	8 Chars	Read/Write
4793-4795	Slave #3 Temperature Tag	8 Chars	Read/Write
1100 4100		0 Onaro	

		J -	
ADDRESS	DESCRIPTION	<u>DECIMAL</u>	READ/WRITE
4797	Gravity Factor	6 Inferred	Read/Write
4799	Meter#1 Base Density Factor	6 Inferred	Read/Write
4801	Meter#2 Base Density Factor	6 Inferred	Read/Write
4803	Meter#3 Base Density Factor	6 Inferred	Read/Write
4805	Meter#4 Base Density Factor	6 Inferred	Read/Write
4807-4811	Spare		
4813-4825	Spare		
4827	Pulse Output Volume #1 Pulses/Unit	3 Inferred	Read/Write
4829	Pulse Output Volume #2 Pulses/Unit	3 Inferred	Read/Write
4831	Meter #1 PID Output %	2 nferred	Read/Write
4833	Meter #1 PID Flow	2 Inferred	Read/Write
4835	Meter #1 PID Flow Set Point	2 Inferred	Read/Write
4837	Meter #1 PID Flow Controller Gain	2 Inferred	Read/Write
4839	Meter #1 PID Flow Controller Reset	2 Inferred	Read/Write
4841	Meter #1 PID Pressure Maximum	2 Inferred	Read/Write
4843	Meter #1 PID Pressure Set Point	2 Inferred	Read/Write
4845	Meter #1 PID Pressure Controller Gain	2 Inferred	Read/Write
4847	Meter #1 PID Pressure Controller Reset	2 Inferred	Read/Write
4849	Meter #1 PID Mininum Output %	2 Inferred	Read/Write
4851	Meter #1 PID Maxinum Output %	2 Inferred	Read/Write
4853	Meter #2 PID Output %	2 nferred	Read/Write
4855	Meter #2 PID Flow	2 Inferred	Read/Write
4857	Meter #2 PID Flow Set Point	2 Inferred	Read/Write
4859	Meter #2 PID Flow Controller Gain	2 Inferred	Read/Write
4861	Meter #2 PID Flow Controller Reset	2 Inferred	Read/Write
4863	Meter #2 PID Pressure Maximum	2 Inferred	Read/Write
4865	Meter #2 PID Pressure Set Point	2 Inferred	Read/Write
4867	Meter #2 PID Pressure Controller Gain	2 Inferred	Read/Write
4869	Meter #2 PID Pressure Controller Reset	2 Inferred	Read/Write
4871	Meter #2 PID Mininum Output %	2 Inferred	Read/Write
4873	Meter #2 PID Maxinum Output %	2 Inferred	Read/Write
4875	Meter #3 PID Output %	2 nferred	Read/Write
4877	Meter #3 PID Flow	2 Inferred	Read/Write
4879	Meter #3 PID Flow Set Point	2 Inferred	Read/Write
4881	Meter #3 PID Flow Controller Gain	2 Inferred	Read/Write
4883	Meter #3 PID Flow Controller Reset	2 Inferred	Read/Write
4885	Meter #3 PID Pressure Maximum	2 Inferred	Read/Write
4887	Meter #3 PID Pressure Set Point	2 Inferred	Read/Write
4889	Meter #3 PID Pressure Controller Gain	2 Inferred	Read/Write
4891	Meter #3 PID Pressure Controller Reset	2 Inferred	Read/Write
4893	Meter #3 PID Mininum Output %	2 Inferred	Read/Write
4895	Meter #3 PID Maxinum Output %	2 Inferred	Read/Write
-030		Zinteneu	iteau/wille

		5	
ADDRESS	DESCRIPTION	DECIMAL	READ/WRITE
4897	Meter #4 PID Output %	2 nferred	Read/Write
4899	Meter #4 PID Flow	2 Inferred	Read/Write
4901	Meter #4 PID Flow Set Point	2 Inferred	Read/Write
4903	Meter #4 PID Flow Controller Gain	2 Inferred	Read/Write
4905	Meter #4 PID Flow Controller Reset	2 Inferred	Read/Write
4907	Meter #4 PID Pressure Maximum	2 Inferred	Read/Write
4909	Meter #4 PID Pressure Set Point	2 Inferred	Read/Write
4911	Meter #4 PID Pressure Controller Gain	2 Inferred	Read/Write
4913	Meter #4 PID Pressure Controller Reset	2 Inferred	Read/Write
4915	Meter #4 PID Mininum Output %	2 Inferred	Read/Write
4917	Meter #4 PID Maxinum Output %	2 Inferred	Read/Write
4919	Turbine Diagnostic#1 – Maximum Flow Threshold	2 Inferred	Read/Write
4921	Turbine Diagnostic#1 – Minimum Flow Threshold	2 Inferred	Read/Write
4923	Turbine Diagnostic#1 – Revolution Error %	2 Inferred	Read/Write
4925	Turbine Diagnostic#1 – Blade Error %	2 Inferred	Read/Write
4927	Turbine Diagnostic#1 – Profile Error %	2 Inferred	Read/Write
4929	Turbine Diagnostic#2 – Maximum Flow Threshold	2 Inferred	Read/Write
4931	Turbine Diagnostic#2 – Minimum Flow Threshold	2 Inferred	Read/Write
4933	Turbine Diagnostic#2 – Revolution Error %	2 Inferred	Read/Write
4935	Turbine Diagnostic#2 – Blade Error %	2 Inferred	Read/Write
4937	Turbine Diagnostic#2 – Profile Error %	2 Inferred	Read/Write
4939	Turbine Diagnostic#2 – Maximum Flow Threshold	2 Inferred	Read/Write
4941	Turbine Diagnostic#2 – Minimum Flow Threshold	2 Inferred	Read/Write
4943	Turbine Diagnostic#2 – Revolution Error %	2 Inferred	Read/Write
4945	Turbine Diagnostic#2 – Blade Error %	2 Inferred	Read/Write
4947	Turbine Diagnostic#2 – Profile Error %	2 Inferred	Read/Write

4949-5029 Resserved

ADDRESS	DESCRIPTION	DECIMAL RE	
Current Dat			
		0 Informed	Deed
9001	Meter #1 Calculation Type	0 Inferred	Read
9003	Meter #1 Flow Flag	0 Inferred	Read
9005	Meter #1 Alarm Status Flag	0 Inferred	Read
9007	Meter #1 Daily Gross Total	1 inferred	Read
9009	Meter #1 Daily Net Total	1 inferred	Read
9011	Meter #1 Daily Mass Total	1 inferred	Read
9013	Meter #1 Daily Energy Total	1 inferred	Read
9015	Meter #1 Cum. Gross Total	0 Inferred	Read
9017	Meter #1 Cum. Net Total	0 Inferred	Read
9019	Meter #1 Cum. Mass Total	0 Inferred	Read
9021	Meter #1 Cum. Energy Total	0 Inferred	Read
9023	Meter #1 N2	4 Inferred	Read
9025	Meter #1 Co2	4 Inferred	Read
9027	Meter #1 Methane	4 Inferred	Read
9029	Meter #1 Ethane	4 Inferred	Read
9031	Meter #1 Propane	4 Inferred	Read
9033	Meter #1 Water	4 Inferred	Read
9035	Meter #1 H2S	4 Inferred	Read
9037	Meter #1 H2	4 Inferred	Read
9039	Meter #1 CO	4 Inferred	Read
9041	Meter #1 Oxygen	4 Inferred	Read
9043	Meter #1 I-Butane	4 Inferred	Read
9045	Meter #1 n-Butane	4 Inferred.	Read
9047	Meter #1 I-Pentane	4 Inferred	Read
9049	Meter #1 n-Pentane	4 Inferred	Read
9051	Meter #1 n-Hexane	4 Inferred	Read
9053	Meter #1 n-Heptane	4 Inferred	Read
9055	Meter #1 n-Octane	4 Inferred	Read
	Meter #1 n-Nonane	4 Inferred	
9057			Read
9059	Meter #1 n-Decane	4 Inferred	Read
9061	Meter #1 Helium	4 Inferred	Read
9063	Meter #1 Argon	4 Inferred	Read
9065	Meter#1 Heating Value	3 Inferred	Read
9067	Meter #1 Gross Flowrate	2 Inferred	Read
9069	Meter #1 Net Flowrate	2 Inferred	Read
9071	Meter #1 Mass Flowrate	2 Inferred	Read
9073	Meter #1 Energy Flowrate	2 Inferred	Read
9075	Meter #1 Product	0 Inferred	Read
9077-9079	Meter #1 Meter ID	8 Chars.	Read
9081	Meter #1 Pipe ID	5 Inferred	Read
9083	Meter #1 Orifice ID	5 Inferred	Read
9085	Meter #1 Density Correction Factor	5 Inferred	Read
9087	Meter #1 Density of Dry Air	5 Inferred	Read
9089	Meter #1 K Factor	3 Inferred	Read
9091	Date(mmddyy)	0 Inferred	Read
9093		0 Inferred	
	Time (hhmmss)		Read
9095	Meter #1 DP	4 Inferred	Read

mousuo	Address rubic		
<u>ADDRESS</u>	DESCRIPTION	DECIMAL	<u>READ/WRITE</u>
9097	Meter #1 Temperature	2 Inferred	Read
9099	Meter #1 Pressure	2 Inferred	Read
9101	Meter #1 Density	5 Inferred	Read
9103	Meter #1 Dens.b	6 Inferred	Read
9105	Meter #1 SG	6 Inferred	Read
9107	Meter #1 Y Factor	6 Inferred	Read
9109	Meter #1 K /CD/LMF	6 Inferred	Read
9111	Meter #1 DP EXT	4 Inferred	Read
9113	Meter #1 FPV	6 Inferred	Read
9115	Meter #1 CTL	5 Inferred	Read
9117	Meter #1 CPL	5 Inferred	Read
9119	Meter #1 CTPL	5 Inferred	Read
9119	Meter #1 CTPL	5 Interred	Redu
0101	Motor #2 Coloulation Turne	Olaforrad	Dood
9121	Meter #2 Calculation Type	0 Inferred	Read
9123	Meter #2 Flow Flag	0 Inferred	Read
9125	Meter #2 Alarm Status Flag	0 Inferred	Read
9127	Meter #2 Daily Gross Total	1 inferred	Read
9129	Meter #2 Daily Net Total	1 inferred	Read
9131	Meter #2 Daily Mass Total	1 inferred	Read
9133	Meter #2 Daily Energy Total	1 inferred	Read
9135	Meter #2 Cum. Gross Total	0 Inferred	Read
9137	Meter #2 Cum. Net Total	0 Inferred	Read
9139	Meter #2 Cum. Mass Total	0 Inferred	Read
9141	Meter #2 Cum. Energy Total	0 Inferred	Read
9143	Meter #2 N2	4 Inferred	Read
9145	Meter #2 Co2	4 Inferred	Read
9147	Meter #2 Methane	4 Inferred	Read
9149	Meter #2 Ethane	4 Inferred	Read
9151	Meter #2 Propane	4 Inferred	Read
9153	Meter #2 Water	4 Inferred	Read
9155	Meter #2 H2S	4 Inferred	Read
9157	Meter #2 H2	4 Inferred	Read
9159	Meter #2 CO	4 Inferred	Read
9161	Meter #2 Oxygen	4 Inferred	Read
9163	Meter #2 I-Butane	4 Inferred	Read
9165	Meter #2 n-Butane	4 Inferred.	Read
9167	Meter #2 I-Pentane	4 Inferred	Read
9169	Meter #2 n-Pentane	4 Inferred	Read
9171	Meter #2 n-Hexane	4 Inferred	Read
9173	Meter #2 n-Heptane	4 Inferred	Read
9175	Meter #2 n-Octane	4 Inferred	Read
9177	Meter #2 n-Nonane	4 Inferred	Read
9179	Meter #2 n-Decane	4 Inferred	Read
9181	Meter #2 Helium	4 Inferred	Read
9183	Meter #2 Argon	4 Inferred	Read
9185	Meter #2 Heating Value	3 Inferred	Read
9187	Meter #2 Gross Flowrate	2 Inferred	Read
9189	Meter #2 Net Flowrate	2 Inferred	Read
9191	Meter #2 Mass Flowrate	2 Inferred	Read
9193	Meter #2 Energy Flowrate	2 Inferred	Read
9195	Meter #2 Product	0 Inferred	Read
9197-9199	Meter #2 Meter ID	8 Chars.	Read

ADDRESS	DESCRIPTION		
			READ/WRITE
9201 9203	Meter #2 Pipe ID Meter #2 Orifice ID	5 Inferred 5 Inferred	Read
			Read
9205	Meter #2 Density Correction Factor	5 Inferred	Read
9207	Meter #2 Density of Dry Air	5 Inferred	Read
9209	Meter #2 K Factor	3 Inferred	Read
9211	Date(mmddyy)	0 Inferred	Read
9213	Time (hhmmss)	0 Inferred	Read
9215	Meter #2 DP	4 Inferred	Read
9217	Meter #2 Temperature	2 Inferred	Read
9219	Meter #2 Pressure	2 Inferred	Read
9221	Meter #2 Density	5 Inferred	Read
9223	Meter #2 Dens.b	6 Inferred	Read
9225	Meter #2 SG	6 Inferred	Read
9227	Meter #2 Y Factor	6 Inferred	Read
9229	Meter #2 K /CD/LMF	6 Inferred	Read
9231	Meter #2 DP EXT	4 Inferred	Read
9233	Meter #2 FPV	6 Inferred	Read
9235	Meter #2 CTL	5 Inferred	Read
9237	Meter #2 CPL	5 Inferred	Read
9239	Meter #2 CTPL	5 Inferred	Read
0011			. .
9241	Meter #3 Calculation Type	0 Inferred	Read
9243	Meter #3 Flow Flag	0 Inferred	Read
9245	Meter #3 Alarm Status Flag	0 Inferred	Read
9247	Meter #3 Daily Gross Total	1 inferred	Read
9249	Meter #3 Daily Net Total	1 inferred	Read
9251	Meter #3 Daily Mass Total	1 inferred	Read
9253	Meter #3 Daily Energy Total	1 inferred	Read
9255	Meter #3 Cum. Gross Total	0 Inferred	Read
9257	Meter #3 Cum. Net Total	0 Inferred	Read
9259	Meter #3 Cum. Mass Total	0 Inferred	Read
9261	Meter #3 Cum. Energy Total	0 Inferred	Read
0000	Matar #2 NO	1 loforno d	Deed
9263	Meter #3 N2	4 Inferred	Read
9265	Meter #3 Co2	4 Inferred	Read
9267	Meter #3 Methane	4 Inferred	Read
9269	Meter #3 Ethane	4 Inferred	Read
9271	Meter #3 Propane	4 Inferred	Read
9273	Meter #3 Water	4 Inferred	Read
9275	Meter #3 H2S	4 Inferred	Read
9277	Meter #3 H2	4 Inferred	Read
9279	Meter #3 CO	4 Inferred	Read
9281	Meter #3 Oxygen	4 Inferred	Read
9283	Meter #3 I-Butane	4 Inferred	Read
9285	Meter #3 n-Butane	4 Inferred.	Read
9287	Meter #3 I-Pentane	4 Inferred	Read
9289	Meter #3 n-Pentane	4 Inferred	Read
9291	Meter #3 n-Hexane	4 Inferred	Read
9293	Meter #3 n-Heptane	4 Inferred	Read
9295	Meter #3 n-Octane	4 Inferred	Read
9297	Meter #3 n-Nonane	4 Inferred	Read
9299	Meter #3 n-Decane	4 Inferred	Read
9301	Meter #3 Helium	4 Inferred	Read

mousuo		no mogor	
ADDRESS	DESCRIPTION	DECIMAL RE	<u>EAD/WRITE</u>
9303	Meter #3 Argon	4 Inferred	Read
9305	Meter #3 Heating Value	3 Inferred	Read
9307	Meter #3 Gross Flowrate	2 Inferred	Read
9309	Meter #3 Net Flowrate	2 Inferred	Read
9311	Meter #3 Mass Flowrate	2 Inferred	Read
9313	Meter #3 Energy Flowrate	2 Inferred	Read
9315	Meter #3 Product	0 Inferred	Read
9317-9319	Meter #3 Meter ID	8 Chars.	Read
9321	Meter #3 Pipe ID	5 Inferred	Read
9323	Meter #3 Orifice ID	5 Inferred	Read
9325	Meter #3 Density Correction Factor	5 Inferred	Read
9327	Meter #3 Density of Dry Air	5 Inferred	Read
9329	Meter #3 K Factor	3 Inferred	Read
9331	Date(mmddyy)	0 Inferred	Read
9333	Time (hhmmss)	0 Inferred	Read
9335	Meter #3 DP	4 Inferred	Read
9337	Meter #3 Temperature	2 Inferred	Read
9339	Meter #3 Pressure	2 Inferred	Read
9341	Meter #3 Density	5 Inferred	Read
9343	Meter #3 Dens.b	6 Inferred	Read
9345	Meter #3 SG	6 Inferred	Read
9347	Meter #3 Y Factor	6 Inferred	Read
9349	Meter #3 K /CD/LMF	6 Inferred	Read
9351	Meter #3 DP EXT	4 Inferred	Read
9353	Meter #3 FPV	6 Inferred	Read
9355	Meter #3 CTL	5 Inferred	Read
9357	Meter #3 CPL	5 Inferred	Read
9359	Meter #3 CTPL	5 Inferred	Read
9361	Meter #4 Calculation Type	0 Inferred	Read
9363	Meter #4 Flow Flag	0 Inferred	Read
9365	Meter #4 Alarm Status Flag	0 Inferred	Read
9367	Meter #4 Daily Gross Total	1 inferred	Read
9369	Meter #4 Daily Net Total	1 inferred	Read
9371	Meter #4 Daily Mass Total	1 inferred	Read
9373	Meter #4 Daily Energy Total	1 inferred	Read
9375	Meter #4 Cum. Gross Total	0 Inferred	Read
9377	Meter #4 Cum. Net Total	0 Inferred	Read
9379	Meter #4 Cum. Mass Total	0 Inferred	Read
9381	Meter #4 Cum. Energy Total	0 Inferred	Read
5001	Motor #4 Outil: Energy Fotal	omonod	Redu
9383	Meter #4 N2	4 Inferred	Read
9385	Meter #4 Co2	4 Inferred	Read
9387	Meter #4 Methane	4 Inferred	Read
9389	Meter #4 Ethane	4 Inferred	Read
9391	Meter #4 Propane	4 Inferred	Read
9393	Meter #4 Water	4 Inferred	Read
9395	Meter #4 H2S	4 Inferred	Read
9397	Meter #4 H2	4 Inferred	Read
9399	Meter #4 CO	4 Inferred	Read
9401	Meter #4 Oxygen	4 Inferred	Read
9403	Meter #4 I-Butane	4 Inferred	Read
9405	Meter #4 n-Butane	4 Inferred.	Read

Modbus Address Table – 2x16 Bits Integer

ADDRESS	DESCRIPTION		READ/WRITE
9407	Meter #4 I-Pentane	4 Inferred	Read
9409	Meter #4 n-Pentane	4 Inferred	Read
9411	Meter #4 n-Hexane	4 Inferred	Read
9413	Meter #4 n-Heptane	4 Inferred	Read
9415	Meter #4 n-Octane	4 Inferred	Read
9417	Meter #4 n-Nonane	4 Inferred	Read
9419	Meter #4 n-Decane	4 Inferred	Read
9421	Meter #4 Helium	4 Inferred	Read
9423	Meter #4 Argon	4 Inferred	Read
9425	Meter #4 Heating Value	3 Inferred	Read
9427	Meter #4 Gross Flowrate	2 Inferred	Read
9429	Meter #4 Net Flowrate	2 Inferred	Read
9431	Meter #4 Mass Flowrate	2 Inferred	Read
9433	Meter #4 Energy Flowrate	2 Inferred	Read
9435	Meter #4 Product	0 Inferred	Read
9437-9439	Meter #4 Meter ID	8 Chars.	Read
9441	Meter #4 Pipe ID	5 Inferred	Read
9443	Meter #4 Orifice ID	5 Inferred	Read
9445	Meter #4 Density Correction Factor	5 Inferred	Read
9447	Meter #4 Density of Dry Air	5 Inferred	Read
9449	Meter #4 K Factor	3 Inferred	Read
9451	Date(mmddyy)	0 Inferred	Read
9453	Time (hhmmss)	0 Inferred	Read
9455	Meter #4 DP	4 Inferred	Read
9457		2 Inferred	
9459	Meter #4 Temperature Meter #4 Pressure	2 Inferred	Read
			Read
9461	Meter #4 Density	5 Inferred	Read
9463	Meter #4 Dens.b	6 Inferred	Read
9465	Meter #4 SG	6 Inferred	Read
9467	Meter #4 Y Factor	6 Inferred	Read
9469	Meter #4 K /CD/LMF	6 Inferred	Read
9471	Meter #4 DP EXT	4 Inferred	Read
9473	Meter #4 FPV	6 Inferred	Read
9475	Meter #4 CTL	5 Inferred	Read
9477	Meter #4 CPL	5 Inferred	Read
9479	Meter #4 CTPL	5 Inferred	Read
9481	Meter #1 FA	6 Inferred	Read
9483	Meter #2 FA	6 Inferred	Read
9485	Meter #3 FA	6 Inferred	Read
9487	Meter #4 FA	6 Inferred	Read
9489-9493	Reserved		
9495	Meter #1 BS&W	2 Inferred	Read
9497	Meter #2 BS&W	2 Inferred	Read
9499	Meter #3 BS&W	2 Inferred	Read
9501	Meter #4 BS&W	2 Inferred	Read

<u>ADDRESS</u>	DESCRIPTION	READ/WRITE
7001	Sarasota Constant D0	Read/Write
7002	Sarasota Constant T0	Read/Write
7003	Sarasota Constant K	Read/Write
7004	Sarasota Constant Temperature Coeff.	Read/Write
7005	Sarasota Constant Temperature Cal.	Read/Write
7006	Sarasota Constant Pressure Coeff.	Read/Write
7007	Sarasota Constant Pressure Cal.	Read/Write
7008	UGC Constant K0	Read/Write
7009	UGC Constant K1	Read/Write
7010	UGC Constant K2	Read/Write
7011	UGC Constant KT	Read/Write
7012	UGC Constant Temperature Cal	Read/Write
7013	UGC Constant K	Read/Write
7014	UGC Constant P0	Read/Write
7015	Solartron Constant K0	Read/Write
7016	Solartron Constant K1	Read/Write
7017	Solartron Constant K2	Read/Write
7018	Solartron Constant K18	Read/Write
7019	Solartron Constant K19	Read/Write
7020	Solartron Constant K3	Read/Write
7021	Solartron Constant K4	Read/Write
7022	Calibration Data Entry	Read/Write
7023	Spare	Read/Write
7024	Verification Data Entry	Read/Write
7025	Spare	Read/Write
7026	Meter#1 Orifice ID	Read/Write
7027	Meter#1 Pipe ID	Read/Write
7028	Meter#1 K Factor	Read/Write
7029	Meter#1 Low Limit	Read/Write
7030	Meter#1 High Limit	Read/Write
7031	Meter#2 Orifice ID	Read/Write
7032	Meter#2 Pipe ID	Read/Write
7033	Meter#2 K Factor	Read/Write
7034	Meter#2 Low Limit	Read/Write
7035	Meter#2 High Limit	Read/Write
7036	Meter#3 Orifice ID	Read/Write
7037	Meter#3 Pipe ID	Read/Write
7038	Meter#3 K Factor	Read/Write
7039	Meter#3 Low Limit	Read/Write
7040	Meter#3 High Limit	Read/Write
7041	Meter#4 Orifice ID	Read/Write
7042	Meter#4 Pipe ID	Read/Write
7043	Meter#4 K Factor	Read/Write
7044	Meter#4 Low Limit	Read/Write
7045	Meter#4 High Limit	Read/Write
7046	Base Temperature	Read/Write
7047	Base Pressure	Read/Write
7048	Atmospheric Pressure	Read/Write
7049	Densitometer Low Limit	Read/Write
7050	Densitometer High Limit	Read/Write
7051	Densitometer Maintenance	Read/Write

ADDRESS	DESCRIPTION	READ/WRITE
7052	Meter #1 Flowing Density Override	Read/Write
7053	Meter #2 Flowing Density Override	Read/Write
7054	Meter #3 Flowing Density Override	Read/Write
7055	Meter #4 Flowing Density Override	Read/Write
7056-7060	Spare	
7061-7070	Reserved	
7071-7085	Reserved	
7086-7100	Spare	
7101	Meter#1 Gross Flow Rate	Read
7102	Meter#1 Net Flow Rate	Read
7103	Meter#1 Mass Flow Rate	Read
7104	Meter#1 Energy Flow Rate	Read
7105	Meter#1 Daily Gross Total	Read
7106	Meter#1 Daily Net Total	Read
7107	Meter#1 Daily Mass Total	Read
7108	Meter#1 Daily Energy Total	Read
7109	Meter#1 Cumulative Gross Total	Read
7110	Meter#1 Cumulative Net Total	Read
7111	Meter#1 Cumulative Mass Total	Read
7112	Meter#1 Cumulative Energy Total	Read
7113	Meter #1 DP	Read
7114	Meter #1 Temperature	Read
7115	Meter #1 Pressure	Read
7116	Meter #1 Density	Read
7117	Meter #1 Heating Value	Read
7118	Meter #1 Density.b	Read
7119	Meter #1 SG	Read
7120	Meter #1 Y	Read
7121	Meter #1 K/CD/LMF	Read
7122	Meter #1 FPV	Read
7123 7124	Meter #1 FA Meter #1 N2	Read
7124	Meter #1 Co2	Read
7126	Meter #1 Methane	Read Read
7127	Meter #1 Ethane	Read
7128	Meter #1 Propane	Read
7129	Meter #1 Water	Read
7130	Meter #1 H2S	Read
7131	Meter #1 H2	Read
7132	Meter #1 CO	Read
7133	Meter #1 Oxygen	Read
7134	Meter #1 I-Butane	Read
7135	Meter #1 n-Butane	Read
7136	Meter #1 I-Pentane	Read
7137	Meter #1 n-Pentane	Read
7138	Meter #1 n-Hexane	Read
7139	Meter #1 n-Heptane	Read
7140	Meter #1 n-Octane	Read
7141	Meter #1 n-Nonane	Read
7142	Meter #1 n-Decane	Read
7143	Meter #1 Helium	Read
7144	Meter #1 Argon	Read
7145	Meter #1 Day Flow Time in Minutes	Read
7146	Meter #1 Hour Flow Time in Minutes	Read

<u>ADDRESS</u>	DESCRIPTION	READ/WRITE
7147	Meter #1 Month Flow Time in Hours	Read
7148	Meter #2 Month Flow Time in Hours	Read
7149	Meter #3 Month Flow Time in Hours	Read
7150	Meter #4 Month Flow Time in Hours	Read
7151	Date	Read
7152	Time	Read
7153	Meter #3 Day Flow Time in Minutes	Read
7154	Meter #3 Hour Flow Time in Minutes	Read
7155	Meter#3 Gross Flow Rate	Read
7156	Meter#3 Net Flow Rate	Read
7157	Meter#3 Mass Flow Rate	Read
7158	Meter#3 Energy Flow Rate	Read
7159	Meter#3 Daily Gross Total	Read
7160	Meter#3 Daily Net Total	Read
7161	Meter#3 Daily Mass Total	Read
7162	Meter#3 Daily Energy Total	Read
7163	Meter#3 Cumulative Gross Total	Read
7164	Meter#3 Cumulative Net Total	Read
7165	Meter#3 Cumulative Mass Total	Read
7166	Meter#3 Cumulative Energy Total	Read
7167	Meter #3 DP	Read
7168	Meter #3 Temperature	Read
7169	Meter #3 Pressure	Read
7170	Meter #3 Density	Read
7171		
7172	Meter #3 Heating Value	Read
	Meter #3 Density.b	Read
7173	Meter #3 SG	Read
7174	Meter #3 Y	Read
7175	Meter #3 K/CD/LMF	Read
7176	Meter #3 FPV	Read
7177	Meter #3 FA	Read
7178	Meter #3 N2	Read
7179	Meter #3 Co2	Read
7180	Meter #3 Methane	Read
7181	Meter #3 Ethane	Read
7182	Meter #3 Propane	Read
7183	Meter #3 Water	Read
7184	Meter #3 H2S	Read
7185	Meter #3 H2	Read
7186	Meter #3 CO	Read
7187	Meter #3 Oxygen	Read
7188	Meter #3 I-Butane	Read
7189	Meter #3 n-Butane	Read
7190	Meter #3 I-Pentane	Read
7191	Meter #3 n-Pentane	Read
7192	Meter #3 n-Hexane	Read
7193	Meter #3 n-Heptane	Read
7194	Meter #3 n-Octane	Read
7195	Meter #3 n-Nonane	Read
7196	Meter #3 n-Decane	Read
7197	Meter #3 Helium	Read
7198	Meter #3 Argon	Read
	-	

ADDRESS	DESCRIPTION	READ/WRITE
7203	Meter #3 Last Month Flow Time	Read
7204	Meter #3 Last Month Gross Total	Read
7205	Meter #3 Last Month Net Total	Read
7206	Meter #3 Last Month Mass Total	Read
7207	Meter #3 Last Month Energy Total	Read
7208	Meter #4 Last Month Flow Time	Read
7209	Meter #4 Last Month Gross Total	Read
7210	Meter #4 Last Month Net Total	Read
7211	Meter #4 Last Month Mass Total	Read
7212	Meter #4 Last Month Energy Total	Read
7213	Meter #3 Yesterday Flowing Time	Read
7214	Meter #3 Average DP	Read
7215	Meter #3 Average Temperature	Read
7216	Meter #3 Average Pressure	Read
7217	Meter #3 Average DP_EXT	Read
7218	Meter #3 Yesterday Gross	Read
7219	Meter #3 Yesterday Net	Read
7220	Meter #3 Yesterday Mass	Read
7221	Meter #3 Yesterday Energy	Read
7222	Meter #4 Yesterday Flowing Time	Read
7223	Meter #4 Average DP	Read
7224	Meter #4 Average Temperature	Read
7225	Meter #4 Average Pressure	Read
7226	Meter #4 DP EXT	Read
7227	Meter #4 Yesterday Gross	Read
7228	Meter #4 Yesterday Net	Read
7229	Meter #4 Yesterday Mass	Read
7230	Meter #4 Yesterday Energy	Read
7004		Deed
7231	Spare #1 Data	Read
7232	Spare #2 Data	Read
7233	Spare #3 Data	Read
7234	Spare #4 Data	Read
7235	Spare #5 Data	Read
7236	Spare #6 Data	Read
7237	Spare #7 Data	Read
7238	Spare #8 Data	Read
7239	Spare #9 Data	Read
7240	Battery Voltage	Read
7241	Meter #1 Last Hour Flow Time	Read
7242	Meter #1 Last Hour Net Total	Read
7243	Meter #1 Last Hour Energy Total	Read
7244	Meter #1 Last Hour Average Temperature	Read
7245	Meter #1 Last Hour Average Pressure	Read
7246	Meter #1 Last Hour Average DP	Read
7247	Meter #1 Last Hour Average DP/EXT	Read
7248	Meter #2 Last Hour Flow Time	Read
7249	Meter #2 Last Hour Net Total	Read
7250	Meter #2 Last Hour Energy Total	Read
7251	Meter #2 Last Hour Average Temperature	Read
7252	Meter #2 Last Hour Average Pressure	Read
7253	Meter #2 Last Hour Average DP	Read
7254	Meter #2 Last Hour Average DP/EXT	Read

ADDRESS	DESCRIPTION	READ/WRITE
7255-7256	Spare	
7257 7258 7259 7260 7261	Meter #1 Last Month Flow Time in Hours Meter #1 Last Month Gross Total Meter #1 Last Month Net Total Meter #1 Last Month Mass Total Meter #1 Last Month Energy Total	Read Read Read Read Read
7262 7263 7264 7265 7266	Last Hour Program Variable #1 Last Hour Program Variable #2 Last Hour Program Variable #3 Last Hour Program Variable #4 Last Hour Program Variable #5	Read Read Read Read Read
7267-7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281	Reserved Meter #1 Yesterday Flow Time Meter #1 Yesterday Average DP Meter #1 Yesterday Average Temperature Meter #1 Yesterday Average Pressure Meter #1 Yesterday Average DP/EXT Meter #1 Yesterday Gross Total Meter #1 Yesterday Net Total Meter #1 Yesterday Mass Total Meter #1 Yesterday Energy Total Spare Spare	Read Read Read Read Read Read Read Read

<u>ADDRESS</u>	DESCRIPTION	READ/WRITE
7301	Meter#2 Gross Flow Rate	Read
7302	Meter#2 Net Flow Rate	Read
7303	Meter#2 Mass Flow Rate	Read
7304	Meter#2 Energy Flow Rate	Read
7305	Meter#2 Daily Gross Total	Read
7306	Meter#2 Daily Net Total	Read
7307	Meter#2 Daily Mass Total	Read
7308	Meter#2 Daily Energy Total	Read
7309	Meter#2 Cumulative Gross Total	Read
7310	Meter#2 Cumulative Net Total	Read
7311	Meter#2 Cumulative Mass Total	Read
7312	Meter#2 Cumulative Energy Total	Read
7313	Meter #2 DP	Read
7314	Meter #2 Temperature	Read
7315	Meter #2 Pressure	Read
7316	Meter #2 Density	Read
7317	Meter #2 Heating Value	Read
7318	Meter #2 Density.b	Read
7319	Meter #2 SG	Read
7320	Meter #2 Y	Read
7321	Meter #2 K/CD/LMF	Read
7322	Meter #2 FPV	Read
7323	Meter #2 FA	Read
1323	Meler #2 FA	Reau
7004	Meter #2 N2	Dood
7324		Read
7325	Meter #2 Co2	Read
7326	Meter #2 Methane	Read
7327	Meter #2 Ethane	Read
7328	Meter #2 Propane	Read
7329	Meter #2 Water	Read
7330	Meter #2 H2S	Read
7331	Meter #2 H2	Read
7332	Meter #2 CO	Read
7333	Meter #2 Oxygen	Read
7334	Meter #2 I-Butane	Read
7335	Meter #2 n-Butane	Read
7336	Meter #2 I-Pentane	Read
7337	Meter #2 n-Pentane	Read
7338	Meter #2 n-Hexane	Read
7339	Meter #2 n-Heptane	Read
7340	Meter #2 n-Octane	Read
7341	Meter #2 n-Nonane	Read
7342	Meter #2 n-Decane	Read
7343	Meter #2 Helium	Read
7344	Meter #2 Argon	Read
7345	Meter #2 Day Flow Time	Read
7346	Meter #2 Hour Flow Time	Read
7347-7348	Spare	
7349	Spare	
7350	Spare	
7351	Spare	
7352	Day Star Hour	Read
	,	

mousuo	Address fuble float form	
ADDRESS	DESCRIPTION	READ/WRITE
7353	Meter #4 Day Flow Time	Read
7354	Meter #4 Hour Flow Time	Read
7355	Meter#4 Gross Flow Rate	Read
7356	Meter#4 Net Flow Rate	Read
7357	Meter#4 Mass Flow Rate	Read
7358	Meter#4 Energy Flow Rate	Read
7359	Meter#4 Daily Gross Total	Read
7360	Meter#4 Daily Oross Total	Read
	•	
7361	Meter#4 Daily Mass Total	Read
7362	Meter#4 Daily Energy Total	Read
7363	Meter#4 Cumulative Gross Total	Read
7364	Meter#4 Cumulative Net Total	Read
7365	Meter#4 Cumulative Mass Total	Read
7366	Meter#4 Cumulative Energy Total	Read
7367	Meter #4 DP	Read
7368	Meter #4 Temperature	Read
7369	Meter #4 Pressure	Read
7370	Meter #4 Density	Read
7371	Meter #4 Heating Value	Read
7372	Meter #4 Density.b	Read
7373	Meter #4 SG	Read
7374	Meter #4 Y	Read
7375	Meter #4 K/CD/LMF	Read
7376	Meter #4 FPV	Read
7377	Meter #4 FA	Read
7378	Meter #4 N2	Read
7379	Meter #4 Co2	Read
7380	Meter #4 Methane	Read
7381	Meter #4 Ethane	Read
7382	Meter #4 Propane	Read
7383	Meter #4 Water	Read
7384	Meter #4 H2S	Read
7385	Meter #4 H2	
		Read
7386	Meter #4 CO	Read
7387	Meter #4 Oxygen	Read
7388	Meter #4 I-Butane	Read
7389	Meter #4 n-Butane	Read
7390	Meter #4 I-Pentane	Read
7391	Meter #4 n-Pentane	Read
7392	Meter #4 n-Hexane	Read
7393	Meter #4 n-Heptane	Read
7394	Meter #4 n-Octane	Read
7395	Meter #4 n-Nonane	Read
7396	Meter #4 n-Decane	Read
7397	Meter #4 Helium	Read
7398	Meter #4 Argon	Read
7401	Multi.Var DP	Read
7402	Multi.Var Pressure	Read
7403	Multi.Var Temperature	Read
7403	Analog Input #1 mA Value	Read
7405	Analog Input #2 mA Value	Read
7406	Analog Input #3 mA Value	Read

ADDRESS	DESCRIPTION	<u>READ/WRITE</u>
7407	Analog Input #4 mA Value	Read
7408	Multi.Var. Flag	Read
7409	Slave#1 DP	Read
7410	Slave#1 Pressure	Read
7411	Slave#1 Temperature	Read
7412	Slave#1 Spare Auxiliary I/O #1	Read
7413	Slave#1 Spare Auxiliary I/O #2	Read
7414	Slave#1 Spare Auxiliary I/O #3	Read
7415	Slave#1 Spare Auxiliary I/O #4	Read
7416	Slave#1 Multi.Var.Flag	Read
7417-7425	Reserved	
7426-7433	Spare	
1420 1400	Opare	
7434	Yesterday Program Variable #1	Read
7435	Yesterday Program Variable #2	Read
7436	Yesterday Program Variable #2	Read
7437		Read
7437 7438	Yesterday Program Variable #4	Read
	Yesterday Program Variable #5	Read
7439	Reserved	
7440		
7440	Reserved	- .
7441	Meter #3 Last Hour Flow Time	Read
7442	Meter #3 Last Hour Net Total	Read
7443	Meter #3 Last Hour Energy Total	Read
7444	Meter #3 Last Hour Average Temperature	Read
7445	Meter #3 Last Hour Average Pressure	Read
7446	Meter #3 Last Hour Average DP	Read
7447	Meter #3 Last Hour Average DP/EXT	Read
7448	Meter #4 Last Hour Flow Time	Read
7449	Meter #4 Last Hour Net Total	Read
7450	Meter #4 Last Hour Energy Total	Read
7451	Meter #4 Last Hour Average Temperature	Read
7452	Meter #4 Last Hour Average Pressure	Read
7453	Meter #4 Last Hour Average DP	Read
7454	Meter #4 Last Hour Average DP/EXT	Read
7455	Spare	
7456	Spare	
7457	Meter#2 Last Month Flow Time	Read
7458	Meter#2 Last Month Gross Total	Read
7459	Meter#2 Last Month Net Total	Read
7460	Meter#2 Last Month Mass Total	Read
7461	Meter#2 Last Month Energy Total	Read
7462	Meter#1 Yesterday's Averaged BS&W	Read
7463	Meter#2 Yesterday's Averaged BS&W	Read
7463		
	Meter#3 Yesterday's Averaged BS&W	Read
7465	Meter#4 Yesterday's Averaged BS&W	Read
7466	Last Month Program Variable #1	Read
7467	Last Month Program Variable #2	Read
7468	Last Month Program Variable #3	Read
7469	Last Month Program Variable #4	Read
7470	Last Month Program Variable #5	Read

ADDRESS	DESCRIPTION	READ/WRITE
7471	Meter #2 Yesterday Flow Time	Read
7472	Meter #2 Yesterday Average DP	Read
7473	Meter #2 Yesterday Average Temperature	Read
7474	Meter #2 Yesterday Average Pressure	Read
7475	Meter #2 Yesterday Average DP/EXT	Read
7476	Meter #2 Yesterday Gross Total	Read
7477	Meter #2 Yesterday Net Total	Read
7478	Meter #2 Yesterday Mass Total	Read
7479	Meter #2 Yesterday Energy Total	Read

mousus		6
ADDRESS	DESCRIPTION	READ/WRITE
7601	Analog Input #5 @4mA	Read/Write
7602		Read/Write
	Analog Input #5 @20mA	
7603	Analog Input #5 Low Limit	Read/Write
7604	Analog Input #5 High Limit	Read/Write
7605	Analog Input #5 Maintenance	Read/Write
7606	Analog Input #6 @4mA	Read/Write
7607	Analog Input #6 @20mA	Read/Write
7608	Analog Input #6 Low Limit	Read/Write
7609	Analog Input #6 High Limit	Read/Write
7610		
7010	Analog Input #6 Maintenance	Read/Write
7611	Analog Input #7 @4mA	Read/Write
7612	Analog Input #7 @20mA	Read/Write
7613	Analog Input #7 Low Limit	Read/Write
7614	Analog Input #7 High Limit	Read/Write
7615	Analog Input #7 Maintenance	Read/Write
7616	Analog Input #8 @4mA	Read/Write
7617	Analog Input #8 @20mA	Read/Write
7618	Analog Input #8 Low Limit	Read/Write
7619	Analog Input #8 High Limit	Read/Write
7620	Analog Input #8 Maintenance	Read/Write
7621	Analog Input #9 @4mA	Read/Write
7622	Analog Input #9 @20mA	Read/Write
7623	Analog Input #9 Low Limit	Read/Write
7624	Analog Input #9 High Limit	Read/Write
7625	Analog Input #9 Maintenance	Read/Write
1020	Analog input #8 Maintenanoe	
7626	Analog Input #5 Override	Read/Write
7627	Analog Input #6 Override	Read/Write
7628	Analog Input #7 Override	Read/Write
7629	Analog Input #8 Override	Read/Write
7630	Analog Input #9 Override	Read/Write
7631	Spare Auxiliary I/O #1 @4mA	Read/Write
7632	Spare Auxiliary I/O #1 @20mA	Read/Write
7633	Spare Auxiliary I/O #1 Low Limit	Read/Write
7634	Spare Auxiliary I/O #1 High Limit	Read/Write
7635	Spare Auxiliary I/O #2 @4mA	Read/Write
	Spare Auxiliary I/O #2 @20mA	
7636		Read/Write
7637	Spare Auxiliary I/O #2 Low Limit	Read/Write
7638	Spare Auxiliary I/O #2 High Limit	Read/Write
7639	Spare Auxiliary I/O #3 @4mA	Read/Write
7640	Spare Auxiliary I/O #3 @20mA	Read/Write
7641	Spare Auxiliary I/O #3 Low Limit	Read/Write
7642	Spare Auxiliary I/O #3 High Limit	Read/Write
7643	Spare Auxiliary I/O #4 @4mA	Read/Write
7644	Spare Auxiliary I/O #4 @20mA	Read/Write
7645	Spare Auxiliary I/O #4 Low Limit	Read/Write
7646	Spare Auxiliary I/O #4 High Limit	Read/Write
7647	Spare Auxiliary I/O #5 @4mA	Read/Write

mousus		
ADDRESS	DESCRIPTION	READ/WRITE
7648	Spare Auxiliary I/O #5 @20mA	Read/Write
7649	Spare Auxiliary I/O #5 Low Limit	Read/Write
7650	Spare Auxiliary I/O #5 High Limit	Read/Write
7651	Spare Auxiliary I/O #6 @4mA	Read/Write
7652	Spare Auxiliary I/O #6 @20mA	Read/Write
7653	Spare Auxiliary I/O #6 Low Limit	Read/Write
7654	Spare Auxiliary I/O #6 High Limit	Read/Write
7655	Spare Auxiliary I/O #7 @4mA	Read/Write
7656	Spare Auxiliary I/O #7 @20mA	Read/Write
7657	Spare Auxiliary I/O #7 Low Limit	Read/Write
7658	Spare Auxiliary I/O #7 High Limit	Read/Write
7659	Spare Auxiliary I/O #8 @4mA	Read/Write
7660	Spare Auxiliary I/O #8 @20mA	Read/Write
7661	Spare Auxiliary I/O #8 Low Limit	Read/Write
7662	Spare Auxiliary I/O #8 High Limit	Read/Write
7663	Spare Auxiliary I/O #9 @4mA	Read/Write
7664	Spare Auxiliary I/O #9 @20mA	Read/Write
7665	Spare Auxiliary I/O #9 Low Limit	Read/Write
7666	Spare Auxiliary I/O #9 High Limit	Read/Write
7667	Spare Auxiliary I/O #10 @4mA	Read/Write
7668	Spare Auxiliary I/O #10 @20mA	Read/Write
7669	Spare Auxiliary I/O #10 Cov Limit	Read/Write
7670	Spare Auxiliary I/O #10 High Limit	Read/Write
7671	Spare Auxiliary I/O #11 @4mA	Read/Write
7672	Spare Auxiliary I/O #11 @20mA	Read/Write
7673	Spare Auxiliary I/O #11 Low Limit	Read/Write
7674	Spare Auxiliary I/O #11 High Limit	Read/Write
7675	Spare Auxiliary I/O #12 @4mA	Read/Write
7676	Spare Auxiliary I/O #12 @20mA	Read/Write
7677	Spare Auxiliary I/O #12 @2011A Spare Auxiliary I/O #12 Low Limit	Read/Write
7678	Spare Auxiliary I/O #12 Low Limit	Read/Write
7679	Well Test Number	Read/Write
7680	Test Start Date (mmddyy)	Read/Write
		Read/Write
7681 7682	Test Start Hour (0-23) Test Duration in Minutes	Read/Write
7683	Meter#1 Mol. Percentage of CO2	Read/Write
7684	Meter#1 Mol Percentage of N2	Read/Write Read/Write
7685	Meter#1 Relative Density (SG)	
7686	Meter#1 BTU Override	Read/Write
7687	Meter#2 Mol. Percentage of CO2	Read/Write
7688	Meter#2 Mol Percentage of N2	Read/Write
7689	Meter#2 Relative Density (SG)	Read/Write
7690	Meter#2 BTU Override	Read/Write
7691	Slave#1 DP Override	Read/Write
7692	Slave#1 Pressure Override	Read/Write
7693	Slave#1 Temperature Override	Read/Write
7694	Slave#2 DP Override	Read/Write
7695	Slave#2 Pressure Override	Read/Write
7696	Slave#2 Temperature Override	Read/Write
7697	Slave#3 DP Override	Read/Write
7698	Slave#3 Pressure Override	Read/Write
7699	Slave#3 Temperature Override	Read/Write
7700	Spare	

ADDRESS	DESCRIPTION	READ/WRITE
7701	Slave #1 DP Low Limit	Read/Write
7702	Slave #1 DP High Limit	Read/Write
7703	Slave #1 DP Maintenance	Read/Write
7704	Slave #1 Pressure Low Limit	Read/Write
7705	Slave #1 Pressure High Limit	Read/Write
7706	Slave #1 Pressure Maintenance	Read/Write
7707	Slave #1 Temperature Low Limit	Read/Write
7708	Slave #1 Temperature High Limit	Read/Write
7709	Slave #1 Temperature Maintenance	Read/Write
7710	Slave #2 DP Low Limit	Read/Write
7711	Slave #2 DP High Limit	Read/Write
7712	Slave #2 DP Maintenance	Read/Write
7713	Slave #2 Pressure Low Limit	Read/Write
7714	Slave #2 Pressure High Limit	Read/Write
7715	Slave #2 Pressure Maintenance	Read/Write
7716	Slave #2 Temperature Low Limit	Read/Write
7717	Slave #2 Temperature High Limit	Read/Write
7718	Slave #2 Temperature Maintenance	Read/Write
7719	Slave #3 DP Low Limit	Read/Write
7720	Slave #3 DP High Limit	Read/Write
7721	Slave #3 DP Maintenance	Read/Write
7722	Slave #3 Pressure Low Limit	Read/Write
7723	Slave #3 Pressure High Limit	Read/Write
7724	Slave #3 Pressure Maintenance	Read/Write
7725	Slave #3 Temperature Low Limit	Read/Write
7726	Slave #3 Temperature High Limit	Read/Write
7727	Slave #3 Temperature Maintenance	Read/Write

ADDRESS	DESCRIPTION	READ/WRITE
	hot Data Area	<u>READ/WRITE</u>
		Deed
7728	Well Test Number	Read
7729	Test Start Date (mm/dd/yy) Test Start Time (hh/mm/ss)	Read
7730 7731		Read Read
7732	Status (1= In Progress) Test Remaining Time (hh/mm/ss)	Read
7733	Test Duration Time (in Minutes)	Read
7734	Test End Date (mm/dd/yy)	Read
7735	Test End Time (hh/mm/ss)	Read
7736	Test Data – Meter#1 Gross Total	Read
7737	Test Data – Meter#1 Net Total	Read
7738	Test Data – Meter#2 Gross Total	Read
7739	Test Data – Meter#2 Net Total	Read
7740	Test Data – Meter#3 Gross Total	Read
7741	Test Data – Meter#3 Net Total	Read
7742	Test Data – Meter#4 Gross Total	Read
7743	Test Data – Meter#4 Net Total	Read
7744	Test Data – Meter#1 24 Hours Gross Total	Read
7745	Test Data – Meter#1 24 Hours Net Total	Read
7746	Test Data – Meter#2 24 Hours Gross Total	Read
7747	Test Data – Meter#2 24 Hours Net Total	Read
7748	Test Data – Meter#3 24 Hours Gross Total	Read
7749	Test Data – Meter#3 24 Hours Net Total	Read
7750	Test Data – Meter#4 24 Hours Gross Total	Read
7751	Test Data – Meter#4 24 Hours Net Total	Read
7752-7759	Spare	
History Tes	at Data Area	
7760	Well Test Number	Read
7761	Test Start Date (mm/dd/yy)	Read
7762	Test Start Time (hh/mm/ss)	Read
7763	Status	Read
7764	Test Remaining Time (hh/mm/ss)	Read
7765	Test Duration Time (in Minutes)	Read
7766	Test End Date (mm/dd/yy)	Read
7767	Test End Time (hh/mm/ss)	Read
7768	Test Data – Meter#1 Gross Total	Read
7769	Test Data – Meter#1 Net Total	Read
7770	Test Data – Meter#2 Gross Total	Read
7771	Test Data – Meter#2 Net Total	Read
7772	Test Data – Meter#3 Gross Total	Read
7773	Test Data – Meter#3 Net Total	Read
7774	Test Data – Meter#4 Gross Total	Read
7775	Test Data – Meter#4 Net Total	Read
7776	Test Data – Meter#1 24 Hours Gross Total	Read
7777	Test Data – Meter#1 24 Hours Net Total	Read
7778	Test Data – Meter#2 24 Hours Gross Total	Read
7779	Test Data – Meter#2 24 Hours Net Total	Read
7780	Test Data – Meter#3 24 Hours Gross Total	Read
7781	Test Data – Meter#3 24 Hours Net Total	Read
7782	Test Data – Meter#4 24 Hours Gross Total	Read
7783	Test Data – Meter#4 24 Hours Net Total	Read
7784-7789	Spare	

ADDRESS DESCRIPTION

Read/Write Read/Write

READ/WRITE

ADDRESS	DESCRIPTION	READ/WRITE
7923	RTD Input Low Limit	Read/Write
7924	RTD Input High Limit	Read/Write
7925	RTD Input Maintenance	Read/Write
7926	Analog Input #1 Override	Read/Write
7927	Analog Input #2 Override	Read/Write
7928	Analog Input #3 Override	Read/Write
7929	Analog Input #4 Override	Read/Write
7930	RTD Input Override	Read/Write
7931	Analog Output #1 @4mA	Read/Write
7932	Analog Output #1 @20mA	Read/Write
7933	Analog Output #1 @2011A Analog Output #2 @4mA	Read/Write
	0 1	
7934	Analog Output #2 @20mA	Read/Write
7935	Analog Output #3 @4mA	Read/Write
7936	Analog Output #3 @20mA	Read/Write
7937	Analog Output #4 @4mA	
7938	Analog Output #4 @20mA	Read/Write
7939	Meter #1 Density.b Override	Read/Write
7940	Meter #2 Density.b Override	Read/Write
7941	Meter #3 Density.b Override	Read/Write
7942	Meter #4 Density.b Override	Read/Write
7943	Meter#3 CO2 Mol. Percentage	Read/Write
7944	Meter#3 N2 Mol Percentage	Read/Write
7945	Meter#3 Relative Density (SG)	Read/Write
7946	Meter#3 BTU Override	Read/Write
7947	Meter#4 CO2 Mol. Percentage	Read/Write
7948	Meter#4 N2 Mol Percentage	Read/Write
7949	Meter#4 Relative Density (SG)	Read/Write
7950	Meter#4 BTU Override	Read/Write
7951	Spare	
7952	Analog Input #1 Live Value (for checking alarms only)	Read
7953	Analog Input #2 Live Value (for checking alarms only)	Read
7954	Analog Input #3 Live Value (for checking alarms only)	Read
7955	Analog Input #4 Live Value (for checking alarms only)	Read
7956	RTD Live Value (for checking alarms only)	Read
7957	Analog Input #1 Value (used in the calculation)	Read
7958	Analog Input #2 Value (used in the calculation)	Read
7959	Analog Input #3 Value (used in the calculation)	Read
7960	Analog Input #4 Value (used in the calculation)	Read
7961	RTD Value (used in the calculation)	Read
		_
7962	Analog Output #1 Value	Read
7963	Analog Output #2 Value	Read
7964	Analog Output #3 Value	Read
7965	Analog Output #4 Value	Read
7966	Analog Input #5 Live Value (checking alarms only)	Read
7967	Analog Input #6 Live Value (checking alarms only)	Read
7968	Analog Input #7 Live Value (checking alarms only)	Read
7969	Analog Input #8 Live Value (checking alarms only)	Read
7970	Analog Input #9 Live Value (checking alarms only)	Read
7971	Analog Input #5 Value (used in the calculation	Read
7972	Analog Input #6 Value (used in the calculation)	Read
7973	Analog Input #7 Value (used in the calculation)	Read
7974	Analog Input #8 Value (used in the calculation)	Read
-	U 1 ··· ··· (·················)	

<u>ADDRESS</u> DESCRIPTION **READ/WRITE** 7975 Analog Input #9 Value (used in the calculation) Read 7976 Spare #1 Data Read Spare #2 Data Read 7977 7978 Spare #3 Data Read Spare #4 Data 7979 Read Spare #5 Data 7980 Read 7981 Spare #6 Data Read 7982 Spare #7 Data Read Spare #8 Data 7983 Read 7984 Spare #9 Data Read 7985 Spare Auxiliary I/O #1 Data Read 7986 Spare Auxiliary I/O #2 Data Read 7987 Spare Auxiliary I/O #3 Data Read Spare Auxiliary I/O #4 Data 7988 Read Spare Auxiliary I/O #5 Data 7989 Read Spare Auxiliary I/O #6 Data 7990 Read Spare Auxiliary I/O #7 Data 7991 Read 7992 Spare Auxiliary I/O #8 Data Read Spare Auxiliary I/O #9 Data 7993 Read Spare Auxiliary I/O #10 Data 7994 Read Spare Auxiliary I/O #11 Data 7995 Read Spare Auxiliary I/O #12 Data 7996 Read

Alarms, Audit Trail, and Calibration Data

Previous Data Alarm Area

Set last alarm status request (3030) to 1. (3030,16 bits Integer, Write only)

4001-4005(2x16 bits	Integers,	Read Only))
---------------------	-----------	------------	---

- last alarm date mmddyy 4001
- last alarm time hhmmss 4003

4005	last alarm flag - IDx1000000 + CODE x10000 +ACODEx100 +STATUS
------	---

Last Alarm Flag

	ID	CODE	Not	used	STATUS
					I
0	Analog Input #1		41	Analog I	nput #5
1	Analog Input #2		42	Analog I	input #6
2	Analog Input #3		43	Analog I	
3	Analog Input #4		44	Analog I	input #8
4	RTD Input		45	Analog I	nput #9
5	Analog Output #1				
6	Analog Output #2		51	Spare Au	uxiliary I/O #1
7	Analog Output #3		52	Spare Au	uxiliary I/O #2
8	Analog Output #4		53	Spare Au	uxiliary I/O #3
9	Density		54	Spare Au	uxiliary I/O #4
10	Density		55	Spare Au	uxiliary I/O #5
11	Meter #1		56	Spare Au	uxiliary I/O #6
12	Meter #2		57	Spare Au	uxiliary I/O #7
13	Meter #3		58	Spare Au	uxiliary I/O #8
14	Meter #4		59	Spare Au	uxiliary I/O #9
17	Event Status		60	Spare Au	uxiliary I/O #10
18	Calibration Mode		61	Spare Au	uxiliary I/O #11
			62	Spare Au	uxiliary I/O #12
20	Multi.Var. DP		71	Slave#1	DP
21	Multi.Var. Pressure		72	Slave#2	DP
22	Multi.Var. Tempera	ture	73	Slave#3	DP
			74	Slave#1	Pressure
30	MPU1200 Alarm		75	Slave#2	Pressure
31	GC Communication		76	Slave#3	Pressure
32	Slave#1 Communica	ation	77	Slave#1	Temperature
33	Slave#2 Communica	ation	78	Slave#2	Temperature
34	Slave#3 Communica	ation	79	Slave#3	Temperature
			80	Battery A	Alarm
36	Turbine#1				
37	Turbine#2				
38	Turbine#3				

1	Flow Rate
2	Dens. Calc. Out of Range
3	Dens. Calc. Out of Range

7	Down
8	Start

CODE For Diagnostic Data

11	Revolution
13	Profile

<u>STATUS</u>

	ID = 10:	FAILED OK
	ID = 5 - 8:	OVERRANGE OK
0	ID=17,18	OFF
	ID=Others	OK
Others	Not Used	
		1

1	ID=17,18,30	ON
	ID=Others	HI
	ID=31,32,33,34	FAIL
	ID=36,37,38	ERROR
2	LO	
4	FAILED	
5	OVERRANGE	
6	FAIL OK	
7	FAIL	

Example: Last Alarm Flag – (Hex:A8EA33, Decimal:11070003) ID= 11, CODE=7,ACODE=0,STATUS=3 -> METER #1 DOWN

Previous Alarm Data Area Ends

12 Blade

Previous Audit Data Area

Set last audit data request (3031) to 1. (3031,16 bits Integer, Write only)

8101-8109	(2x16	bits	Integer,	Read	only)
-----------	-------	------	----------	------	-------

- 8101 Last Audit Date mmddyy
- 8103 Last Audit Time hhmmss
- 8105 Old Value (Decimal Inferred in the 4th byte of 8109)
- 8107 New Vaule(Decimal Inferred in the 4th byte of 8109)

8109 Code Flag-Given in four hexadecimal bytes (config code, no,audit code,dec)

Code Flag

	No.	Audit Code	Old/New Value Decimal Inferred
NO			

NO.

The following table is only for audit code is less than Value 0 : this field is not used.

_		
	1	Meter #1
	2	Meter #2
	3	Meter #3
	4	Meter #4

21	Analog Input #1
22	Analog Input #2
23	Analog Input #3
24	Analog Input #4
25	RTD

211	Multi.Var.DP
212	
213	Multi.Var.Temperature
191	
192	Analog Input #6
193	Analog Input #7
194	Analog Input #8
195	Analog Input #9
221	Auxiliary Meter #1
222	Auxiliary Meter #2
223	Auxiliary Meter #3
224	Auxiliary Meter #4
225	Auxiliary Meter #5
226	Auxiliary Meter #6
227	Auxiliary Meter #7
228	Auxiliary Meter #8
229	Auxiliary Meter #9
230	Auxiliary Meter #10
231	Auxiliary Meter #11
232	Auxiliary Meter #12
236	Slave #1 DP
237	Slave #1 Pressure
238	Slave #1 Temperature
239	Slave #2 DP
240	Slave #2 Pressure
241	Slave #2 Temperature
242	Slave #3 DP
243	Slave #3 Pressure
244	Slave #3 Temperature

Audit Codes

1	DP Cut Off
2	Stack DP High Switch Percentage
5	Base Density Override
6	Pipe ID
7	Orifice ID
8	Temperature Override
9	Pressure Override
10	Density of Dry Air
11	Base SG (Relative Density)
12	Ratio of Heat
13	Viscosity/Discharge Coeff.C
14	Pipe Thermal
15	Orifice Thermal
16	Pipe Reference Temperature
17	Orifice Reference Temperature
18	MOL% of Methane (aga8d)
	CO2 (AGA8 Gross Method 1)
	Nitrogen(AGA8 Gross Method 2)
19	Hydrogen(AGA8 GrossMethod1)
	CO2 (AGA8 Gross Method 2)
	Nitrogen(AGA8 Detail Method)
20	
	Hydrogen(AGA8 Gross Method 2)
	CO2 (AGA8 Detail Method)
21	CO (AGA8 Gross Method 2)
	Ethane (AGA8 Detail Method)
22	· · · · · · · · · · · · · · · · · · ·
23	Water (AGA8 Detail Method)
24	H2S (AGA8 Detail Method)
25	Hydrogen (AGA8 Detail Method)
26	CO (AGA8 Detail Method)
27	Oxygen (AGA8 Detail Method)
28	i-Butane (AGA8 Detail Method)
29 58	n-Butane (AGA8 Detail Method)
	Density Correction Factor
59	Dese Terreseretury
60	
61	Base Pressure
62	Atmospheric Pressure
63	Pulse Output Volume #1
64	Pulse Output Volume #2
65	Mol % of I-Pentane
66	Mol % of n-Pentane
65	Mol % of n-Hexane
66	Mol % of n-Heptane
67	Mol % of n-Octane
68	Mol % of n-Nonane
69	Mol % of n-Decane
70	Mol % of Helium
71	Mol % of Argon
72	

132	Analog Input @4mA
133	Analog Input @20mA
134	Analog Input Maintenance
135	Analog Input Override
137	Multi-Variable Maintenance
138	Multi-Variable Override
142	Flow Rate Threshold #1
143	Flow Rate Threshold #2
144	Flow Rate Threshold #3
145	Flow Rate Threshold #4
146	Linear Factor #1
147	Linear Factor #2
148	Linear Factor #3 Linear Factor #4
149 150	
150	Common Temperature Common Pressure
131	Common riessure
154	Flow Equation Type
104	Flow Equation Type
155	Y Factor Selection
155	Fractor Selection
156	BS&W Override
150	BS&W Overnde
457	
157	Use Stack DP
158	Density Type
159	Density Unit
160	BTU Override
161	Day Start Hour
162	Disable Alarm
163	Number of Meters
164	Density Calculation Type
165	DP Low Assignment
166	Temperature Assignment
167	Pressure Assignment
168	Density Assignment
169	Densitometer Temperature Assignment
170	DP High Assignment
171	Pressure Unit
172	Flow Unit
172	
173	
174	
	Common Donoity
176	Common Density
177	Common BS&W
178	
179	
180	See Notes
181	Flow Cut Off

8103

8105

8107 8109

Previous Audit Data Area Ends

System Start Time

Not Used

System Failed Date System Failed Time

<u>Example</u> : N 8101 8103	Meter#2 Density Correction Factor change from 1.00000 to 1.10000 Last Audit Date mmddyy 00 00 C8 C8 (Hex), 051400 (Decimal) – May 14, 2000 Last Audit Time hhmmss
0100	00 03 0d 40 (Hex), 200000(Decimal) – 8 PM
8105	Old Value (Decimal Inferred in the 4 th byte of 8109) 00 01 86 a0 (Hex) 100000 (Decimal) 4^{th} byte of 8513 = 5 (Decimal Places) result = 1.00000
8107	New Vaule(Decimal Inferred in the 4 th byte of 8109) 00 01 ad b0 (Hex) 110000 (Decimal) 4^{th} byte of 8513 = 5 (Decimal Places) Rsult = 1.10000
8109	Code Flag 00 26 3a 05 in Hex 2 nd Byte – NO 26 (Hex) 38 (Decimal) Meter#2 Density, 3 rd Byte – Audit Code – 3A(Hex) 58 (Decimal) – Density Correction Factor 4 th Byte – Decimal Places – 05(Hex) – 5 Decimal Places
N	OTE:
	When Audit Code = 180, then the following Modbus Addresses store the parameters indicated.
	8101 System Start Date

Previous Calibration/Verification Data Area

3129	Last Calib./Verification Rpt Req.(1=Latest,20=Oldest)
(3129,16 bits I	nteger, Write only)

8101-8109 ((2x16bits	Integers.	Read	onlv)
0101 0100		millogoro,	1 touu	011197

Last Calibration/Verification Date mmddyy 8101

- Last Calibration/Verification Time hhmmss 8103
- As Found / Verification Point (Decimal Inferred in the 4th byte of 8109) 8105
- As Left (Decimal Inferred in the 4th byte of 8109) 8107

Code Flag-Given in four hexadecimal bytes (ID,Code,Decimal Inferreed) 8109

Code Flag

ID	Code	Value Decimal Inferred
----	------	------------------------

Calibration ID

	Master	Slave #1	Slave#2	Slave#3
DP	1	21	31	41
Pressure	2	22	32	42
Temperature	3	23	33	43
Analog Input#1	4	24	34	44
Analog Input#2	5	25	35	45
Analog Input#3	6	26	36	46
Analog Input#4	7	27	37	47
Analog Input#5	8			
Analog Input#6	9			
Analog Input#7	10			
Analog Input#8	11			
Analog Input#9	12			
RTD	13			

Code

0	Calibration
1	Verification

Decimal Inferred

4	4 Decimal Inferred
3	3 Decimal Inferred
2	2 Decimal Inferred

Current Alarm Status

4 Bytes in Hex - FF

Meter#1: Modbus Address 9533

Meter#2: Modbus Address 9535

Meter#3: Modbus Address 9537

Meter#4: Modbus Address 9539

The Current Alarm Status is a 4-byte string that resides at **Modbus address 9533 for Meter #1, 9535 for Meter #2, 9537 for Meter#3, and 9539 for Meter#4**. The alarm status codes are the same for all meters.

1 st	2 nd	3 rd	4 th	
byte	byte	byte	byte	
01	00	00	00	Meter Down
02	00	00	00	Dens. Calc. Out of Range
04	00	00	00	Net Flow Rate High
08	00	00	00	Net Flow Rate Low

Diagnostic Data Alarms – 3701

1 st	2 nd	3 rd	4 th	
byte	byte	byte	byte	
01	00	00	00	Turbine #1 Revolution Error
02	00	00	00	Turbine #1 Blade Error
04	00	00	00	Turbine #1 Profile Error
00	01	00	00	Turbine #2 Revolution Error
00	02	00	00	Turbine #2 Blade Error
00	04	00	00	Turbine #2 Profile Error
00	00	01	00	Turbine #3 Revolution Error
00	00	02	00	Turbine #3 Blade Error
00	00	04	00	Turbine #3 Profile Error

Other Alarms (Modbus Address 9517) 4 Bytes in Hex - FF

01	00	00	00	Slave#1 DP High
02	00	00	00	Slave#1 DP Low
04	00	00	00	Slave#1 Pressure High
08	00	00	00	Slave#1 Pressure Low
10	00	00	00	Slave#1 Temperature High
20	00	00	00	Slave#1 Temperature Low
00	01	00	00	Slave#2 DP High
00	02	00	00	Slave#2 DP Low
00	04	00	00	Slave#2 Pressure High
00	08	00	00	Slave#2 Pressure Low
00	10	00	00	Slave#2 Temperature High
00	20	00	00	Slave#2 Temperature Low
00	00	01	00	Slave#3 DP High
00	00	02	00	Slave#3 DP Low
00	00	04	00	Slave#3 Pressure High
00	00	08	00	Slave#3 Pressure Low
00	00	10	00	Slave#3 Temperature High
00	00	20	00	Slave#3 Temperature Low

Other Alarms (Modbus Address 9527) 4 Bytes in Hex - FF

01	00	00	00	Spare Auxiliary I/O#1 High
02	00	00	00	Spare Auxiliary I/O#1 Low
04	00	00	00	Spare Auxiliary I/O#2 High
08	00	00	00	Spare Auxiliary I/O#2 Low
10	00	00	00	Spare Auxiliary I/O#3 High
20	00	00	00	Spare Auxiliary I/O#3 Low
40	00	00	00	Spare Auxiliary I/O#4 High
80	00	00	00	Spare Auxiliary I/O#4 Low
00	01	00	00	Spare Auxiliary I/O#5 High
00	02	00	00	Spare Auxiliary I/O#5 Low
00	04	00	00	Spare Auxiliary I/O#6 High
00	08	00	00	Spare Auxiliary I/O#6 Low
00	10	00	00	Spare Auxiliary I/O#7 High
00	20	00	00	Spare Auxiliary I/O#7 Low
00	40	00	00	Spare Auxiliary I/O#8 High
00	80	00	00	Spare Auxiliary I/O#8 Low
00	00	01	00	Spare Auxiliary I/O#9 High
00	00	02	00	Spare Auxiliary I/O#9 Low
00	00	04	00	Spare Auxiliary I/O#10 High
00	00	08	00	Spare Auxiliary I/O#10 Low
00	00	10	00	Spare Auxiliary I/O#11 High
00	00	20	00	Spare Auxiliary I/O#11 Low
00	00	40	00	Spare Auxiliary I/O#12 High
00	00	80	00	Spare Auxiliary I/O#12 Low
00	00	00	01	Analog Input #5 Failed
00	00	00	02	Analog Input #6 Failed
00	00	00	04	Analog Input #7 Failed
00	00	00	08	Analog Input #8 Failed
00	00	00	10	Analog Input #9 Failed

Other Alarms (Modbus Address 9529) 4 Bytes in Hex - FF

01	00	00	00	GC Communication Failed
02	00	00	00	Slave#1 Communication Failed
04	00	00	00	Slave#2 Communication Failed
08	00	00	00	Slave#3 Communication Failed
10	00	00	00	MPU –1200 Alarm
00	01	00	00	Analog Input#5 High
00	02	00	00	Analog Input#5 Low
00	04	00	00	Analog Input#6 High
00	08	00	00	Analog Input#6 Low
00	10	00	00	Analog Input#7 High
00	20	00	00	Analog Input#7 Low
00	40	00	00	Analog Input#8 High
00	80	00	00	Analog Input#8 Low
00	00	01	00	Analog Input#9 High
00	00	02	00	Analog Input#9 Low

Other Alarms (Modbus Address 9531) 4 Bytes in Hex - FF

01	00	00	00	Analog Input #1 High
02	00	00	00	Analog Input #1 Low
04	00	00	00	Analog Input #2 High
08	00	00	00	Analog Input #2 Low
10	00	00	00	Analog Input #3 High
20	00	00	00	Analog Input #3 Low
40	00	00	00	Analog Input #4 High
80	00	00	00	Analog Input #4 Low
00	01	00	00	RTD Input High
00	02	00	00	RTD Input Low
00	04	00	00	Calibration Mode ON
00	08	00	00	Battery Voltage Low
00	10	00	00	Analog Output #1 Overrange
00	20	00	00	Analog Output #2 Overrange
00	40	00	00	Analog Output #3 Overrange
00	80	00	00	Analog Output #4 Overrange
00	00	01	00	Analog Input #1 Failed
00	00	02	00	Analog Input #2 Failed
00	00	04	00	Analog Input #3 Failed
00	00	08	00	Analog Input #4 Failed
00	00	10	00	RTD Input Failed
00	00	20	00	Densitometer Failed
00	00	40	00	Densitometer High
00	00	80	00	Densitometer Low
00	00	00	01	Multi.Var.DP High
00	00	00	02	Multi.Var.DP Low
00	00	00	04	Multi.Var.Pressure High
00	00	00	08	Multi.Var.Pressure Low
00	00	00	10	Multi.Var.Temperature High
00	00	00	20	Multi.Var.Temperature Low

Current Alarms Status Section Ends

INPUT ASSIGNMENTS

- 1 Analog Input #1 2 Analog Input #2 3 Analog Input #3 4 Analog Input #4

- 5 RTD
- 10 Multi.Variable 21 – Analog Input #5
- 22 Analog Input #6
- 23 Analog Input #7
- 24 Analog Input #8
- 25 Analog Input #9

ADDRESS DESCRIPTION

Assignment	Meter#1	Meter#2	Meter#3	Meter#4
DP	2664	2684	2704	2724
Temperature	2665	2685	2705	2725
Pressure	2666	2686	2706	2726
Density	2667	2687	2707	2727
DP High	2668	2688	2708	2728

2861-2864 2865-2868 2869-2872 2873-2876 2877-2880	Analog Input #5 TAG ID Analog Input #6 TAG ID Analog Input #7 TAG ID Analog Input #8 TAG ID Analog Input #9 TAG ID	8 Chars. 8 Chars 8 Chars 8 Chars 8 Chars 8 Chars
2891-2894 2895-2898 2899-2902 2903-2906 2907-2910 2911-2914 2915-2918 2919-2922 2923-2926 2927-2930 2931-2934 2935-2938 2939-2942	Analog Input #1 TAG ID Analog Input #2 TAG ID Analog Input #3 TAG ID Analog Input #4 TAG ID RTD TAG ID Densitometer TAG ID Analog Output #1 TAG ID Analog Output #2 TAG ID Analog Output #3 TAG ID Analog Output #3 TAG ID Multi.Var DP TAG Multi.Var Pressure TAG Multi.Var Temperature TAG	8 Chars. 8 Chars.
4701-4703 4705-4707 4709-4711 4713-4715 4717-4719 4721-4723 4725-4727 4729-4731 4733-4735 4737-4739 4741-4743 4745-4747	Spare Auxiliary I/O #1 Spare Auxiliary I/O #2 Spare Auxiliary I/O #3 Spare Auxiliary I/O #4 Spare Auxiliary I/O #5 Spare Auxiliary I/O #6 Spare Auxiliary I/O #7 Spare Auxiliary I/O #8 Spare Auxiliary I/O #9 Spare Auxiliary I/O #10 Spare Auxiliary I/O #11 Spare Auxiliary I/O #12	8 Chars. 8 Chars.

Data Packet

Set Meter Number to 1, 2, 3, or 4 (Address 3028)

Previous Hourly Data Packet (101-184)

Hourly archive flow data 101, 102, .. 184 are fixed length arrays. The data field is used to address a 10 hours individual group record.(101=Latest, 184=Oldest)

<u>RTU MODE –</u>

ADDR	FUNC CODE	STARTIN	IG POINT	# OF P	CRC CHECK		
		HI	LO	HI	LO	CHE	CK
01	03	00	65	00	01	94	15

<u>Response</u>

ADDR	FUNC	BYTE COUNTS	DATA(Tim	CRC		
	CODE		HI	LO	CHEC	:CK
01	03	F0	00	01		

Response Data Message – Standard

DESCRIPTION (Standard)	Decimal	HOUR
Date (3 bytes)/Hour (one byte)	0 Inferred	First Hour
Flowing Time (4 bytes)	2 Inferred	First Hour
Hourly Total (4 bytes)	1 Inferred	First Hour
Net Total: (Gas Application)		
Gross Total (Liquid Application)		
Energy Total (4 bytes)	1 Inferred	First Hour
Pressure (2 bytes)/ Temperature (2 bytes)	*Note	First Hour
DP EXT (2 bytes)/DP (2 bytes)	1 Inferred	First Hour
Date (3 bytes)/Hour (one byte)	0 Inferred	Second Hour
Flowing Time (4 bytes)	2 Inferred	Second Hour
Hourly Total (4 bytes)	1 Inferred	Second Hour
Net Total: (Gas Application)		
Gross Total (Liquid Application)		
Hourly Total (4 bytes)	1 Inferred	Second Hour
Energy Total: (Gas Application)		
Net Total (Liquid Application)		
Pressure (2 bytes)/ Temperature (2 bytes)	*Note	Second Hour
DP EXT (2 bytes)/DP (2 bytes)	1 Inferred	Second Hour
•••	•••	•••
•••	•••	•••
•••	•••	•••
Date (3 bytes)/Hour (one byte)	0 Inferred	Ninth Hour
Flowing Time (4 bytes)	2 Inferred	Ninth Hour
Hourly Total (4 bytes)	1 Inferred	Ninth Hour
Net Total: (Gas Application)		
Gross Total (Liquid Application)	1 Inferred	NI' 41 II
Hourly Total (4 bytes) Energy Total: (Gas Application)	1 Interred	Ninth Hour
Net Total (Liquid Application)		
Pressure (2 bytes)/ Temperature (2 bytes)	*Note	Ninth Hour
DP EXT (2 bytes)/DP (2 bytes)	1 Inferred	Ninth Hour
Date (3 bytes)/Hour (one byte)	0 Inferred	Tenth Hour
Flowing Time (4 bytes)	2 Inferred	Tenth Hour
Hourly Total (4 bytes)	1 Inferred	Tenth Hour
Net Total: (Gas Application)	1	
Gross Total (Liquid Application)		
Hourly Total (4 bytes)	1 Inferred	Tenth Hour
Energy Total: (Gas Application)		
Net Total (Liquid Application)		
Pressure (2 bytes)/ Temperature (2 bytes)	*Note	Tenth Hour
DP EXT (2 bytes)/DP (2 bytes)	1 Inferred	Tenth Hour

*Note

Description	Units	Decimal
Pressure	PSIG	1 Inferred
	BAR, KG/CM2	2 Inferred
	KPA	0 Inferred
Temperature	Degrees F, Degrees C	1 Inferred

Response Data Message – Program Variable

DESCRIPTION	DATA TYPE	HOUR
Date (3 bytes)/Hour (one byte)	Integer	First Hour
Variable #1	Float	First Hour
Variable #2	Float	First Hour
Variable #3	Float	First Hour
Variable #4	Float	First Hour
Variable #5	Float	First Hour
Date (3 bytes)/Hour (one byte)	Float	Second Hour
Variable #1	Float	Second Hour
Variable #2	Float	Second Hour
Variable #3	Float	Second Hour
Variable #4	Float	Second Hour
Variable #5	Float	Second Hour
		•••
		•••
	•••	•••
Date (3 bytes)/Hour (one byte)	Float	Ninth Hour
Variable #1	Float	Ninth Hour
Variable #2	Float	Ninth Hour
Variable #3	Float	Ninth Hour
Variable #4	Float	Ninth Hour
Variable #5	Float	Ninth Hour
Date (3 bytes)/Hour (one byte)	Float	Tenth Hour
Variable #1	Float	Tenth Hour
Variable #2	Float	Tenth Hour
Variable #3	Float	Tenth Hour
Variable #4	Float	Tenth Hour
Variable #5	Float	Tenth Hour

DESCRIPTION	MODBUS ADDR.	DATA TYPE	Day
BS&W	8001	Float	First Day
BS&W	8003	Float	Second Day
BS&W	8005	Float	Third Day
BS&W	8007	Float	Forth Day
BS&W	8009	Float	Fifth Day
BS&W	8011	Float	Sixth Day
BS&W	8013	Float	Seventh Day
BS&W	8015	Float	Eighth Day
BS&W	8017	Float	Ninth Day
BS&W	8019	Float	Tenth Day

Previous Hourly Data Packet

-			
NO.	Hour	NO.	Hour
101	1-10	151	501-510
102	11-20	152	511-520
103	21-30	153	521-530
104	31-40	154	531-540
105	41-50	155	541-550
106	51-60	156	551-560
107	61-70	157	561-570
108	71-80	158	571-580
109	81-90	159	581-590
110	91-100	160	591-600
111	101-110	161	601-610
112	111-120	162	611-620
113	121-130	163	621-630
114	131-140	164	631-640
115	141-150	165	641-650
116	151-160	166	651-660
117	161-170	167	661-670
118	171-180	168	671-680
119	181-190	169	681-690
120	191-200	170	691-700
120	201-210	170	701-710
121	211-220	172	711-720
122	221-230	172	721-730
123	231-240	173	731-740
124	241-250	174	741-750
125	251-260	175	751-760
120	261-270	170	761-770
127	271-280	178	771-780
120	281-290	178	781-790
12)	291-300	180	791-800
130	301-310	181	801-810
131	311-320	181	811-820
132	321-330	182	821-830
133	331-340	184	831-840
134	341-350	104	031-040
135	351-360		
130	361-370		
137	371-380		
138	371-380 381-390		
139	391-400		
141	401-410		
142	411-420		
143	421-430		
144	431-440		
145	441-450		
146	451-460		
147	461-470		
148	471-480		
149	481-490		
150	491-500		

Previous Daily Data Packet – 35 Days

Daily archive flow data 431,432, 433 (240 bytes),434 (120 bytes) are fixed length arrays. The data field is used to address a 10 days individual group record.431=Latest, 434=Oldest)

Set Meter Number to 1, 2, 3, or 4 (Address 3028)

<u>RTU MODE –</u>

ADDR	FUNC	STARTING POINT		# OF P	OINTS	CF	
	CODE	HI	LO	HI	LO	CHE	CK
01	03	01	AF	00	01		

Response

ADDR	FUNC	BYTE	DATA(Tim	Repeat n les)	CR	
	CODE	COUNTS	HI	LO	CHE	СК
01	03	F0	00	01		

Response Data Message – Standard

DESCRIPTION	DECIMAL	DAY
Day Start Hour (1 byte) /Date (3 byte)	0 Inferred	First Day
Flowing Time (4 bytes)	2 Inferred	First Day
Daily Total (4 bytes)	1 Inferred	First Day
Net Total: (Gas Application)		
Gross Total (Liquid Application)		
Daily Total (4 bytes)	1 Inferred	First Day
Energy Total: (Gas Application)		
Net Total (Liquid Application)		
Pressure (2 bytes)/Temperature (2 bytes)	*Note	First Day
DP EXT (2 bytes)/DP (2 bytes)	1 Inferred	First Day
	•••	
	•••	•••
	•••	
Day Start Hour (1 byte) /Date (3 byte)	0 Inferred	Ninth Day
Flowing Time	2 Inferred	Ninth Day
Daily Total –	1 Inferred	Ninth Day
Net Total: (Gas Application)		
Gross Total (Liquid Application)		
Daily Total (4 bytes)	1 Inferred	Ninth Day
Energy Total: (Gas Application)		
Net Total (Liquid Application)		
Pressure (2 bytes)/ Temperature (2 bytes)	*Note	Ninth Day
DP EXT (2 bytes)/DP (2 bytes)	2 Inferred	Ninth Day
Day Start Hour (1 byte) /Date (3 byte)	0 Inferred	Tenth Day
Flowing Time	2 Inferred	Tenth Day
Daily Total (4 bytes)	1 Inferred	Tenth Day
Net Total: (Gas Application)		
Gross Total (Liquid Application)		
Daily Total (4 bytes)	1 Inferred	Tenth Day
Energy Total: (Gas Application)		
Net Total (Liquid Application)	JUNT /	
Pressure (2 bytes)/Temperature (2 bytes)	*Note	Tenth Day
DP EXT (2 bytes)/DP (2 bytes)	1 Inferred	Tenth Day

Previous Daily Data Packet - 35 days

Number	Day
431	1-10
432	11-20
433	21-30
434	31-35

*Note

Description	Units	Decimal
Pressure	PSIG	1 Inferred
	BAR, KG/CM2	2 Inferred
	KPA	0 Inferred
Temperature	Degrees F, Degrees C	1 Inferred

DESCRIPTION	DATA TYPE	DAY
Day Start Hour (1 byte) /Date (3 byte)	Integer	First Day
Variable #1	Float	First Day
Variable #2	Float	First Day
Variable #3	Float	First Day
Variable #4	Float	First Day
Variable #5	Float	First Day
•••		
•••	•••	
•••	•••	
Day Start Hour (1 byte) /Date (3 byte)	Integer	Ninth Day
Variable #1	Float	Ninth Day
Variable #2	Float	Ninth Day
Variable #3	Float	Ninth Day
Variable #4	Float	Ninth Day
Variable #5	Float	Ninth Day
Day Start Hour (1 byte) /Date (3 byte)	Integer	Tenth Day
Variable #1	Float	Tenth Day
Variable #2	Float	Tenth Day
Variable #3	Float	Tenth Day
Variable #4	Float	Tenth Day
Variable #5	Float	Tenth Day

Response Data Message – Program Variable

Previous Daily Data Packet - 35 Days

Number	Day
431	1-10
432	11-20
433	21-30
434	31-35

Previous Month Data Packet

Set Meter Number to 1, 2, 3, or 4 (Address 3028)

Last Month Data Packet – 1 Month

Data Packet Number	Month
411	1

Monthly archive flow data 411 (72 bytes) is a fixed length array. The data field is used to address month configuration and month totals record.

RTU MODE -

	ADDR	FUNC CODE	STARTING POINT		# OF P	OINTS	CRC C	HECK
			HI	LO	HI	LO		
	01	03	01	9b	00	01	F4	19
-								

Response

ADDR	FUNC CODE BYTE COUNTS		DATA(Rep HI	eat n Times) LO	CRC C	HECK
			COUNTS		LO	
01	03	48	00	01		

Response Data Message - Standard

DESCRIPTION	DECIMAL	Bytes
Base Temperature	2 Inferred	4
Base Pressure	4 Inferred	4
Atmospheric Pressure	4 Inferred	4
Base SG	6 Inferred	4
Heating Value	3 Inferred	4
Pipe ID	5 Inferred	4
Orifice ID	5 Inferred	4
DP Cut Off	4 Inferred	4
Flowing Hour	2 Inferred	4
Month Total	0 Inferred	4
Net Total: (Gas Application)		
Gross Total (Liquid Application)		
Month Total	0 Inferred	4
Energy Total (Gas Application)		
Net Total (Liquid Application)		
Month Averaged Pressure (2 bytes)/ Month Averaged Temperature (2 bytes)	*Note	4
Month Averaged DP EXT (2 bytes)/ Month Averaged DP (2 bytes)	1 Inferred	4
Spare	0 Inferred	4
Total Day	0 Inferred	4
Month	0 Inferred	4
Year	0 Inferred	4
Spare	0 Inferred	4

*Note

Description	Units	Decimal
Pressure	PSIG	1 Inferred
	BAR, KG/CM2	2 Inferred
	КРА	0 Inferred
Temperature	Degrees F, Degrees C	1 Inferred

Response Data Message – Program Variable

DESCRIPTION	DECIMAL
Base Temperature	2 Inferred
Base Pressure	4 Inferred
Atmospheric Pressure	4 Inferred
Base SG	6 Inferred
Heating Value	3 Inferred
Pipe ID	5 Inferred
Orifice ID	5 Inferred
DP Cut Off	4 Inferred
Variable #1	Float
Variable #2	Float
Variable #3	Float
Variable #4	Float
Variable #5	Float
Spare	0 Inferred
Total Day	0 Inferred
Month	0 Inferred
Year	0 Inferred
Spare	0 Inferred

Previous Month Data Packet (412-414)

Monthly archive flow data 412-414 (240 bytes) are fixed length arrays. The data field is used to address an 10 days individual group record <u>*RTU MODE -*</u>

ADDR	FUNC CODE	STARTING POINT		# OF POINTS		CRC CHECK	
		HI	LO	HI	LO		
01	03	01	9f	00	01		

Response

ADDR	FUNC CODE	BYTE COUNTS	DATA(Rep HI	eat n Times) LO	CRC C	HECK
01	03	F0	00	01		

Number	Day
412	1-10
413	11-20
414	21-30

DESCRIPTION	DECIMAL	Days
Day Start Hour (1 byte) /Date (3 byte)	0 Inferred	First Day
Flowing Time	2 Inferred	First Day
Daily Total –	1 Inferred	First Day
Net Total: (Gas Application)		
Gross Total (Liquid Application)		
Daily Total –	1 Inferred	First Day
Energy Total (Gas Application)		
Net Total (Liquid Application)		
Pressure (2 bytes) /Temperature (2 bytes)	*Note	First Day
DP EXT (2 bytes)/DP (2 bytes)	1 Inferred	First Day
Day Start Hour (1 byte) /Date (3 byte)	0 Inferred	10th Day
Flowing Time	2 Inferred	10th Day
Daily Total –	1 Inferred	10th Day
Net Total: (Gas Application)		
Gross Total (Liquid Application)		
Daily Total –	1 Inferred	10th Day
Energy Total (Gas Application)		
Net Total (Liquid Application)		
Pressure (2 bytes) /Temperature (2 bytes)	*Note	10th Day
DP EXT (2 bytes)/DP (2 bytes)	0 Inferred	10th Day

*Note

Description	Units	Decimal
Pressure	PSIG	1 Inferred
	BAR, KG/CM2	2 Inferred
	КРА	0 Inferred
Temperature	Degrees F, Degrees C	1 Inferred

Previous Month Data Packet (415)

Monthly archive flow data 415 (48 bytes) is a fixed length array. The data field is <u>used to address a 2 days individual group record.</u>

Number	Day
415	31-32

<u>RTU MODE -</u>

ADDR	FUNC	STARTIN	G POINT	# OF P	OINTS	CF	
	CODE	HI	LO	HI	LO	CHE	CK
01	03	01	A0	00	01		

<u>Response</u>

ĺ	ADDR	FUNC	BYTE	DATA(Tim	Repeat n ies)	CRC
		CODE	COUNTS	HI	LO	CHECK
ĺ	01	03	30	00	01	

Report by Exception:

When a new alarm is occurred, the MicroMS4 will send out an alarm message through RS232.

Unit ID	Function Code	CRC	
1	99 (63 Hex)	XX	XX

32 bits Integer - 3329

00000001 Analog Input #1 Alarm 00000002 Analog Input #2 Alarm 00000004 Analog Input #3 Alarm 00000008 Analog Input #4 Alarm 00000010 Analog Input #5 Alarm 00000020 Analog Input #6 Alarm 00000040 Analog Input #7 Alarm 00000080 Analog Input #8 Alarm

00000100 Analog Input #9 Alarm 00000200 Multi.Var DP Alarm 00000400 Multi.Var Pressure Alarm 00000800 Multi.Var Temperature Alarm 00001000 Battery Alarm 00002000 Slave Comm. Failed 00004000 0008000

00010000 Slave#1 Multi.Var DP Alarm 00020000 Slave#1 Multi.Var Pressure Alarm 00040000 Slave#1 Multi.Var Temperature Alarm 00080000 Spare Auxiliary#1 Alarm 00100000 Spare Auxiliary#2 Alarm 00200000 Spare Auxiliary#3 Alarm 00400000 Spare Auxiliary#4 Alarm

01000000 Slave#2 Multi.Var DP Alarm 02000000 Slave#2 Multi.Var Pressure Alarm 04000000 Slave#2 Multi.Var Temperature Alarm 08000000 Spare Auxiliary#5 Alarm 10000000 Spare Auxiliary#6 Alarm 20000000 Spare Auxiliary#7 Alarm 40000000 Spare Auxiliary#8 Alarm

32 bits Integer - 3325

00000001 Slave#3 Multi.Var DP Alarm 00000002 Slave#3 Multi.Var PF Alarm 00000004 Slave#3 Multi.Var TF Alarm 00000008 Spare Auxiliary#9 Alarm 00000010 Spare Auxiliary#10 Alarm 00000020 Spare Auxiliary#11 Alarm 00000040 Spare Auxiliary#12 Alarm

Number of active meters/Spare I/O 1-4 Assignments

Spare I/Os are built in master unit- modbus address 3331,3332

Spare I/O	#2	#1		Active Aux.Spare	Active Spare	Active Meter
Bits	8	8	4	4	4	4
Assignment				1-12	1-9	1-4

Spare I/O Assignments 3-6: modbus address 3333,3334

Spare I/O	#6	#5	#4	#3
Bits	8	8	8	8
Assignment				

Spare I/O Assignments 7,8: modbus address 3327,3328

Spare I/O	#8	#7
Bits	8	8
Assignment		

Spare Auxiliary I/O Assignments 1-4: modbus address 3335,3336

Spare Auxiliary I/O	#4	#3	#2	#1
Bits	8	8	8	8
Assignment				

Spare Auxiliary I/O Assignments 5-8: modbus address 3337,3338

Spare Auxiliary I/O	#8	#7	#6	#5
Bits	8	8	8	8
Assignment				

Spare Auxiliary I/O Assignments 9-12: modbus address 3339,3340

Spare Auxiliary I/O	#12	#11	#10	#9
Bits	8	8	8	8
Assignment				

Assignments: (2 digits – 1st digit: Meter Number, 2nd digit: Selection)

Selection

- 0. Not Used
- 1. Tubing Pressure
- 2. Casing Pressure
- 3. Oil Tank
- 4. Water Tank
- 5. Compressor Suction
- 6. Compressor Discharge
- 7. Compressor Temperature

Others - Spare

Default Tag Number

11	TubingP1	21	TubingP2	31	TubingP3	41	TubingP4
12	CasingP1	22	CasingP2	32	CasingP3	42	CasingP4
13	OilTank1	23	OilTank2	33	OilTank3	43	OilTank4
14	WatTank1	24	WatTank2	34	WatTank3	44	WatTank4
15	Suction1	25	Suction2	35	Suction3	45	Suction4
16	Dischag1	26	Dischag2	36	Dischag3	46	Dischag4
17	CompreT1	27	CompreT2	37	CompreT3	47	CompreT4

Hourly Data (Last Day - 24 Hours)

Address 601:meter#1, 602:meter#2, 603:meter#3, 604:meter#4

ADDR	FUNC	STARTIN	IG POINT	# OF P	OINTS	CR	
	CODE	HI	LO	HI	LO	CHE	CK
01	03	02	59	00	01		

<u>Response</u>

ADDR	FUNC	BYTE COUNTS		DATA		CRC
, ibbit	CODE	HI	LO	HI	LO	CHECK
01	03	00	F0	00	01	

Hourly Data (Last Day - 24 hours and 240 Bytes/Meter)

Hourty Duta (Last				
Variables	Bits	Hour	Range	Decimal
Flow Time (Hour)	8	1 st	0-1.00	2 Decimals
Hourly Net Total	16	1 st .	0-6553.4	1 Decimal
DP	12	1 st .	0-409.5	1 Decimal
Temperature	12	1 st .	0-409.5	1 Decimal
Pressure	12	1 st .	0-4095	None
DP/EXT	20	1 st .	0-10485.76	2 Decimals
	Total – 80 Bit	ts (10 Bytes)		

Flow Time (Hour)	8	2 nd .	0-1.00	2 Decimals
Hourly Net Total	16	2 nd .	0-6553.4	1 Decimal
DP	12	2 nd .	0-409.5	1 Decimal
Temperature	12	2 nd .	0-409.5	1 Decimal
Pressure	12	2 nd .	0-4095	None
DP/EXT	20	2 nd .	0-10485.76	2 Decimals

•••				
Flow Time (Hour)	8	24 th	0-1.00	2 Decimals
Hourly Net Total	16	24 th	0-6553.4	1 Decimal
DP	12	24 th	0-409.5	1 Decimal
Temperature	12	24 th	0-409.5	1 Decimal
Pressure	12	24 th	0-4095	None
DP/EXT	20	24 th	0-10485.76	2 Decimals

Snapshot Report

Address 605: Spare Auxiliary I/O Address 606: Spare I/O Data Address 607: Meter#1 Address 608: Meter#2 Address 609: Meter#3 Address 610: Meter#4

ADDR	FUNC	STARTIN	G POINT	# OF P	OINTS	CRC	
	CODE	HI	LO	HI	LO	CHECK	
01	03	02	5d	00	01		

<u>Response</u>

ADDR	FUNC	BYTE COUNTS		COUNTS DATA		CRC	
ABBIR	CODE	H	LO	HI	LO	CHEC	κ
01	03	00	F0	00	01		

SNAPSHOT METER DATA

Variables	Bits	Range	Decimal
Yesterday Net Volume	24	0-167721.5	1 Decimal
Month Net Volume	24	0-1677215	None
Daily Net Volume	24	0-167721.5	1 Decimal
Net Flow Rate	20	0-65535	None
Line Temperature	12	0-409.5	1 Decimal
Line Pressure	12	0-4095	None
Line DP	12	0-409.5	1 Decimal

SPARE I/OS ARE BUILT IN MASTER UNIT

Variables	Bits	Decimal
Spare #1 Data	16	*Note
Spare #2 Data	16	*Note
Spare #3 Data	16	*Note
Spare #4 Data	16	*Note
Spare #5 Data	16	*Note
Spare #6 Data	16	*Note
Spare #7 Data	16	*Note
Spare #8 Data	16	*Note
Spare #9 Data	16	*Note

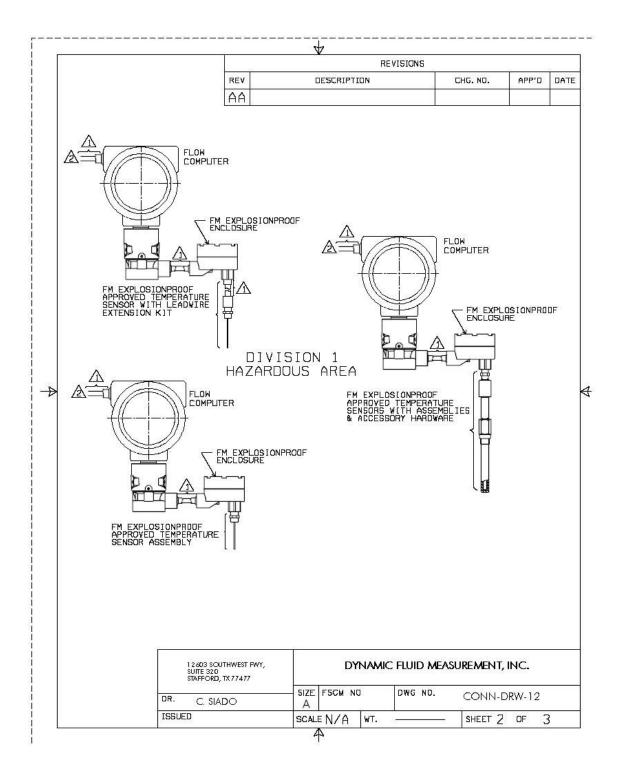
*Note:

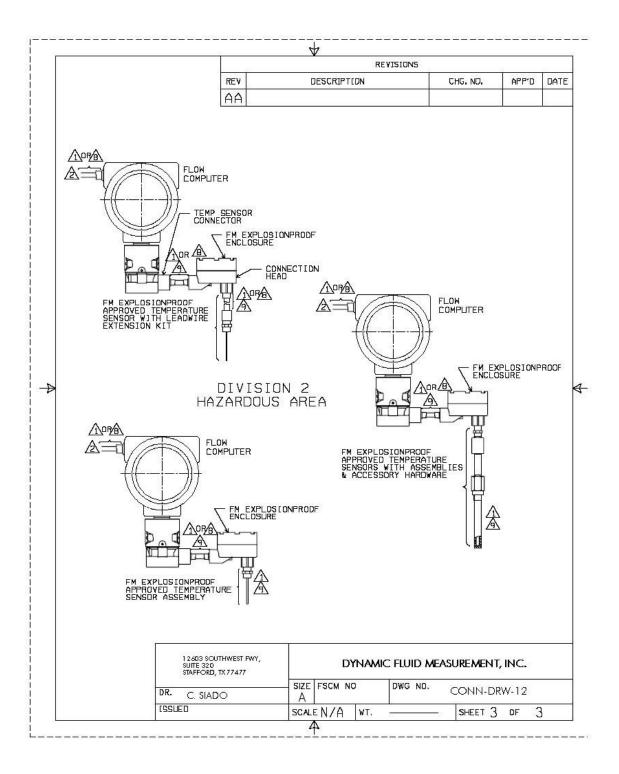
11	TubingP1	21	TubingP2	31	TubingP3	41	TubingP4
12	CasingP1	22	CasingP2	32	CasingP3	42	CasingP4
13	OilTank1	23	OilTank2	33	OilTank3	43	OilTank4
14	WatTank1	24	WatTank2	34	WatTank3	44	WatTank4
15	Suction1	25	Suction2	35	Suction3	45	Suction4
16	Dischag1	26	Dischag2	36	Dischag3	46	Dischag4
17	CompreT1	27	CompreT2	37	CompreT3	47	CompreT4

Spare auxiliary I/Os are utilized from the slave microms4 unit.

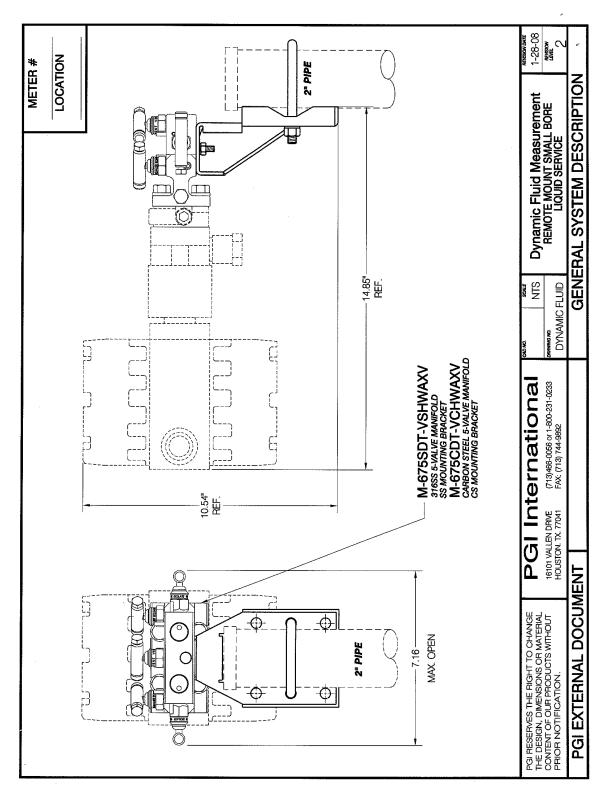
SPARE AUXILIARY DATA

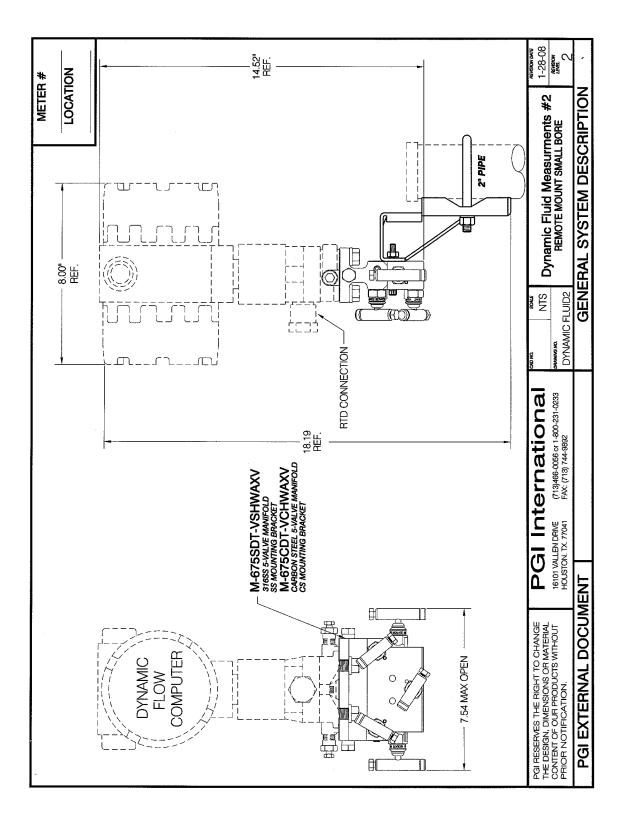
Variables	Bits	Decimal
Spare Auxiliary#1 Data	16	*Note
Spare Auxiliary #2 Data	16	*Note
Spare Auxiliary #3 Data	16	*Note
Spare Auxiliary #4 Data	16	*Note
Spare Auxiliary #5 Data	16	*Note
Spare Auxiliary #6 Data	16	*Note
Spare Auxiliary #7 Data	16	*Note
Spare Auxiliary #8 Data	16	*Note
Spare Auxiliary #9 Data	16	*Note
Spare Auxiliary #10 Data	16	*Note
Spare Auxiliary #11 Data	16	*Note
Spare Auxiliary #12 Data	16	*Note

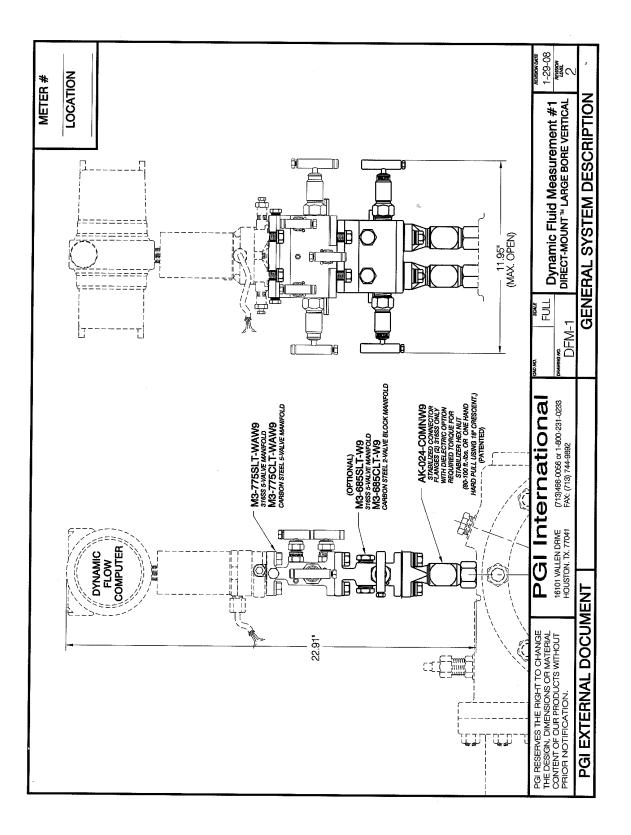

*Note:

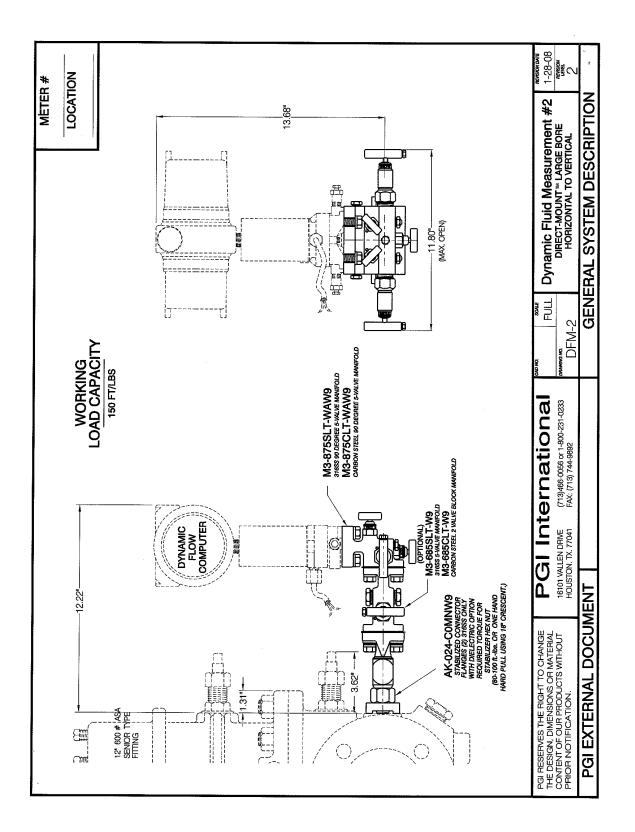

11	TubingP1	21	TubingP2	31	TubingP3	41	TubingP4
12	CasingP1	22	CasingP2	32	CasingP3	42	CasingP4
13	OilTank1	23	OilTank2	33	OilTank3	43	OilTank4
14	WatTank1	24	WatTank2	34	WatTank3	44	WatTank4
15	Suction1	25	Suction2	35	Suction3	45	Suction4
16	Dischag1	26	Dischag2	36	Dischag3	46	Dischag4
17	CompreT1	27	CompreT2	37	CompreT3	47	CompreT4

CHAPTER 6: Installation Drawings


Explosion-Proof Installation Drawings


REV DESCRIPTION DHG. NG. APPD DA ▲AA AA AA AA AA AA ▲AA NOTINGENDIVE THE ACCORDANCE WITH INATIONAL ELECTRICAL CODE. NON-INCENDIVE FIELD WIRING METHODS MAY BE USED FOR CONNECTING THE TEMPERATURE SENSING ASSEMBLY. WHEN USING NON-INCENDIVE FIELD WIRING, THE CONNECTION HEAD AND TEMPERATURE SENSOR ASSEMBLY NEED NOT BE EXPLOSION PROOF, BUT ALL COMPONENTS CONNECTED TO THE TEMP SENSOR CONNECTOR MUST BE CLASSIFIED "SIMPLE APPARATUS." SIMPLE APPRATUS ARE DEVICES WHICH ARE INCAPABLE OF GENERATING OR STORING MORE THAN 1.2V, 0.1A, 25MW, OR 20JJ (RTD'S QUALIFY AS SIMPLE APPARATUS). ▲DIVISION 2 WIRING METHOD. INISION 2 WIRING METHOD. INSTALLATIONS MUST USE A CSA APPROVED DUSTINGTIONPROOF SENSOR. INI AMBIENTS GREATER THAN 40°C, SPRING LOADED TEMPERATURE SENSORS USED WITHOUT AN EXPLOSION PROOF THERMOWELL MUST BE RATED FOR AT LEAST 85°C. IN AMBIENTS GREATER THAN 40°C, SPRING LOADED TEMPERATURE SENSORS USED WITHOUT AN EXPLOSION PROOF THERMOWELL MUST BE RATED FOR AT LEAST 85°C. 4. COMPONENTS REQUIRED TO BE APPROVED MUST BE FOR GAS GROUP APPROPHATE TO AREA CLASSIFICATION. 3. ALL CONDUITS THREADS TO BE CONNECTED TO EQUIPMENT GENERATING MORE THAN 250VAC. MIRING METHOD SUITABLE FOR CLASS I, DIV 1, ANY LENGTH. INCOMPTORY WITHOUT AN EXPLOSION PROOF INSTALLATION MORE THAN 250VAC. MIRING METHOD SUITABLE FOR CLASS I, DIV 1, ANY LENGTH. INCOMPTORY MUTUAL EXPLOSION FROM THE MODEL MICHOMY AND ECHART EXPLOSION FROM THE MAPPD. SIGNAL FROM THE INVERT ALLER FROM TO SUMPLE APPROPER FROM TO SUMPLE APPROPER FROM THE INVERT ALLER FROM THE APPL BOVT.								RE	VISIONS				
INSTALLATION TO BE IN ACCORDANCE WITH NATIONAL ELECTRICAL CODE. MONINCENDIVE FIELD WIRING METHODS MAY BE USED FOR CONNECTING THE TEMPERATURE SENSING ASSEMBLY. WHEN USING NON-INCENDIVE FIELD WIRING, THE CONNECTION HEAD AND TEMPERATURE SENSOR ASSEMBLY NEED NOT BE EXPLOSION PROOF, BUT ALL COMPONENTS CONNECTED TO THE TEMP SENSOR CONNECTOR MUST BE CLASSIFIED "SIMPLE APPARATUS", SIMPLE APPRATUS ARE DEVICES WHICH ARE INCARABLE OF GENERATING OR STORING MORE THAN 1.2V, 0.1A, 25MW, OR 20JU (RTD'S QUALIFY AS SIMPLE APPRATUS). IN AWBENTS GREATER THAN 40°C, SPRING LOADED TEMPERATURE SENSORS USED WITHOUT AN EXPLOSION PROOF THERMOWELL MUST BE RATED FOR AT LEAST 85°C. IN AWBENTS GREATER THAN 40°C, SPRING LOADED TEMPERATURE SENSORS USED WITHOUT AN EXPLOSION PROOF THERMOWELL MUST BE RATED FOR AT LEAST 85°C. ALL CONDUITS THREADS TO BE ASSEMBLED WITH FIVE FULL THREADS MINIMUM. IN RANSINTER MUST NOT BE CONNECTED TO EQUIPMENT GENERATING MORE THAN 250VAC. MORE THAN 250VAC. IN RESIDENT TO AREA CLASSIFICATION. ALL CONDUITS THREADS TO BE ASSEMBLED WITH FIVE FULL THREADS MINIMUM. ITTLE MORE THAN 250VAC. INFROMMENT OF DRUCT ND. DYNAMIC FLUID MEASUREMENT, INC. BREADER THAN 250VAC. TITLE MORE THAN 250VAC. THE SUME AND THANGE THAN AND THAN THAN				RE	EV		DESCRIPT	10 N		CHG.	NO.	APP'D	DAT
▲▲ NATIONAL ELECTRICAL CODE. ▲▲ NON-INCENDIVE FIELD WIRING METHODS MAY BE USED FOR CONNECTING THE TEMPERATURE SENSING ASSEMBLY. WHEN USING NON-INCENDIVE FIELD WIRING, THE CONNECTION HEAD AND TEMPERATURE SENSOR ASSEMBLY NEED NOT BE EXPLOSION PROOF, BUT ALL COMPONENTS CONNECTED TO THE TEMP SENSOR CONNECTION MUST BE CLASSIFIED "SIMPLE APPRATUS". SIMPLE APPRATUS ARE DEVICES WHICH ARE INCAPABLE OF GENERATING OR STORING MORE THAN 1.2V, 0.1A, 25MW, OR 20JJ (RTD'S QUALIFY AS SIMPLE APPRATUS). ▲ DIVISION 2 WIRING METHOD. ▲ CLASSI II INSTALLATIONS MUST USE A CSA APPROVED DUST-INGITIONPROOF SENSOR. ■ IN AMBIENTS GREATER THAN 40°C, SPRING LOADED TEMPERATURE SENSORS USED WITHOUT AN EXPLOSION PROOF THERMOWELL MUST BE RATED FOR AT LEAST 85°C. 4. COMPONENTS REQUIRED TO BE APPROVED MUST BE FOR GAS GROUP APPROPIATE TO AREA CLASSIFICATION. 3. ALL CONDUITS THREADS TO BE ASSEMBLED WITH FIVE FULL THREADS MINIMUM. ▲ TRANSMITTER MUST NOT BE CONNECTED TO EQUIPMENT GENERATING MORE THAN 250VAC. ▲ MINING METHOD SUITABLE FOR CLASS I, DIV 1, ANY LENGTH. ■ EXEMPTANONE SUB ARE FINAN HIZE DR. C. SIADO	1			A	A							6	8
▲▲ NATIONAL ELECTRICAL CODE. ▲▲ NON-INCENDIVE FIELD WIRING METHODS MAY BE USED FOR CONNECTING THE TEMPERATURE SENSING ASSEMBLY. WHEN USING NON-INCENDIVE FIELD WIRING, THE CONNECTION HEAD AND TEMPERATURE SENSOR ASSEMBLY NEED NOT BE EXPLOSION PROOF, BUT ALL COMPONENTS CONNECTED TO THE TEMP SENSOR CONNECTION MUST BE CLASSIFIED "SIMPLE APPARATUS". SIMPLE APPRARTUS ARE DEVICES WHICH ARE INCAPABLE OF GENERATING OR STORING MORE THAN 1.2V, 0.1A, 25MW, OR 20JJ (RTD'S QUALIFY AS SIMPLE APPARATUS). ▲ DIVISION 2 WIRING METHOD. ▲ CLASS II INSTALLATIONS MUST USE A CSA APPROVED DUST-INGITIONPROOF SENSOR. 5. IN AMBIENTS GREATER THAN 40°C, SPRING LOADED TEMPERATURE SENSORS USED WITHOUT AN EXPLOSION PROOF THERMOWELL MUST BE RATED FOR AT LEAST 85°C. 4. COMPONENTS REQUIRED TO BE APPROVED MUST BE FOR GAS GROUP APPROPIATE TO AREA CLASSIFICATION. 3. ALL CONDUITS THREADS TO BE ASSEMBLED WITH FIVE FULL THREADS MINIMUM. ▲ TRANSMITTER MUST NOT BE CONNECTED TO EQUIPMENT GENERATING MORE THAN 250VAC. ▲ MIRING METHOD SUITABLE FOR CLASS I, DIV 1, ANY LENGTH. MAREES ONEMING SUPPERADE MARKED SUPPER COVAC. <				174	9 8 3				24		1	19	-0
↓ ANTIONAL ELECTRICAL CODE. ↓ NON-INCENDIVE FIELD WIRING METHODS MAY BE USED FOR CONNECTING THE TEMPERATURE SENSING ASSEMBLY. WHEN USING NON-INCENDIVE FIELD WIRING, THE CONNECTION HEAD AND TEMPERATURE SENSOR ASSEMBLY NEED NOT BE EXPLOSION PROOF, BUT ALL COMPONENTS CONNECTED TO THE TEMP SENSOR CONNECTION MUST BE CLASSIFIED "SIMPLE APPARATUS". SIMPLE APPARATUS ARE DEVICES WHICH ARE INCAPABLE OF GENERATING OR STORING MORE THAN 1.2V, 0.1A, 25MW, OR 20JJ (RTD'S QUALIFY AS SIMPLE APPARATUS). ↓ DIVISION 2 WIRING METHOD. ↓ DIVISION 2 WIRING METHOD. </td <td></td>													
▲▲ NATIONAL ELECTRICAL CODE. ▲▲ NON-INCENDIVE FIELD WIRING METHODS MAY BE USED FOR CONNECTING THE TEMPERATURE SENSING ASSEMBLY. WHEN USING NON-INCENDIVE FIELD WIRING, THE CONNECTION HEAD AND TEMPERATURE SENSOR ASSEMBLY NEED NOT BE EXPLOSION PROOF, BUT ALL COMPONENTS CONNECTED TO THE TEMP SENSOR CONNECTION MUST BE CLASSIFIED "SIMPLE APPARATUS". SIMPLE APPRARTUS ARE DEVICES WHICH ARE INCAPABLE OF GENERATING OR STORING MORE THAN 1.2V, 0.1A, 25MW, OR 20JJ (RTD'S QUALIFY AS SIMPLE APPARATUS). ▲ DIVISION 2 WIRING METHOD. ▲ CLASS II INSTALLATIONS MUST USE A CSA APPROVED DUST-INGITIONPROOF SENSOR. 5. IN AMBIENTS GREATER THAN 40°C, SPRING LOADED TEMPERATURE SENSORS USED WITHOUT AN EXPLOSION PROOF THERMOWELL MUST BE RATED FOR AT LEAST 85°C. 4. COMPONENTS REQUIRED TO BE APPROVED MUST BE FOR GAS GROUP APPROPIATE TO AREA CLASSIFICATION. 3. ALL CONDUITS THREADS TO BE ASSEMBLED WITH FIVE FULL THREADS MINIMUM. ▲ TRANSMITTER MUST NOT BE CONNECTED TO EQUIPMENT GENERATING MORE THAN 250VAC. ▲ WIRING METHOD SUITABLE FOR CLASS I, DIV 1, ANY LENGTH. INDESTIMENT DNTRACT ND.													
↓ ANTIONAL ELECTRICAL CODE. ↓ NON-INCENDIVE FIELD WIRING METHODS MAY BE USED FOR CONNECTING THE TEMPERATURE SENSING ASSEMBLY. WHEN USING NON-INCENDIVE FIELD WIRING, THE CONNECTION HEAD AND TEMPERATURE SENSOR ASSEMBLY NEED NOT BE EXPLOSION PROOF, BUT ALL COMPONENTS CONNECTED TO THE TEMP SENSOR CONNECTION MUST BE CLASSIFIED "SIMPLE APPARATUS". SIMPLE APPARATUS ARE DEVICES WHICH ARE INCAPABLE OF GENERATING OR STORING MORE THAN 1.2V, 0.1A, 25MW, OR 20JJ (RTD'S QUALIFY AS SIMPLE APPARATUS). ↓ DIVISION 2 WIRING METHOD. ↓ DIVISION 2 WIRING METHOD. </td <td></td>													
▲▲ NATIONAL ELECTRICAL CODE. ▲▲ NON-INCENDIVE FIELD WIRING METHODS MAY BE USED FOR CONNECTING THE TEMPERATURE SENSING ASSEMBLY. WHEN USING NON-INCENDIVE FIELD WIRING, THE CONNECTION HEAD AND TEMPERATURE SENSOR ASSEMBLY NEED NOT BE EXPLOSION PROOF, BUT ALL COMPONENTS CONNECTED TO THE TEMP SENSOR CONNECTION MUST BE CLASSIFIED "SIMPLE APPARATUS". SIMPLE APPRATUS ARE DEVICES WHICH ARE INCAPABLE OF GENERATING OR STORING MORE THAN 1.2V, 0.1A, 25MW, OR 20JJ (RTD'S QUALIFY AS SIMPLE APPARATUS). ▲ DIVISION 2 WIRING METHOD. ▲ IN AMBIENTS GREATER THAN 40°C, SPRING LOADED TEMPERATURE SENSORS USED WITHOUT AN EXPLOSION PROOF THERMOWELL MUST BE RATED FOR AT LEAST 85°C. 4. COMPONENTS REQUIRED TO BE APPROVED MUST BE FOR GAS GROUP APPROPIATE TO AREA CLASSIFICATION. 3. ALL CONDUITS THREADS TO BE ASSEMBLED WITH FIVE FULL THREADS MINIMUM. ▲ TRANSMITTER MUST NOT BE CONNECTED TO EQUIPMENT GENERATING MORE THAN 250VAC. ▲ WIRING METHOD SUITABLE FOR CLASS I, DIV 1, ANY LENGTH. ■ INCLESS INNIMA ■ MORE THAN 250VAC. ▲ WIRING METHOD SUITABLE FOR CLASS I, DIV 1,													
↓ ANTIONAL ELECTRICAL CODE. ↓ NON-INCENDIVE FIELD WIRING METHODS MAY BE USED FOR CONNECTING THE TEMPERATURE SENSING ASSEMBLY. WHEN USING NON-INCENDIVE FIELD WIRING, THE CONNECTION HEAD AND TEMPERATURE SENSOR ASSEMBLY NEED NOT BE EXPLOSION PROOF, BUT ALL COMPONENTS CONNECTED TO THE TEMP SENSOR CONNECTION MUST BE CLASSIFIED "SIMPLE APPARATUS". SIMPLE APPARATUS ARE DEVICES WHICH ARE INCAPABLE OF GENERATING OR STORING MORE THAN 1.2V, 0.1A, 25MW, OR 20JJ (RTD'S QUALIFY AS SIMPLE APPARATUS). ↓ DIVISION 2 WIRING METHOD. ↓ DIVISION 2 WIRING METHOD. </td <td></td>													
ZAA THE TEMPERATURE SENSING ASSEMBLY. WHEN USING NON-INCENDIVE FIELD WIRING, THE CONNECTION HEAD AND TEMPERATURE SENSOR ASSEMBLY NEED NOT BE EXPLOSION PROOF, BUT ALL COMPONENTS CONNECTED TO THE TEMP SENSOR CONNECTOR MUST BE CLASSIFIED "SIMPLE APPARATUS". SIMPLE APPARATUS ARE DEVICES WHICH ARE INCARABLE OF GENERATING OR STORING MORE THAN 1.2V, 0.1A, 25MW, OR 20JJ (RTD'S QUALIFY AS SIMPLE APPARATUS). Image: Class II INSTALLATIONS MUST USE A CSA APPROVED DUST-INGITIONPROOF SENSOR. Image: Class II INSTALLATIONS MUST USE A CSA APPROVED DUST-INGITIONPROOF SENSOR. Image: Class II INSTALLATIONS MUST USE A CSA APPROVED DUST-INGITIONPROOF SENSOR. Image: Class II INSTALLATIONS MUST USE A CSA APPROVED DUST-INGITIONPROOF SENSOR. Image: Class II INSTALLATIONS MUST USE A CSA APPROVED DUST-INGITIONPROOF SENSOR. Image: Class II INSTALLATIONS MUST USE A CSA APPROVED DUST-INGITIONPROOF SENSOR. Image: Class II INSTALLATIONS MUST USE A CSA APPROVED DUST-INGITIONPROOF SENSOR. Image: Class II INSTALLATIONS MUST USE A CSA APPROVED DUST-INGITIONPROOF SENSOR. Image: Class II INSTALLATIONS MUST USE A CSA APPROVED MUST BE FOR GAS GROUP APPROPRIATE TO AREA CLASSIFICATION. Image: Class II INSTALLATION INFOMO APPROPRIATE TO AREA CLASSIFICATION. Image: Class II INSTALLATION INFO BE CONNECTED TO EQUIPMENT GENERATING MORE THAN 250VAC. Image: Class I, DIV 1, ANY LENGTH. Image: Class II INSTALLATION INFO MUTTALE FOR CLASS I, DIV 1, ANY LENGTH. Image: Class II INSTALLATION DRAWING, FACTORY MUTTAL Image: Image: Ima	13					ANCE '	WITH						
ZAS THE TEMPERATURE SENSING ASSEMBLY. WHEN USING NON-INCENDIVE FIELD WIRING, THE CONNECTION HEAD AND TEMPERATURE SENSOR ASSEMBLY NEED NOT BE EXPLOSION PROOF, BUT ALL COMPONENTS CONNECTED TO THE TEMP SENSOR CONNECTOR MUST BE CLASSIFIED "SIMPLE APPARATUS". SIMPLE APPARATUS ARE DEVICES WHICH ARE INCARPABLE OF GENERATING OR STORING MORE THAN 1.2V, 0.1A, 25MW, OR 20W (RTD'S QUALIFY AS SIMPLE APPARATUS).		NON-II		/E FIELD	WIRING M	etho	DS MAY I	BE USEI) FOR CO	NNEC.	TING		
NOT BE EXPLOSION PROOF, BUT ALL COMPONENTS CONNECTED TO THE TEMP SENSOR CONNECTOR MUST BE CLASSIFIED "SIMPLE APPARATUS". SIMPLE APPARATUS ARE DEVICES WHICH ARE INCAPABLE OF GENERATING OR STORING MORE THAN 1.2V, 0.1A, 25MW, OR 20JJ (RTD'S QUALIFY AS SIMPLE APPARATUS).	793	THE TE	MPERATU	RE SENS	ING ASSEM	MBLY.	WHEN U	SING N	ION-INCE	NDIVE	FIELD	N.	
APPARATUS ARE DEVICES WHICH ARE INCAPABLE OF GENERATING OR STORING MORE THAN 1.2V, 0.1A, 25MW, OR 20J (RTD'S QUALIFY AS SIMPLE APPARATUS).		NOT BE	EEXPLOS	ION PRO	oof, but a	ALL CC	MPONE	NTS CO	DNNECTEE) TO TI	HE	,	
MORE THAN 1.2V, 0.1A, 25MW, OR 20W (RTD'S QUALIFY AS SIMPLE APPARATUS).													
6. CLASS II INSTALLATIONS MUST USE A CSA APPROVED DUST-INGITIONPROOF SENSOR. 5. IN AMBIENTS GREATER THAN 40°C, SPRING LOADED TEMPERATURE SENSORS USED WITHOUT AN EXPLOSION PROOF THERMOWELL MUST BE RATED FOR AT LEAST 85°C. 4. COMPONENTS REQUIRED TO BE APPROVED MUST BE FOR GAS GROUP APPROPIATE TO AREA CLASSIFICATION. 3. ALL CONDUITS THREADS TO BE ASSEMBLED WITH FIVE FULL THREADS MINIMUM. APROPRIATE MUST NOT BE CONNECTED TO EQUIPMENT GENERATING MORE THAN 250VAC. WIRING METHOD SUITABLE FOR CLASS I, DIV 1, ANY LENGTH. WIRING METHOD SUITABLE FOR CLASS I, DIV 1, ANY LENGTH. MORE THAN 250VAC. TOLERANCE: AVEL BURK AND TO BE CONTRACT ND. MORE THAN 250VAC. DR. C. SIADO TITLE MODEL MICROMV AND ECHART EXPLOSION PROOF INSTALLATION DR. S. HALILAH SUE ACTIONS AREE AUX 1/22 APPID. S. HALILAH SIZE FSCM NO DWG NO. CONN-DRW-12		MORE	THAN 1.2	2V, 0.1A,	25MW, O	R 20u.	(RTD'S C	QUALIFY	r as simpli	e appa	ratus).		
6. CLASS II INSTALLATIONS MUST USE A CSA APPROVED DUST-INGITIONPROOF SENSOR. 5. IN AMBIENTS GREATER THAN 40°C, SPRING LOADED TEMPERATURE SENSORS USED WITHOUT AN EXPLOSION PROOF THERMOWELL MUST BE RATED FOR AT LEAST 85°C. 4. COMPONENTS REQUIRED TO BE APPROVED MUST BE FOR GAS GROUP APPROPIATE TO AREA CLASSIFICATION. 3. ALL CONDUITS THREADS TO BE ASSEMBLED WITH FIVE FULL THREADS MINIMUM. APROPOPIATE TO AREA CLASSIFICATION. 3. ALL CONDUITS THREADS TO BE ASSEMBLED WITH FIVE FULL THREADS MINIMUM. APROPOPIATE TO AREA CLASSIFICATION. 4. TRANSMITTER MUST NOT BE CONNECTED TO EQUIPMENT GENERATING MORE THAN 250VAC. AMORE THAN 250VAC. AMORE THAN 250VAC. APROPORE FINAL EXAMPLE AND THE CONTRACT ND. AND													
DUST-INGITIONPROOF SENSOR. 5. IN AMBIENTS GREATER THAN 40°C, SPRING LOADED TEMPERATURE SENSORS USED WITHOUT AN EXPLOSION PROOF THERMOWELL MUST BE RATED FOR AT LEAST 85°C. 4. COMPONENTS REQUIRED TO BE APPROVED MUST BE FOR GAS GROUP APPROPIATE TO AREA CLASSIFICATION. 3. ALL CONDUITS THREADS TO BE ASSEMBLED WITH FIVE FULL THREADS MINIMUM. Image: Constant of the constant of t	<u>/8)</u>		N 2 WIRI	NG MET	HOD.								
DUST-INGITIONPROOF SENSOR. 5. IN AMBIENTS GREATER THAN 40°C, SPRING LOADED TEMPERATURE SENSORS USED WITHOUT AN EXPLOSION PROOF THERMOWELL MUST BE RATED FOR AT LEAST 85°C. 4. COMPONENTS REQUIRED TO BE APPROVED MUST BE FOR GAS GROUP APPROPIATE TO AREA CLASSIFICATION. 3. ALL CONDUITS THREADS TO BE ASSEMBLED WITH FIVE FULL THREADS MINIMUM. ALL CONDUITS THREADS TO BE ASSEMBLED WITH FIVE FULL THREADS MINIMUM. Image: Construction of the connected to equipment generating MORE THAN 250VAC. Image: Contract ND. Image: ND. I													
 5. IN AMBIENTS GREATER THAN 40°C, SPRING LOADED TEMPERATURE SENSORS USED WITHOUT AN EXPLOSION PROOF THERMOWELL MUST BE RATED FOR AT LEAST 85°C. 4. COMPONENTS REQUIRED TO BE APPROVED MUST BE FOR GAS GROUP APPROPIATE TO AREA CLASSIFICATION. 3. ALL CONDUITS THREADS TO BE ASSEMBLED WITH FIVE FULL THREADS MINIMUM. 	1 6.					a csa	APPROV	ED					
USED WITHOUT AN EXPLOSION PROOF THERMOWELL MUST BE RATED FOR AT LEAST 85°C. 4. COMPONENTS REQUIRED TO BE APPROVED MUST BE FOR GAS GROUP APPROPIATE TO AREA CLASSIFICATION. 3. ALL CONDUITS THREADS TO BE ASSEMBLED WITH FIVE FULL THREADS MINIMUM. Image: Constraint of the connected to equipment generating more than 250VAC. Image: Connected to equipment generating more than 250VAC. Image: Constraint of the connected to equipment generating more than 250VAC. Image: Connected to equipment generating to the connected to equipment generating to the connected to equipment generating more than 250VAC. Image: Connected to equipment generating to the connected		DUST-IN	GITIONP	roof s	ENSOR.								
LEAST 85°C. 4. COMPONENTS REQUIRED TO BE APPROVED MUST BE FOR GAS GROUP APPROPIATE TO AREA CLASSIFICATION. 3. ALL CONDUITS THREADS TO BE ASSEMBLED WITH FIVE FULL THREADS MINIMUM. Image: Constraint of the connected to equipment generating MORE THAN 250VAC. Image: Constraint of the connected to equipment generating MORE THAN 250VAC. Image: Constraint of the connected to equipment generating MORE THAN 250VAC. Image: Constraint of the connected to equipment generating MORE THAN 250VAC. Image: Constraint of the connected to equipment generating MORE THAN 250VAC. Image: Constraint of the connected to equipment generating MORE than 250VAC. Image: Constraint of the connected to equipment generating MORE than 250VAC. Image: Constraint of the connected to equipment generating MORE than 250VAC. Image: Constraint of the connected to equipment generating Stafford, TX77477 Image: Constraint of the connected to equipment generating Stafford, TX77477 Image: Constraint of the connected to equipment generating Stafford, TX77477 Image: Constraint of the connected to equipment generating Stafford, TX77477 Image: Constraint of the connected to equipment generating Stafford, TX77477 Image: Constraint of the connected to equipment generating Stafford, TX77477 Image: Constraint of the connected to equipment generating Stafford, TX77477 Image: Constraint of the connected to equipment generating Stafford,	5.	11 1 2 3 7 12 11											
APPROPIATE TO AREA CLASSIFICATION. 3. ALL CONDUITS THREADS TO BE ASSEMBLED WITH FIVE FULL THREADS MINIMUM. TRANSMITTER MUST NOT BE CONNECTED TO EQUIPMENT GENERATING MORE THAN 250VAC. MORE THAN 250VAC. MURING METHOD SUITABLE FOR CLASS I, DIV 1, ANY LENGTH. UNLESS OTHERWISE SPECIFIED DVNAMIC FLUID MEASUREMENT, INC. SUFFORD, TX 77477 DVNAMIC FLUID MEASUREMENT, INC. SUFFORD, TX 77477 SUFFORD, TX 77477								YYELL (V)	USI DE KA		JK AI		
3. ALL CONDUITS THREADS TO BE ASSEMBLED WITH FIVE FULL THREADS MINIMUM.	4.						ED MUST	r be fo	R GAS GR	OUP			
Image: State of the state	2						DUUTU			с. Б ИБО			
ZZA MORE THAN 250VAC. MIRING METHOD SUITABLE FOR CLASS I, DIV 1, ANY LENGTH. UNLESS OTHERWISE SPECIFIED CONTRACT ND. DYNAMIC FLUID MEASUREMENT, INC. 12.603 SOUTHWEST PWY, SUITE 320 STAFFORD, TX 77477 SHARP EDGES, MACHINE SUIFACE FINSH 125 DR. C. SIADO TITLE MODEL MICROMV AND ECHART EXPLOSIONPROOF INSTALLATION DRAWING, FACTORY MUTUAL .XX + .02 [0:5] .XX + .02 [0:5] .XX + .0310[0:25] APP'D. S. HALILAH FRANTIONS ANGLES + L/32 2'	3.										IMUM.		
Image: State of the state	2	MORE TH	han 250	VAC.	BE CONN	ECTEL	DICEQ	UIPMEN	II GENERA	IING			
LAILESS OTHERMISE SPECIFIED DIMENSIONS IN INCHES IMPAIL RENUTE ALURAS MORE SUFFACE FIRSH 123 CONTRACT ND. DYNAMIC FLUID MEASUREMENT, INC. 12,603 SOUTHWEST PWY, SUFFACE OF SUFFACE INSH 123 MODEL MICROMV AND ECHART -TOLERANCE- .XX · .02 16,61 .XXX · .03 16(0,25) DR. C. SIADO TITLE MODEL MICROMV AND ECHART EXPLOSION PROOF INSTALLATION DRAWING, FACTORY MUTUAL XXX · .03 16(0,25) APP'D. S. HALILAH SIZE L/32 FSCM NO DWG NO. CONN-DRW-12						ACC 1	D0/1 - N	NUEL	071				
UNLESS OTHERWIGE SPECIFIC DWENSIONS IN INCHES UNIT REMOVES AND SHARP EDGES, MACHINE SUFFACE FINSH 125 CONTRACT ND. DYNAMIC FLUID MEASUREMENT, INC. SUFFE 320 STAFFORD, TX 77477 Image: Strate of the s	/1.	Z MIKING	METHOL	D SULLAB	LE FOR CL	ASS I,	DIV I, AI	NY LEIN	GIH.				
UNLESS OTHERINGE SPECIFIED DURINGIONS IN INCHESS UNITACIES INCHESS CONTRACT ND. DYNAMIC FLUID MEASUREMENT, INC. SUFFE 320 STAFFORD, TX 77477 Image: State of the stress o													
Distributions in inclusions inclusions in inclusions inclusions in inclusions inclasticalexinet inclusions inclusions inclusions inclusions inclusi			с. 1 7							-12			MY,
SHARP EDGES, MACHINE SUFFACE DR. C. SIADO TITLE MODEL MICROMV AND ECHART EXPLOSION PROOF INSTALLATION APP'D. .xx · .02 (26.5) APP'D. .xxx · .030(0, 25) FRACTIONS FRACTIONS ANGLES · L/32 · 2'	LINLESS OTHE	NINCHES (MM)	CONTRAC	T ND.	DYN AMAIC FLUID MAFASURFMENT INC SUITE 320							0 0, TX 77477	
-TOLERANCE- .X • .1 [2:5] .XX • .02 [0:5] .XX • .02 [0:5] .XX • .030 [0:2] FRACTIONS CHK'D EXPLOSION PROOF INSTALLATION DRAWING, FACTORY MUTUAL .XX • .010 [0:2] FRACTIONS ANGLES • L/32 SIZE • 2' FSCM NO DWG NO.	SHARP ED	GES. MACHINE	DR.	C. SIAE	0	TITLE	2	NODE	Lucros			эт	
.XX • .02 (0.5] APP'D. S. HALILAH DRAWING, PACTOREMOTOAL .XXX • .010(0.25) FRADTIONS ANGLES SIZE FSCM NO DWG NO. • L/32 • 2* ADEUD. CONT. A CONN-DRW-12			CHK'D	an possib									
FRACTIONS ANGLES SIZE FSCM NO DWG NO. CONN-DRW-12	.xx -	.02 [0.5]	APP'D.	S. HALI	LAH			DRAV	/ING, FAC	TORY /	NUTUAL	2	
• [/32 • 2· APRID COVT A	FRACTIONS	ANGLES				1000 (100 CA	FSCM N	כ	DWG NO.	CC	NN-DR	W-12	
	000 MM022720	10.000.000	APP'D. G	оут.		1	F	ыт				G404733777	2





Manifold Installation Drawings

